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To save on notation, I supress the sectoral index s in all following calculations.

1 Derivation of Aggregate Productivity

Profit maximization and Optimal size

Profits are given by

max
{K(ω),L(ω)}

Π(ω) = [1− τY (ω)] · py(ω)− wL(ω)− [1 + τK(ω)] ·R ·K(ω)

subject to: y(ω) = A(ω) ·
[
K(ω)αL(ω)1−α]γ (1)

Taking first order conditions and solving for optimal size gives

wL(ω)

1− α
= [γp(1− τY (ω))A(ω)]

1
1−γ

[(
(1 + τK(ω))R

α

)α( w

1− α

)1−α
]− γ

1−γ

(1 + τK(ω))RK(ω)

α
= [γp(1− τY (ω))A(ω)]

1
1−γ

[(
(1 + τK(ω))R

α

)α( w

1− α

)1−α
]− γ

1−γ

py(ω) =

(
1

γ
(pA(ω))

1
1−γ

)[(
(1 + τK(ω))R

α

)α( w

1− α

)1−α
]− γ

1−γ

(2)

Aggregation I: factor payments

Labor market clearing can be written as

(1− se)wL =

∫
Π(ω)≥w

wL(ω)dω (3)

where L is a given labor supply. Equation can also be rewritten as

pY =
1

γ(1− α)

1

1− τ̄Y
w(1− se)L (4)

1



with the average output distortion is defined by

(1− τ̄Y ) =

∫
Π(ω)≥w

(1− τY (ω))

(
py(ω)

pY

)
dω (5)

and aggregate output in (4) is given by

Y =

∫
Π(ω)≥w

y(ω)dω (6)

Using (2) in (1) one obtains

w

1− α
= (1− se)−

1−γ
1−αγ (γp)

1
1−αγ

(
R

α

)− αγ
1−αγ

Σ
1−γ
1−αγ
L (7)

with

ΣL = E

[
A(ω)

1
1−γ

(
1

1− τY (ω)

)− 1
1−γ

(1 + τK(ω))
−α γ

1−γ

∣∣∣Π(ω) ≥ w

]
se (8)

Similarily, capital market clear is given by

RK =

∫
Π(ω)≥w

RK(ω)dω (9)

which can be rewritten as

pY =
1

γα

(
1 + τ̄K
1− τ̄Y

)
RK (10)

where

1− τ̄Y
1 + τ̄K

=

∫
Π(ω)≥w

(
1− τY (ω)

1 + τK(ω)

)(
py(ω)

pY

)
dω (11)

Combining (2) in (9) implies

R

α
= (γp)

1
1−γ+αγ

(
w

1− α

)− (1−α)γ
1−γ−αγ

(
L

K

) 1−γ
1−α+αγ

Σ
1−γ

1−α+αγ
K (12)

with

ΣK = E

[
A(ω)

1
1−γ

(
1

1− τY (ω)

)− 1
1−γ

(1 + τK(ω))
− 1−γ+αγ

1−γ

∣∣∣Π(ω) ≥ w

]
se (13)

2



To obtain aggregate production, note that pY = (pY )α(pY )1−α and use (4) and (18) to

obatain

Y

L
=

(
E
[
ΣK

∣∣∣Π(ω) ≥ w
]α
E
[
ΣL

∣∣∣Π(ω) ≥ w
]1−α

)1−γ ((1 + τ̄K)α

1− τ̄Y

)
×
(
K

L

)αγ
s1−γ
e (1− se)γ(1−α)

(14)

Aggregation II: output

Combine equation (6) and (2) gives

Y =

[
1

γp

(
R

α

)α( w

1− α

)1−α
]− γ

1−γ

E
[
ΣY

∣∣∣Π(ω) ≥ w
]
seL (15)

with

E
[
ΣY

∣∣∣Π(ω) ≥ w
]

= E

[
A(ω)

1
1−γ

[
(1 + τK(ω))α

1− τY (ω)

]− γ
1−γ ∣∣∣Π(ω) ≥ w

]
(16)

Using (7) and (12) in (15) to get

Y

L
=

E
[
ΣY

∣∣∣Π(ω) ≥ w
]

(
E
[
ΣK

∣∣∣Π(ω) ≥ w
]α
E
[
ΣL

∣∣∣Π(ω) ≥ w
]1−α

)γ (KL
)αγ

s1−γ
e (1− se)γ(1−α) (17)

Matching coefficients of (14) and (17) gives

(
(1 + τ̄K)α

1− τ̄Y

)
=

ΣY

Σα
KΣ1−α

L

(18)

Then, using (18) in (17) gives

Y

L
= E

[
A(ω)

1
1−γ

[
1− τ̄Y

1− τY (ω)

]− 1
1−γ
[

1 + τK(ω)

1 + τ̄K

]−α γ
1−γ ∣∣∣Π(ω) ≥ w

]1−γ (
K

L

)αγ
s1−γ
e (1−se)γ(1−α)

(19)
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2 Derivation of MPEC estimator

This section builds on the previous section to derive the MPEC estimator used in the paper.

As before, I supress sector subscripts s to simplify notation.

