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A Data Description

A.1 Exchange Rates

The data set consists of forward and spot exchange rates from Reuters/WMR and Barclays,

and is available on Datastream. It includes the Euro and the currencies of the following 18

advanced OECD countries: Australia, Austria, Belgium, Canada, Denmark, France, Germany,

Ireland, Italy, Japan, the Netherlands, Norway, New Zealand, Portugal, Spain, Sweden,

Switzerland and the UK.

The data spans the time period 1976:M1-2013:M6 and is at a daily frequency. The data

on the Euro-legacy currencies (e.g. France, Austria, etc.), except for the German Deutsch

Mark (DEM), ends in December 1998. As is common in the literature, instead of including

separate DEM and EUR series, I combine the two by appending the Euro to the end of the

DEM series. This creates a single long series that spans the whole time frame.

The data consists of forward and spot exchange rates, and I construct interest rate

differentials from the Covered Interest Parity (CIP):

Ft
St

=
1 + it
1 + i∗t

This is the standard practice in the literature because the data on forward contracts is

better than data on short-term interest rates, since the forward market is deep and liquid.

A.2 Data for Section 6

The data on government debt and GDP is from the OECD database. The data on Commercial

Paper is from the Federal Reserve, Board of Governors. The NFA series is constructed

from data on foreign assets and liabilities from the IMF’s International Financial Statistics

Database. Data on interest rates – AAA, BAA, Treasury Notes and Bills – is from Datastream.

The equity volatility measure is built from MSCI Stock Price indices, also obtained from

Datastream.
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B The UIP Condition

I define St to be the exchange rate, in terms of home currency per one unit of foreign currency

(e.g. 1.25 USD per EUR), and it and i∗t as the nominal interest rates on default-free bonds at

home and abroad. For ease of exposition, I will refer to the US dollar as the “home” currency

and the Euro as the “foreign” currency. A $1 investment in US bonds at time t offers a

return of 1 + it dollars next period. The same $1 invested in Euro denominated bonds would

earn St+1

St
(1 + i∗t ) dollars next period. First, we need to exchange this one dollar for Euros

and obtain 1
St

EUR in return. Investing this amount of Euros earns a gross interest rate of

1 + i∗t that next period can be exchanged back into dollars at the rate St+1, for a total return

of St+1

St
(1 + i∗t ) dollars.

Assuming that the law of one price holds, there exists a stochastic discount factor Mt+1,

such that

Et(Mt+1(1 + it)) = 1 (1)

Et(Mt+1
St+1

St
(1 + i∗t )) = 1. (2)

A straightforward way to obtain the Uncovered Interest Parity condition is to log-

linearize the two equations, subtract them from one another and re-arrange to arrive at

Et(st+1 − st + i∗t − it) = 0

where lower case letters represent variables in logs and I have used the approximation

it ≈ ln(1 + it).
1 Thus, up to a first-order approximation, the expected return on foreign

bonds, Et(st+1 − st + i∗t ), equals the expected return on the home bond, it. This restricts

the joint dynamics of exchange rates and interest rates, and delivers strong implications for

exchange rate behavior. The condition obtains in a large class of standard open economy

models.

B.1 Including post-crisis data

In this section I re-estimate the main empirical specification, the UIP regressions

λj,t+k = αj,k + βk(it − i∗j,t) + εj,t+k, (3)

1The log-linearization is typically done around the symmetric steady state where St+1 = St = 1 and
it = i∗t , because this allows us to express the condition in terms of the log-variables themselves. But the
log-linearized condition holds for any arbitrary point of approximation.
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Figure 1: UIP Regression at horizons from 1 to 180 months

and the exchange rate impulse response

sj,t+k − sjt = αj,k + γk(it − i∗j,t) + εj,t+k, (4)

on the full sample 1976-2013, which includes the financial crisis and the subsequent period.

The resulting estimates are plotted in Figures 1 and 2 and show that there is no

ostensible difference from the estimates on the truncated sample that excludes the financial

crisis. Thus, the cyclicality of UIP violations is not something that is confined to either

sub-sample and suggests that potential structural breaks are not affecting the results. The

impulse response of the exchange rate is also virtually identical to the benchmark results,

and displays clear non-monotonic dynamics.

