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A Data

The Malawi Integrated Survey of Agriculture (Malawi-ISA) is part of a new generation of household

surveys funded by the Bill & Melinda Gates Foundation (BMGF) and led by the Living Standards

Measurement Study (LSMS) team in the Development Research Group (DECRG) of the World

Bank to improve the quality and policy relevance of household-level data on agriculture in Sub-

Saharan Africa. The Malawi ISA (National Statistical Office, 2012) incorporates an extended and

comprehensive agricultural questionnaire on agricultural production and factor inputs, including

land quality and rain.

Land size and land quality. We measure household land as the sum of the size (in acres) of each

household’s plot used for cultivation. We include rented-in land in household land size. For the vast

majority of plots, the acres per plot are recorded using GPS with precision of 1% of an acre. For the

remaining plots, size is self-reported with an estimate from the household. This leaves virtually no

room for error in our measure of land input, see a detailed assessment in Carletto, Savastano and
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Zezza (2013). The data also contain detailed information on the quality of land for each plot used

in each household. We consider all 11 dimensions of land quality available: elevation, slope, erosion,

soil quality, nutrient availability, nutrient retention capacity, rooting conditions, oxygen availability

to roots, excess salts, topicality, and workability. The slope (in %) and elevation (in meters) are

continuous variables while the rest of land quality variables are categorical such as terrain roughness

(plains, lowlands, plateaus, hills, mountains), erosion (1 none, 2 low, 3 moderate, 4 high), nutrient

availability, nutrient retention, rooting conditions, oxygen to roots, excess of salts, toxicity and

workability (1 constraint, 2 moderate constraint, 3 severe constraint and 4 very severe constraint).

These measures are largely from geographical information system such as the Harmonized World

Soil Database.

Our benchmark land quality index is defined per household as the predicted value of output (net

of rain effects which we discuss next) generated by the joint behavior of all dimensions of land

quality controlling for capital and land size, see the first column in Table A-1. We also explore

alternative definitions of the land quality index in Table A-1 that depend on the number of land

quality dimensions that we incorporate and on the way we control for capital and land. A reassuring

aspect of our land quality index, defined from physical measures (e.g., erosion, soil quality, etc.), is

that it is positively related to land prices, see Table A-2. Finally, we perform a robustness analysis

of our reallocation results with respect to our entire set of land quality indexes without substantial

changes in our findings, see Table A-3.

Rain. It is important to control for unanticipated temporary output shocks that can contribute

to explain the variation in output and productivity across households in the data. Rain shocks

are among the most important shocks in agriculture. We use the annual precipitation which is the

total rainfall in millimetres (mm) in the last 12 months. Our benchmark measure of output (value

added) is net of the rain effects. Specifically, we group observations into 10 bins sorted by their

observed level of rain, and then regress the (log) value added on rain deciles to net the effect of rain
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Table A-1: Land Quality Index and Its Dimensions

Land Quality Index

Benchmark Alternative Definitions
Dimensions: q0 q1 q2 q3 q4 q5

Elevation ✓ ✓ ✓ ✓ ✓ ✓
Slope ✓ ✓ ✓ ✓ ✓ ✓
Terrain roughness ✓ – ✓ – ✓ –
Erosion ✓ – ✓ – ✓ –
Nutritient availability ✓ – ✓ – ✓ –
Nutritient retention ✓ – ✓ – ✓ –
Rooting conditions ✓ – ✓ – ✓ –
Oxygen to roots ✓ – ✓ – ✓ –
Excess salts ✓ – ✓ – ✓ –
Toxicity ✓ – ✓ – ✓ –
Workability ✓ – ✓ – ✓ –

Additional controls:
Capital ✓ ✓ – – ✓ ✓

(Const.) (Const.)

Land size ✓ ✓ – – ✓ ✓
(Const.) (Const.)

Notes: Summary definitions of different measures of land quality index. Our benchmark measure utilizes all 11
dimensions of land quality in addition to elevation and slope, controlling for capital and land size. For alternative
measures q4 and q5, we control for capital and land size but restrict the coefficients to be identical to capital and
land shares. Data from the Malawi ISA 2010-11 (National Statistical Office, 2012).

shocks. As rain might be more relevant in some months than others we also tried to control for an

alternative measure of rain, the wettest quarter within the last 12 months. We find an output gain

of 2.88, similar to 2.82 in our baseline.

