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To save on notation, I supress the sectoral index s in all following calculations.

1 Derivation of Aggregate Productivity
Profit maximization and Optimal size

Profits are given by
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Taking first order conditions and solving for optimal size gives
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Aggregation I: factor payments

Labor market clearing can be written as
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where L is a given labor supply. Equation can also be rewritten as
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with the average output distortion is defined by

and aggregate output in (4) is given by
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Using (2) in (1) one obtains
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Similarily, capital market clear is given by

RK = / RK (w)dw
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which can be rewritten as
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Combining (2) in (9) implies
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To obtain aggregate production, note that pY = (pY)*(pY)'~® and use (4) and (18) to

obatain
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Aggregation II: output

Combine equation (6) and (2) gives
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Using (7) and (12) in (15) to get
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Matching coefficients of (14) and (17) gives
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Then, using (18) in (17) gives
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2 Derivation of MPEC estimator

This section builds on the previous section to derive the MPEC estimator used in the paper.

As before, I supress sector subscripts s to simplify notation.

MLE Objective

From (2) it follows that

Dy (w) = py(w)
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Combining the expressions for factor demands in (2) it also follows that
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as well as
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Equation (20), (21), (22) can be rewritten to yield
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which I assume is distributed according to a tri-variate normal distribution with parameters
pi = EllnDj(w)], 04 = Var[ln D;(w)] for i = 1,2,3 and 0;; = Cov(ln D;(w),In Dj(w)) for

i,j = 1,2,3 and i # j. As equation (23), shows, these parameters in turn are functions



of the underlying heterogeneity parameters pus = E[ln A(w)], try, = E [ln (#y(w))} s Mg =
Eln(l147x(w)],04 = Var[ln A(w)], 0, = Var {ln (#ﬂw))} 0o = Var[ln(1+7x ()], par, =
Corr (ln A(w),In <ﬁy(w)>> ,parg = Corr (In A(w), In(1 + 7 (w)))
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Selection is given by

Hs(w) > Ws (24)

which after plugging in (2) and taking the log, gives
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where the log truncation threshold In k7 is given by
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under truncation for a single observation can then be written as
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Furthermore, & is the variance-covariance matrix of In Dy (w), In Dy(w),In D3(w) and the term



|o| the determinant of that variance-covariance matrix. ®() denotes the cdf of a standard

normal distribution.

Equilibrium Constraints

Equilibrium constraints are given by the terms (8) and (13). To evaluate the truncated power

means in these expressions, I use the following Lemmas.

Lemma 1 (Lien and Balakrishnan, 2006)

Let X and Z be two jointly log-normally distributed random variables. Define the

multiplicative constraint by the set

1if Xe.-Z2b< K
Liapry = (29)
0 if else

Then it follows that
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where ®(.) is the cdf of a standard normal.

To apply the Lien and Balakrishnan result to the trivariate lognormal truncated moments
in (8) and (13), I use the following result, based in the fact that sums of normal random

variables are themselves normally distributed.

Lemma 2

Let X1, X9, X3 be three jointly log-normally distributed random variables. Define

the multiplicative constraint by the set

1if XD xDPxP <K
Yapyxy = (31)
0 if else



Then it follows that
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where ®(.) is the cdf of a standard normal and X and Z are defined by

log X = alog X1 + blog Xo

log Z = (1 log X1 + B2 log X2 + B3 log X3
and the coefficients a, b, ¢ are given by
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Proof: apply mapping (33) and (34) to reduce the trivariate problem to the bivariate

problem of Lemma, 1.