B.2 Exchange Rate Changes Predictability

To complement the discussion in Section 1, here I show the predictability pattern of exchange

rate changes, ∆st+k+1, at different horizons. To do so, I estimate the regression

∆sj,t+k = αjk + γ̃k(it − i∗jt) + εj,t+k

and plot the coefficients γ̃k. Those coefficients summarize the predictability in the one month

exchange rate change at different horizons. For example, γ̃1 captures the predictability of

the change between t and t+ 1, and γ̃k+1 more generally captures the predictability of the
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Figure 2: Exchange Rate IRF
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change between time periods t+ k and t+ k + 1.

The results are plotted in the left panel of Figure 3. As we would anticipate from

the results plotted in Figure 2, we see that there is no exchange rate predictability at short

horizons of up to one to one and a half years. Then, at horizons between 18 to 36 months

higher current interest rate depreciation forecasts an exchange rate appreciation, and lastly,

at horizons between roughly 4 to 7 years, higher interest rate differentials today forecast

exchange rate depreciation. Note that the IRF of the level of the exchange rate, γk is simply

equal to the sum of the coefficients γ̃k plotted here:

γk =
k∑
i=1

γ̃k

Moreover, panel (b) on the right plots all three coefficients, the predictability in excess

returns (βk), predictability in exchange rate changes (γ̃k), the impulse response of the interest

rate differential (ρk) together. Note that the regression coefficient on the currency excess

returns is simply the difference of the other two:

βk = γ̃k − ρk.

So as we can see, the predictability in the excess currency returns at horizons of over 36

months is almost exclusively due to predictability in exchange rate changes. In particular,

at these longer horizons the exchange rate is expected to sustain a significant depreciation

(positive γ̃k), which results in negative expected excess currency returns at those horizons.
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Figure 3: Exchange Rate Changes Predictability

In conclusion, the results of this section confirm that the change in the sign of the

excess return predictability (the sign on the βk coefficients) is driven by a change in the sign

of the predictability in high frequency exchange rate movements at longer horizons. This

complements the discussion in Section ?? which argues that it is the changing nature of

exchange rate predictability that underlies the estimated cyclicality of the currency excess

returns.

C Proofs

C.1 LEMMA 1:

LEMMA 1. The equilibrium is determinate if and only if we have one of two policy regimes:

(i) Active Monetary, Passive Fiscal policy: φπ > 1, κb ∈ (θ − θ2,
1+ρτ
1−ρτ (θ + θ2)), ρτ ∈ [0, θ2

θ
).

(ii) Passive Monetary, Active Fiscal policy: φπ < 1, κb /∈ (θ − θ2,
1+ρτ
1−ρτ (θ + θ2)), ρτ ∈ [0, 1).

where θ > θ2 ≥ 1, with θ = (1 + i)(1 + γΨ + γM ), θ2 = 1 + γM (1 + i), and γΨ > 0, and γM ≥ 0

are log-linearization constants defined in the Appendix.

Proof. I will first show the if direction. The equilibrium of the model is described by four

(log-linearized) equations: Euler equation for home bonds, government budget, the Taylor rule

and the tax rule. These equations determine the dynamics of the four domestic equilibrium
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variables – inflation, interest rates, government debt and taxes – and represent a closed

system that can be solved independent of foreign variables considerations.

Using the fact that consumption and foreign bonds holdings are constant, the the

log-linearized MRS becomes,

M̂t+1 = γM(b̂h,t+1 − b̂h,t)

where γM =
ucbh (c,bh,bf )

uc(c,bh,bf )
bh > 0, and the log-linearized convenience benefit is:

ΨH

β(1 + i)
Ψ̂H = −γΨb̂ht

where γΨ = − bh
β(1+i)

1
uc(c,bh,bf )

(ubhbh(c, bh, bf) − ubh(c, bh, bf)
ucbh (c,bh,bf )

uc(c,bh,bf )
) > 0. I am using the

convention that ux(.) represents the partial derivative in respect to x, and uxx(.) represents

the second partial and so on. Variables without time subscripts are steady-state values.