Labor. In Malawi, not only the household head but also a large proportion of the households

members, which average 4.6 per household, contribute to agricultural work. The household head

is identified as the person who makes economic decisions in the household (e.g., use of production

or transfers). We define household members as individuals that have lived in the household at

least 9 months in the last 12 months. These household members potentially include family (e.g.
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Table A-2: Land Quality Index and Land Price

Land Quality Index

Benchmark Alternative Definitions
q0 q1 q2 q3 q4 q5

Correlation with land price 0.189 0.200 0.202 0.204 0.196 0.196

Notes: Rank correlation between the land quality index q and the price of land computed as the self-reported
estimated land value (under the hypothetical scenario in which the owner sells the land). We separately calculate
this correlation for our benchmark measure of land quality and 5 alternative measures of land quality defined in
Table A-1. The correlation is significant at the one percent level for all land quality measures. Data from the Malawi
ISA 2010-11 (National Statistical Office, 2012).

Table A-3: Output Gain with Different Land Quality Indexes

Benchmark Alternative Definitions
q0 q1 q2 q3 q4 q5

Output gain 2.82 2.84 2.83 2.84 2.82 2.84

Notes: Output gain associated with our benchmark measure of land quality and 5 alternative measures of land
quality defined in Table A-1. Data from the Malawi ISA 2010-11 (National Statistical Office, 2012).

children, spouses, siblings, and parents) and also non-relatives (e.g. lodgers and servants). Individual

information about each household member’s (including children) extensive and intensive margins

of labor supply is collected: (i) weeks worked, (ii) days per week, and (iii) hours per day, by plot

and by agricultural activities covering the entire agricultural production. For the hired labor and

free/exchange labor, we also observe number of days worked by men, women and children by plot

and activities. The detailed information on individual agricultural labor days through the entire

year avoids the seasonal component of labor supply; that is, we do not rely on data on labor

supply related to ‘last week/month’ behavior. Our benchmark measure of household labor supply

is aggregate days of all individuals (household members and non-members) supplied in all plots

cultivated by the household in the rainy season. To control for human capital, i.e., the fact that not

all hours might contribute the same to agricultural production, we construct household efficiency

units by weighting individual hours using the wages of hired labor by age and sex groups as weights.

We find that our results are robust to this alternative specification.
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Capital equipment and structures. Agricultural capital equipment includes implements (i.e.,

hand hoe, slasher, axe, sprayer, panga knife, sickle, treadle pump and watering can) and machinery

(e.g. ox cart, ox plough, tractor, tractor plough, ridger, cultivator, generator, motorized pump,

grain mill, and others). Agricultural capital structures includes chicken houses, livestock kraals,

poultry kraals, storage houses, granaries, barns, pig sties, etc. To measure the capital stock per

item we use the estimated current selling price of capital items after conditioning on its use. We

construct the household agricultural capital stock by aggregating across all agricultural items. The

use of the selling price (not available in previous LSMS data) avoids the cumbersome perpetual

inventory method adjustment for the age of capital to impute current value from the value at the

time of purchase which requires recalling and depreciation assumptions by asset’s age. We note

that we observe a small set of farmers who have zero measured capital but report cultivated land

and positive production. This may be because the data do not record a common set of very small

tools and structures used by farmers. We hence follow Adamopoulos et al. (2022) and impute an

amount of capital to all farms representing the value of this set of small tools and structures, with

the value equal to 10% of the median of the calculated capital value.

Trimming strategy. The cost of misallocation summarized by the output gain is known to

be sensitive to extreme values of inputs and outputs. We trim our sample to exclude apparent

extreme values. Specifically, we trim the top and bottom 0.5% of each of output, land, capital, and

estimated farm TFP. This trimming strategy substantially reduces measured dispersion of farm

TFP by between 9 to 16 percent: the variance of log farm TFP shrinks from 1.67 to 1.40 in the

2010-11 cross-section and from 0.96 to 0.87 in the panel sample. In the context of the misallocation

literature, trimming is also potentially a conservative strategy if high productivity units should in

fact be allocated more inputs.
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Panel data and farmer ability. We use the panel structure of the data to estimate fixed-effect

farm productivity si. There are in total 608 farm households who appear in the 2010-11 wave

(the benchmark year for the quantitative analysis) and one of the 2013 re-interview, and 2016-17

and 2019-20 waves (National Statistical Office, 2020). Among them, 410 households appear in two

waves, 175 households appear in three waves, and 23 households appear in all four waves.

We argue that the fixed-effect measure of farm productivity captures farmer’s ability rather than

location characteristics or transitory shocks. To illustrate this issue, we regress fixed-effect farm pro-

ductivity log(s̄i) on observed location and farm characteristics and report the resulting coefficients

with standard errors in parenthesis in Table A-4.