MLE Objective

From (2) it follows that

D1(ω) = py(ω)

=

(
1

γ
(pA(ω))

1
1−γ

)[(
(1 + τK(ω))R

α

)α( w

1− α

)1−α
]− γ

1−γ (20)

Combining the expressions for factor demands in (2) it also follows that

D2(ω) =

[(
RK(ω)

α

)α(wL(ω)

1− α

)1−α
]

= (pγ)
1

1−γ

[(
R

α

)α( w

1− α

)1−α
]− γ

1−γ

A(ω)
1

1−γ

(
1

1− τY (ω)

)− 1
1−γ

(1 + τK(ω))
− α

1−γ

(21)

as well as

D3(ω) = ln

(
wL(ω)/(1− α)

RK(ω)/α

)
= (1 + τK(ω))

(22)

Equation (20), (21), (22) can be rewritten to yield


lnD1(ω)

lnD2(ω)

lnD3(ω)

 ∝

− γ

1−γ −α γ
1−γ

1
1−γ

− 1
1−γ −α 1

1−γ
1

1−γ

0 1 0




ln
(

1
1−τY (ω)

)
ln(1 + τK(ω))

lnA(ω)

 (23)

which I assume is distributed according to a tri-variate normal distribution with parameters

µi = E[lnDi(ω)], σii = V ar[lnDi(ω)] for i = 1, 2, 3 and σij = Cov(lnDi(ω), lnDj(ω)) for

i, j = 1, 2, 3 and i 6= j. As equation (23), shows, these parameters in turn are functions
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of the underlying heterogeneity parameters µA = E[lnA(ω)], µτY = E
[
ln
(

1
1−τY (ω)

)]
, µτK =

E[ln(1+τK(ω)], σA = V ar[lnA(ω)], στY = V ar
[
ln
(

1
1−τY (ω)

)]
, στK = V ar[ln(1+τK(ω)], ρAτY =

Corr
(

lnA(ω), ln
(

1
1−τY (ω)

))
, ρAτK = Corr (lnA(ω), ln(1 + τK(ω)))

ρτYK = Corr
(

ln
(

1
1−τY (ω)

)
, ln(1 + τK(ω)

)
Selection is given by

Πs(ω) ≥ ws (24)

which after plugging in (2) and taking the log, gives

(
1 + γ

1− γ

)
ln

(
1

1− τY (ω)

)
+ α

(
γ

1− γ

)
ln(1 + τK(ω)−

(
1

1− γ

)
lnA(ω) ≤ lnκZ (25)

where the log truncation threshold lnκZ is given by

lnκZ = ln

(
1− γ
w

)
+

(
1

1− γ

)
[ln p+ γ ln γ]− γ

1− γ
ln

[(
R

α

)α( w

1− α

)1−α
]

(26)

The MLE objective with parameters θ =
[
µA;µτY ;µτK ;σA;στY ;στK ; ρAτY ; ρAτK ; ρτYK

]
under truncation for a single observation can then be written as

ln

φ
(

lnD1(ω), lnD2(ω), lnD3(ω)
∣∣∣θ, w,R)

1− Φ
(
κZ

)
 =


3

2
ln(2π) +

1

2
ln(|σ̄|)− ln Φ

(
lnκZ − µZ

σZ

)
− 1

2


lnD1(ω)− µ1

lnD2(ω)− µ2

lnD3(ω)− µ3


′

σ̄−1


lnD1(ω)− µ1

lnD2(ω)− µ2

lnD3(ω)− µ3




(27)

with

µZ = g · µτY + h · µτK + k · µA

σ2
Z = g2σ2

τY
+ h2σ2

τK
+ k2σ2

A + 2(g · h · στY ,τK + h · k · στK ,A + g · k · στY ,A)

g =
1 + γ

1− γ
, h =

αγ

1− γ
, k =

1

1− γ

(28)

Furthermore, σ̄ is the variance-covariance matrix of lnD1(ω), lnD2(ω), lnD3(ω) and the term
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|σ̄| the determinant of that variance-covariance matrix. Φ() denotes the cdf of a standard

normal distribution.

Equilibrium Constraints

Equilibrium constraints are given by the terms (8) and (13). To evaluate the truncated power

means in these expressions, I use the following Lemmas.

Lemma 1 (Lien and Balakrishnan, 2006)

Let X and Z be two jointly log-normally distributed random variables. Define the

multiplicative constraint by the set

1{a,b,K} =


1 if Xa · Zb ≤ K

0 if else

(29)

Then it follows that

E
[
XmZn · 1{a,b,K}

]
= exp

{
mµX + nµZ +

1

2

(
m2σ2

m + n2σ2
n + 2mnσX,Z

)}

×Φ

 logK − (aµX + bµZ)− [amσ2
X + (bm+ an)σX,Z + bnσ2

Z ]√
a2σ2

X + b2σ2
Z + 2abσX,Z

 (30)

where Φ(.) is the cdf of a standard normal.

To apply the Lien and Balakrishnan result to the trivariate lognormal truncated moments

in (8) and (13), I use the following result, based in the fact that sums of normal random

variables are themselves normally distributed.

Lemma 2

Let X1, X2, X3 be three jointly log-normally distributed random variables. Define

the multiplicative constraint by the set

1{α,β,γ,K} =


1 if Xβ1

1 Xβ2
2 Xβ3

3 ≤ K

0 if else

(31)
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Then it follows that

E
[
Xm

1 X
n
2X

l
3 · 1{β1,β2,β3,K}

]
= E

[
X · Zc · 1{0,0,1,K}

]
= exp

{
µX + cµZ +

1

2

(
σ2
X + c2σ2

Z + cσX,Z
)}
· Φ
(

logK − µZ − [σX,Z + cσ2
Z ]

σZ

)
(32)

where Φ(.) is the cdf of a standard normal and X and Z are defined by

logX = a logX1 + b logX2

logZ = β1 logX1 + β2 logX2 + β3 logX3

(33)

and the coefficients a, b, c are given by

a = m− β1
l

β3
, b = n− β2

l

β3
, c =

l

β3
(34)

Proof: apply mapping (33) and (34) to reduce the trivariate problem to the bivariate

problem of Lemma 1.
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