Using these relationships, and the fact that in equilibrium home agent bond holdings

equal the supply of home government debt, the system of equilibrium conditions becomes

ît = Et(π̂t+1) + γΨb̂t − γM(Et(b̂h,t+1)− b̂h,t)

b̂ht +
τ

bh
τ̂t = (1 + i)(b̂h,t−1 + ît−1 − π̂t)

ît = φππ̂t + vt

τ̂t = ρτ τ̂t−1 + (1− ρτ )κb
bh
τ
b̂h,t−1

First, I show that condition (i), Active monetary/passive fiscal policy mix, ensures that

a determinate, stable equilibrium exists. Assume that φπ > 1, κb ∈ (θ− θ2,
1+ρτ
1−ρτ (θ+ θ2)), and

ρτ ∈ [0, θ2
θ

), where θ = (1 + i)(1 + γΨ + γM ), and θ2 = 1 + (1 + i)γM . Substituting the Taylor

rule into the Euler equation for the home bonds, and solving forward for inflation:

π̂t =
1

φπ

(
Et(π̂t+1) + (γΨ + γM)b̂t − γMEt(b̂h,t+1)− vt

)
...

=
γM
φπ

b̂ht −
vt
φπ

+
γΨ + γM(1− φπ)

φπ

∞∑
j=0

1

φjπ
Et(b̂h,t+j)

Next, date the government budget constraint one period forward, take an expectation

conditional on time t information and use the Euler equation and the tax rule to substitute

out the interest rate and inflation, and arrive at the following 2 equations:
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Et

b̂h,t+1

τ̂t+1


︸ ︷︷ ︸

xt+1

=

 θ−(1−ρτ )κb
θ2

− τ
b
ρτ
θ2

(1− ρτ )κb bτ ρτ


︸ ︷︷ ︸

A

b̂ht
τ̂t


︸ ︷︷ ︸
xt

(5)

I will show that condition (i) ensures that the eigenvalues of the auto-regressive matrix

A are inside the unit circle, and hence we can use this system to solve for the infinite sum of

expected bht in the expression for equilibrium inflation. The two eigenvalues of A are

λ1,2 =
θ − (1− ρτ )κb + θ2ρτ ±

√
(θ − (1− ρτ )κb + θ2ρτ )2 − 4θθ2ρτ

2θ2

.

The eigenvalues are complex conjugates when (θ − (1 − ρτ )κb + θ2ρτ )
2 − 4θθ2ρτ < 0.

The left-hand side of this equation defines a quadratic expression in ρτ that is convex and

crosses zero at the following two points

ρ(κb) =
κb(κb − θ) + (κb + θ)θ2 − 2

√
κbθθ2(κb − θ + θ2)

(θ2 + κb)2

ρ(κb) =
κb(κb − θ) + (κb + θ)θ2 + 2

√
κbθθ2(κb − θ + θ2)

(θ2 + κb)2

Since θ2 < θ it follows that ρ(κb) < 1 and since

κb(κb − θ) + (κb + θ)θ2 = κb(κb − θ + θ2) + θθ2

it follows that ρ(κb) > 0. Moreover, ρ(κb) ≤ θ2
θ
≤ ρτ (κb), and hence for ρτ ∈ [0, ρ(κb)]

the eigenvalues are real, and for ρ ∈ (ρ(κb),
θ2
θ

) they are complex conjugates.

First, I address the case where the eigenvalues are complex. Their magnitude its:

|λk| =
1

2θ2

(
(θ − (1− ρτ )κb + θ2ρτ )

2 + [4θθ2ρτ − (θ − (1− ρτ )κb + θ2ρτ )
2]
) 1

2

=
1

2θ2

√
4θθ2ρτ

=

√
θ

θ2

ρτ

and hence |λk| < 1 if and only if ρτ <
θ2
θ

. This is satisfied by condition (i), and hence

when the eigenvalues are complex, they lie inside the unit circle.
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Next, I address the situation when the eigenvalues are real, ρτ < ρ
τ
(κb). First, I will

show that κb = θ − θ2 is the minimum value for which the eigenvalues are both inside the

unit circle. For κb = θ − θ2 we have ρ(κb) = ρ(κb) = θ2
θ

, and hence the roots are real for all

values of ρτ under condition (i). Moreover, for that value of κb:

λ1 =
1

2θ2

(θ2 + ρτθ +
√

(θ2 + ρτθ)2 − 4θθ2ρτ )

=
1

2θ2

(θ2 + ρτθ +
√

(θ2 − ρτθ)2)

= 1

while λ2 = ρτ
θ
θ2
< 1. Next, notice that when κb <

θ+θ2ρτ
1−ρτ we have θ−(1−ρτ )κb+θ2ρτ > 0

and thus λ1 > 0 whenever it is real. Furthermore,

∂λ1

∂κb
= −1− ρτ

2θ2

− (1− ρτ )(θ − (1− ρτ )κb + θ2ρτ )

2θ2

√
(θ − (1− ρτ )κb + θ2ρτ )2 − 4θθ2ρτ

< 0

and hence for κb ∈ (θ − θ2,
θ+θ2ρτ
1−ρτ ) we have λ1 ∈ (0, 1). Moreover, for those values of

κb λ2 > 0 as well (when real), and since whenever the eigenvalues are real (θ − (1− ρτ )κb +

θ2ρτ )
2 − 4θθ2ρτ ≥ 0 and thus λ2 < λ1, it follows that

0 < λ2 < λ1 < 1

for all κb ∈ (θ − θ2,
θ+θ2ρτ
1−ρτ ).

On the other hand, if κb = θ+θ2ρτ
1−ρτ , then the eigenvalues are complex for all ρτ > 0, and

when ρτ = 0 , then λ1 = λ2 = 0.

Lastly, consider κb ∈ ( θ+θ2ρτ
1−ρτ ,

(θ+θ2)(1+ρτ )
1−ρτ ). In this case, whenever the eigenvalues are

real they are negative since

λ1 =
θ − (1− ρτ )κb + θ2ρτ +

√
(θ − (1− ρτ )κb + θ2ρτ )2 − 4θθ2ρτ

2

≤ θ − (1− ρτ )κb + θ2ρτ + |θ − (1− ρτ )κb + θ2ρτ |
2

≤ 0

and thus λ2 ≤ λ1 ≤ 0. Furthermore,

∂λ2

∂κb
= −1− ρτ

2θ2

+
(1− ρτ )(θ − (1− ρτ )κb + θ2ρτ )

2θ2

√
(θ − (1− ρτ )κb + θ2ρτ )2 − 4θθ2ρτ

< 0
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since θ − (1− ρτ )κb + θ2ρτ < 0, and at κb = (θ+θ2)(1+ρτ )
1−ρτ we have

λ2 = −1

Therefore, for κb ∈ (θ − θ2,
1+ρτ
1−ρτ (θ + θ2)) and ρτ < ρ

τ
(κb) the eigenvalues are real and

less than 1 in absolute value. And as we have already shown, since ρτ <
θ2
θ

, whenever the

eigenvalues are complex they are also less than 1 in modulus.

Thus, condition (i) implies that the eigenvalues of A lie inside the unit circle, so then

∞∑
j=0

1

φjπ
Et(b̂h,t+j) = [1, 0] ∗ (I − 1

φπ
A)−1

b̂ht
τ̂t


and we can use this expression to solve for equilibrium inflation in terms of debt and

taxes at time t. We can then substitute the interest rate and inflation, and arrive at a 2

equation system that determines b̂ht and τ̂t:

b̂h,t+1

τ̂t+1

 =

 θ−(1−ρτ )κb
θ2

− τ
b
ρτ
θ2

(1− ρτ )κb bτ ρτ


︸ ︷︷ ︸

=A

b̂ht
τ̂t

+

1+i
φπ

0


︸ ︷︷ ︸

B

vt (6)

Unsurprisingly, the auto-regressive matrix is the same matrix A we have already analyzed.

As a result, we know that when condition (i) holds, its eigenvalues are inside the unit circle

and we have a stationary solution for debt and taxes.

Now assume that condition (ii) holds so φπ < 1, κb /∈ (θ − θ2, (θ + θ2)1+ρτ
1−ρτ ), and ρτ < 1.