Table A-4: Fixed-Effect Farm Productivity and Observables

Dependent variable Fixed-effect farm productivity log(s̄i)

Location and farm observables:
Log distance to road −0.06

(0.05)
Log distance to population center −0.02

(0.11)
Log rainfall 0.46

(0.44)
Health of household head 0.17

(0.42)
Log age −0.55

(0.23)
Schooling of household head 0.56

(0.21)
Number of observations 596

Notes: Regression coefficients of fixed-effect farm productivity on location and farm observables such as the log
distance to the nearest road and population center, the log rainfall of 2010, a dummy variable indicating household
head’s health status, the log age of household head, and a dummy variable indicating household head’s education
status. Standard errors are reported in parenthesis.

We find that farm productivity is not correlated with the log distance to the nearest road or

population center, which suggests that farm productivity does not capture location characteristics

such as access to markets. We also consider two transitory shocks: the log of rainfall in 2010 and
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a dummy indicator which equals to one if the household head was admitted to a hospital in 2010

and zero otherwise. As expected, the coefficients on these two variables are insignificant, which is

reassuring given that our measure of farm productivity was constructed devoid of transitory shocks.

To illustrate that our measure of farm productivity captures the ability of farmers, we consider two

variables measuring non-transitory components of ability such as the log of the household head’s

age and a dummy indicator which equals to one if the household head ever attended school. We

indeed find significant coefficients for these two variables implying that old farm operators are less

productive in farming than young farm operators; and that educated farm operators have higher

productivity than uneducated farm operators.

To the extent that our measure of farm productivity may still reflect other factors than farmer

ability (mismeasurement), we note that the change in the output gain from an efficient reallocation

is roughly proportional to the change in the dispersion of farm productivity. This implies that,

for example, if dispersion of farm productivity is only one half our measured dispersion, then the

output gain from an efficient reallocation of 96 percent in our baseline panel data would only be

half, 48 percent.

B Measurement Error and Misallocation

We assess the extent to which our results may be affected by measurement error through two ap-

proaches. First, we explore the panel dimension of the data to estimate household-farm fixed effects

of productivity and inputs that abstract from time and transitory variation, including potential

measurement error. Second, we explore additional counterfactual experiments to provide bounds

on the relevance of measurement error for output gains.
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B.1 Patterns of Misallocation with Panel Data

Recall that the patterns of misallocation illustrated in Figure 1 in the article are characterized with

the 2010-11 wave of cross-sectional data. We note that these patterns remain remarkably similar if

we instead use the panel sample. Figure B-1 illustrates the patterns using the panel data to estimate

a household-farm fixed effect of productivity. The correlation of farm productivity and inputs are

very similar in the cross-section and panel data, for instance, the log correlation of land input and

productivity is 0.17 in the cross-section and 0.21 in the panel, and similarly the log correlation of

capital and productivity is 0.02 in the cross-section and also 0.02 in the panel.

B.2 Recall Bias for Agricultural Production and Labor Input

In rural settings the underreporting of agricultural production is a recurrent issue for survey data

(Deaton, 1997; de Magalhães and Santaeulàlia-Llopis, 2018). There are two aspects of the Malawi

ISA design that help mitigate and study this issue. First, in many instances the survey provides

internal consistency checks (e.g., households are asked total sales, and also sales by crop and by plot;

the interviewer must check in situ that the two sums coincide or otherwise re-interview). Second,

the ISA collects data not only on agricultural production but also on consumption that includes

food consumption (in physical units) from own production. This provides a unique opportunity to

externally validate agricultural production using consumption data. In this context, a reassuring

result is that in rural household-farms that do not sell their agricultural production and have little

or no consumption purchases (i.e., about 50% of the entire rural sample), the reported agricultural

production and the reported consumption net of transfers imply very similar quantities, which

suggests a small scope for measurement error (from recall or elsewhere) in agricultural production,

see de Magalhães and Santaeulàlia-Llopis (2018).

Not only agricultural production is collected retrospectively, but also labor input. To further inves-
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Figure B-1: Patterns of Misallocation—Panel Specification

Notes: Panel (a) reports actual and efficient land operational size in farms ℓi with respect to farm productivity si.
Panel (b) reports actual and efficient marginal product of land (MPL) with respect to farm productivity si. Panel
(c) reports actual and efficient capital in farms ki with respect to farm productivity si. Panel (d) reports actual
and efficient marginal product of capital (MPK) with respect to farm productivity si. Each (blue) dot represents a
household farm in the data whereas the (red) dashed line represents the efficient allocation. Farm productivity is
the household-farm fixed effect while farm inputs are from the 2010/11 wave. All variables have been logged.
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tigate the basis for potential recall bias in the collection of production and labor input, we note that

in Malawi there is only one main harvest associated with the only rainy season. We then re-conduct

our entire analysis for only the households farms that are surveyed shortly (i.e., within four months)

after harvest, the output gain is 2.78-fold which is only slightly lower than the 2.82-fold output gain

in our benchmark specification. This finding suggests that our results are robust to recall bias.