In this case we cannot solve for inflation forward, however, equation (5) still holds and now I

will show that κb /∈ (θ − θ2, (θ + θ2)1+ρτ
1−ρτ ) implies that at least one of the eigenvalues of A is

greater than 1 in absolute value.

First, note that for κb < θ − θ2

(θ − (1− ρτ )κb + ρτθ2)2 − 4θθ2ρτ ≥ 0

and hence the eigenvalues are always real. Moreover, above we showed that when the

eigenvalues are real, ∂λ1

∂κb
< 0 and that λ1 = 1 when κb = θ − θ2, hence it follows that λ1 > 1

for any κb < θ − θ2. Similarly, if κb > (θ + θ2)1+ρτ
1−ρτ , the roots are also always real and as we

have shown above at κb = (θ + θ2)1+ρτ
1−ρτ , λ2 = −1 and it is decreasing in κb. So it follows that

for κb > (θ + θ2)
1+ρτ
1−ρτ , we have λ2 < −1, and in either case we have an eigenvalue greater

than one.
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If A is diagonalizable, we can express equation (5) as

Et(xt+1) = PΛP−1xt

where xt =

b̂h,t
τ̂t

, and Λ is a diagonal matrix with the eigenvalues of A on the diagonal, and

P is the matrix of corresponding eigenvectors. We can then multiply on both sides by P−1,

define x̃t = P−1xt and obtain the diagonal system

Et(x̃t+1) = Λx̃t

and in particular,

Et(x̃
(1)
t+1) = λ1x̃

(1)
t (7)

where x̃
(1)
t is the first element of the vector. If A is not diagonalizable, then we can use

the Jordan Normal form where P is the matrix of generalized eigenvalues, and Λ is upper

triangular, with the repeated eigenvalue on the diagonal, and 1 in the upper right corner. We

can then use the second equation of the resulting system to arrive at a univariate equation

similar to (7) where the repeated eigenvalue |λ| > 1 is the coefficient. Everything else then

follows in the same manner.

We can then solve (7) forward (since |λ1| > 0) and obtain

x̃
(1)
t+1 = lim

j→∞

1

λj1
Et(x̃

(1)
t+j) = 0

Recall that x̃t = P−1xt and hence a linear combination of b̂ht and τ̂t is equal to 0,

therefore we can write

τ̂t = Kb̂t

for some constant K. Substituting in the tax rule equation for debt, we obtain

τ̂t = (ρτ − (1− ρτ )κb
bh
τ
K)τ̂t−1

which implies that the solution is

τ̂t = b̂ht = 0

Next, we can substitute this result in the government budget and obtain the relationship
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it−1 = πt

Substituting in the Taylor rule we find the solution for inflation:

πt = φππt−1 + vt−1

Since φπ < 1, this is stationary and this concludes the forward direction of the proof. We have

shown that when either conditions (i) or (ii) are satisfied, there is a determinate stationary

equilibrium.

In proving the necessary direction, I start with the case where φπ > 1. This time I

will first deal with the conditions on κb, and to this end assume that κb < θ − θ2. Above we

showed that in this case the roots are always real, and that λ1

∣∣∣∣
κb=θ−θ2

= 1, and that ∂λ1

∂κb
< 0

for κ < θ+θ2
1−ρτ which holds since θ − θ2 <

θ+θ2
1−ρτ . Therefore, it is immediate that κb < θ − θ2

leads to a root bigger than one and thus explosive solutions.

On the other hand if κb >
(θ+θ2)(1+ρτ )

1−ρτ , then

(θ − (1− ρτ )κb + ρτθ2)2 − 4θθ2ρτ ≥ 0

so the roots are again always real. Moreover, we have already shown that λ2

∣∣∣∣
κb=

(θ−θ2)(1+ρτ )
1−ρτ

=

−1, and that ∂λ2

∂κb
< 0 for κb >

(θ−θ2)(1+ρtau)
1−ρτ , hence it follows that |λ2| > 1 for all κb >

(θ−θ2)(1+ρτ )
1−ρτ , and thus we again have an explosive root.

Next, turn attention to ρτ >
θ2
θ

and κb ∈ (θ − θ2,
(θ−θ2)(1+ρtau)

1−ρτ ). If ρτ ∈ [ θ2
θ
, ρτ (κb))

then the resulting complex eigenvalues will be outside of the unit circle and there are no

non-explosive solutions for debt and taxes. On the other hand, if ρτ ≥ ρτ (κb), then

∂λ1

∂ρτ
=
κb + θ2

2θ2

+
1

2θ2

(κb + θ2)(θ − (1− ρτ )κb + ρτθ2)− 2θθ2√
(θ − (1− ρτ )κb + ρτθ2)2 − 4θθ2ρτ

> 0

since κb + θ2 > θ > 1 and (θ − (1− ρτ )κb + ρτθ2)− 2θθ2ρτ ≥ 0. Moreover,

λ1

∣∣∣∣
ρτ=ρτ (κb)

=
θ +

√
κb

θ
θ2

(κb − (θ − θ2))

κb + θ2

>
θ + (κb − (θ − θ2))

κb + θ2

= 1

where the inequality follows from the fact that θ > θ2, and hence κb
θ
θ2
> κb > κb − (θ − θ2).
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Thus, we see that λ1 > 1 and hence we again have an explosive root.

Next, I treat the case φπ < 1. If κb ∈ [θ−θ2,
(θ−θ2)(1+ρτ )

1−ρτ ], then either the auto-regressive

matrix A has a unit root (unstable solutions), or it has both eigenvalues inside the unit circle.

When both roots are inside the unit circle, then conditional on a process for equilibrium

inflation, we can solve for debt and taxes backwards. However, in this case we do not have

a determinate solution for inflation – in fact there could be many inflation processes that

would satisfy the government budget constraint and the Euler equations for bonds. To see

this, you let επt+1 be the expectational error defined as

π̂t+1 = Et(π̂t+1) + επt+1

Using this expression we can again reduce to a system of 2 equations that define a

first-order difference system for b̂ht and τ̂t, with A as the auto-regressive matrix. That defines

stationary solutions for debt and taxes, conditional on the expectational error επt+1. Then, we

can substitute the Taylor rule in the Euler equation and arrive at

πt+1 = φππ̂t + vt − (γΨ + γM)b̂ht + γMEt(b̂h,t+1)− επt+1

Since φπ < 1 and b̂ht is stationary, this defines a stationary process for equilibrium

inflation. However, the expectational error επt+1 is undetermined, and as a result many

different processes for inflation satisfy the equilibrium conditions. Thus, with φπ < 1 and

κb ∈ (θ − θ2,
(θ−θ2)(1+ρtau)

1−ρτ ) the equilibrium is indeterminate.

C.2 LEMMA 2:

LEMMA 2. If φπ > 1, κb ∈ (θ − θ2,
θ+(θ2−1)ρτ

1−ρτ ), there exists a threshold ρ > 0 such that

(i) If ρτ ∈ [0, ρ] the equilibrium system has two real, positive eigenvalues, and

abk > 0 for k = 0, 1, 2, 3, . . .

(ii) If ρτ ∈ (ρ, θ2
θ

) the equilibrium system has a pair of complex conjugate eigenvalues thus

abk = η1 cos(kζ + η2), for k = 1, 2, 3, . . .

where η1 and η2 are constants given in the Appendix, and abk > 0 for k ∈ {0, 1}.
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If instead φπ < 1, κb ∈ [0, θ − θ2), ρτ ∈ [0, 1). Then, the system has two real, positive

eigenvalues for all ρτ ∈ [0, 1). Moreover, debt is in fact constant:

abk = 0 for k = 0, 1, 2, 3, . . .

Proof. Part (i): The first part follows directly from the proof of Lemma 1: ρτ ≤ ρ
τ
(κb)

ensures that the eigenvalues are real, and κb ∈ (θ − θ2,
θ+(θ2−1)ρτ

1−ρτ ) ensures they are both

positive.