B.3 Bounds of Output Gains

We design the following experiment to better understand the nature of the output gain. Suppose a

planner allocates the observed input sets {ki} and {li} to farmers in a particular fashion, holding

farm-level TFP unchanged, how large are the gains from reallocation? In other words, in this

experiment, we hold the marginal distributions of {ki}, {li}, and {si} constant but we allow for,

for instance, assigning li to an arbitrary farmer j.

The assignment with lowest possible output gain is positive assortative matching between inputs

and farm productivity, which yields an output gain of 1.35-fold. The highest possible output gain

is then obtained with negative assortative matching, which is 5.38-fold. Random assignment, which

means {ki, ℓi} are uncorrelated with {si}, yields an output gain of around 3.1-fold. Note that with

finite sample (7,505 observations) the output gain associated with this random assignment varies

with the particular draw of random numbers. This comparison highlights the importance of the

correlation. Our baseline output gain, 2.82-fold, is not much lower than that of random assignment.

This is exactly because in our data, the correlation between inputs and farm productivity is very

low, as documented in Figure 1 in the article.
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B.4 A Structural Interpretation of Measurement Error

We estimate a structural model of measurement error to assess their potential importance in our

quantitative results. We denote true capital, land, and output as ki, ℓi, and yi. Capital and land

inputs are functions of true productivity zi:

ln(ki) = ζk ln(zi) + dki , ln(ℓi) = ζℓ ln(zi) + dℓi .

An efficient allocation implies ζk = ζℓ = 1 and dki = dℓi = 0. Hence ζk ̸= 1 and ζℓ ̸= 1 indicate

correlated distortions as in Bento and Restuccia (2017), while dki ̸= 0 and dℓi ̸= 0 indicate non-

systematic distortions.

We assume that variables (inputs and outputs) may be observed with error, i.e.,

ln(k̃i) = ln(ki) + εki = ζk ln(zi) + dki + εki ,

ln(ℓ̃i) = ln(ℓi) + εℓi = ζℓ ln(zi) + dℓi + εℓi ,

ln(ỹi) = ln(yi) + εyi ,

where εk, εℓ, and εy represent (log) additive measurement error. The estimated farm productivity

z̃i is then

z̃i =
ỹi(

k̃α
i ℓ̃

1−αi
i

)γ = zi
exp(εyi )(

exp(εki )
α exp(εℓi)

1−α
)γ .

We now contrast the output gain calculated from observed variables with that calculated from

true variables. Note that true aggregate inputs and output are identical to observed ones since

measurement errors are mean zero. The true output gain from reallocating resources is

e =
Y e

Y a
=

(
∑

i zi)
1−γ (KαL1−α)

γ∑
i z

1−γ
i

(
kα
i ℓ

1−α
i

)γ ,
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while the measured output gain is

ẽ =
Ỹ e

Ỹ a
=

(
∑

i z̃i)
1−γ (KαL1−α)

γ∑
i z̃

1−γ
i

(
k̃α
i ℓ̃

1−α
i

)γ .

To structurally estimate this framework, we make the parametric assumption that εk, εℓ, and εy are

all normally distributed with variance σ2
m. The parameter σ2

m governs the precision in measurement

and we assume that additive measurement error is of the same magnitude for all inputs and outputs.

In addition, we assume dk and dℓ, the idiosyncratic distortions, follow normal distributions with

variance σ2
k and σ2

ℓ , and true productivity follows a normal distribution with variance σ2
s .

We use this framework to answer the following question: If true output gain e is only half of measured

output gain ẽ, what is the implied magnitude of measurement error? We estimate this framework,

which consists of six parameters: {σ2
k, σ

2
ℓ , σ

2
m, ζ

k, ζℓ, σ2
s}, to match the following five moments from

Malawi micro data: the variances of observed capital and labor input, the correlations between farm

productivity and capital/labor input, and the measured output gain. We also use the fact that true

output gain e is half the measured output gain as our sixth moment to restrict the value of σ2
m.

Considering our most conservative output gain associated with the fixed effects of inputs and pro-

ductivity in the panel of 1.67-fold, half of this level renders a “true” output gain of 1.34-fold. We

find that the magnitude of the measurement error must be huge, the estimated σ2
m = 0.22 and as

a result, the variance of (log) observed land input ℓ̃i must be almost two times larger than (log)

true land input ℓi. Given that our measure of land input is cultivated land at the household level

measured via GPS, we think this magnitude of measurement error is unlikely, but nevertheless our

analysis helps frame the extent to which remaining measurement error may be driving reported

reallocation gains.
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