To characterize the IRF note that the Wold decomposition of xt is

xt = Bvt + ABvt−1 + A2Bvt−2 + . . .

and use the fact that

B =

1+i
φπ

0

 vt
to obtain

b̂ht =
1 + i

φπ
(vt + a

(1)
11 vt−1 + a

(2)
11 vt−2 + a

(3)
11 vt−3 + . . . )

τ̂t =
1 + i

φπ
(a

(1)
21 vt−1 + a

(2)
21 vt−2 + a

(3)
21 vt−3 + . . . )

where a
(k)
lm is the (l,m) element of the matrix Ak. Define a

(0)
11 = 1 and a

(0)
21 = 0 and the

transformation

abk =
1 + i

φπ
a

(k)
11 .

The sequence {abk}∞k=0 defines the Impulse Response Functions of b̂ht.

First, I will show that abk ≥ 0 for all k = 0, 1, 2, . . . when the matrix A is diagonalizable,

and then I will handle the case when the eigenvalue is repeated and A is not diagonalizable

(the only other case we need to worry about for a two by two matrix).

Assuming that A is diagonalizable, define

Λ =

 λ1 0

0 λ2


as a matrix with the two eigenvalues of A on its diagonal ordered like λ1 > λ2 (remember

we are handling the case of real eigenvalues right now) and P as a matrix that has the
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eigenvectors of A as its columns. Since we have assumed A is diagonalizable, we have

A = PΛP−1 and also Ak = PΛkP−1. Since Λ is diagonal

Λk =

 λk1 0

0 λk2


and thus if we expand the expression for Ak we obtain that

a
(k)
11 =

p11p22λ
k
1 − p12p21λ

k
2

|P |

where |P | is the determinant of the matrix of eigenvectors P and plm is its (l,m)-th

element. Since both of the eigenvalues are positive and are ordered so that λ1 > λ2 it follows

that |P | > 0 and hence

p11p22λ
k
1 − p12p21λ

k
2

|P |
> 0.

This proves that a
(k)
11 > 0 for all k and hence abk > 0 for all k. This completes the proof

for diagonalizable A – now assume that A is not diagonalizable. We can instead use the

Jordan Decomposition to again write A = PΛP−1 but now

Λ =

 λ 1

0 λ


and the columns of P are the generalized eigenvectors of A. In this case, there is only one

linearly independent eigenvector associated with the eigenvalue of λ, call it ~p, and thus the

second generalized eigenvector, call it ~u, is a 2x1 vector that solves

(A− λI)~u = ~p

We can solve for the needed eigenvectors via standard techniques, and obtain ~p = [p1, 1]′

and ~u = [u1, 1]′, where p1 = λ−ρτ
(1−ρτ )κb

τ
bh

, u1 = p1 + 1
(1−ρτ )κb

τ
bh

. We can then use Ak = PΛkP−1

to get:

a
(k)
11 = λk−1(λ+ k

p1

u1 − p1

) > 0

The inequality follows from u1 > p1 > 0, λ > 0. This completes the proof of part (i).
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Part (ii): From the proof of Lemma 1 we know that ρτ ∈ (ρ
τ
, θ2
θ

) implies that the

eigenvalues of A are complex. We can express them as λ1 = a + bi and λ2 = a− bi where

a = 1
2
(θ − (1− ρτ )κb + ρτθ2) > 0, b = 1

2

√
4θθ2ρτ − (θ − (1− ρτ )κb + ρτθ2)2 > 0 and i is the

imaginary unit. The two conjugate eigenvectors can be written as ~pk = [x± yi, 1]′, where .

x =
τ

bh

(θ − (1− ρτ )κb + ρτθ2 − 2ρτ )

2(1− ρτ )κb

y =
τ

bh

√
4θθ2ρτ − (θ − (1− ρτ )κb + ρτθ2)2

2b(1− ρτ )κb
With two conjugate complex eigenvalues A is diagonalizable and can be expressed

as A = PΛP−1 where P is a similarity matrix with the eigenvectors of A as its columns

and Λ is a diagonal matrix with the eigenvalues on the diagonal. By Euler’s formula

λ1 = a+ bi = |λ|eζi where ζ = arctan( b
a
) and |λ| =

√
a2 + b2 is the magnitude of the complex

roots. This formulation is convenient because it is easy to take powers of the eigenvalues,

(e.g. λk1 = |λ|kekζi) and hence it is easy to compute powers of the eigenvalue matrix Λ. Using

this, Euler’s formula and the fact that Ak = PΛkP−1 it is straightforward to compute

a
(k)
11 = |λ|k(cos(kζ) +

x

y
sin(kζ))

= |λ|k
√

1 + (
x

y
)2 sin(kζ + ψ)

= |λ|k
√

1 + (
x

y
)2 cos(kζ + ψ − π

2
)

where ψ = arctan( y
x
) + πI( y

x
< 0). The second equality follows from the formula for linear

combinations of trig functions, and the third is simply an application of cos(θ − π
2
) = sin(θ).

By the definition of the arctan(·) function and the virtue of a ≥ 0, b ≥ 0 it follows that

ζ ∈ [0, π
2
). If κb ≤ θ+(θ2−2)ρτ

1−ρτ , then x ≥ 0 and ψ ≤ π
2

and this case cos(kζ + ψ − π
2
) ≥ 0 for at

least k = 1. Otherwise, use the formula for addition of arctangent to get,

arctan(
b

a
) + arctan(

y

x
) = arctan(

b
a

+ y
x

1− by
ax

).

where 1 − by
ax

> 0. And since κb ∈ ( θ+(θ2−2)ρτ
1−ρτ , θ+(θ2−1)ρτ

1−ρτ ), we can show that b
a

+ y
x
<

0 and therefore arctan(
b
a

+ y
x

1− by
ax

) ∈ (−π
2
, 0). Therefore, we again reach the conclusion that

cos(kζ + ψ − π
2
) ≥ 0 for at least k = 1. This completes the proof of Lemma 2.

Lastly, if φπ < 1, κb ∈ [0, θ − θ2), ρτ ∈ [0, 1), then from the proof of Lemma 1 we know
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that κb < θ − θ2 ensures the eigenvalues are real, and as we saw from the proof of Lemma 2,

in this case the IRF never crosses the steady state. In fact, from the proof of Lemma 1 we

also have the stronger result that b̂ht = 0, and hence the IRF is

abk = 0 for k = 0, 1, 2, 3, . . .

C.3 PROPOSITION 1:

PROPOSITION 1. The sign of the UIP regression coefficients βk =
Cov(λ̂t+k ,̂it−î∗t )

Var(̂it−î∗t
depend

on the monetary-fiscal policy mix as follows.

(i) Active Monetary, Passive Fiscal policy (φπ > 1, κb ∈ (θ − θ2,
θ+(θ2−1)ρτ

1−ρτ )):

(a) ρτ ≤ ρ: classic UIP puzzle at all horizons: βk < 0 for k = 1, 2, 3, . . .

(b) ρτ > ρ: UIP violations exhibit cyclical dynamics and eventually switch sign:

βk < 0 for k < k̄ and βk > 0 for some k > k̄

(ii) Passive Monetary, Active Fiscal policy (φπ < 1, κb ∈ (0, θ−θ2)): UIP violations

go in the same direction at all horizons and are in fact always zero:

βk = 0 for k = 1, 2, 3, . . .

Proof. Part (i), sub-point (a): Start with the definition of the UIP regression coefficient,

βk =
Cov(λ̂t+k, ît − î∗t )

Var(̂it − î∗t )
and note that in equilibrium the expected excess returns are linear in bond holdings,

Et(λ̂t+1) = −χbb̂ht (8)

where χb = − bh
β(1+i)uc

(
(ubhbh −

ubhucbh
uc

)− (ubhbf −
ubf ucbh
uc

)
)
s. Where ux(.) and uxy(.) respec-

tively are the steady state values of the first and second partial derivative of the utility

function. In the symmetric steady state, ubf = ubh and given the assumption of imperfect

substitutability between home and foreign bonds (and since utility is concave):

ubhbh < ubf bf < 0
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it follows that χb > 0. By Lemma 2, we know that in this case (Active Monetary policy),

the IRF of b̂ht is positive at all horizons (i.e. abk > 0 for all k), and next, I will show that

the IRF of the interest rate differential ît − î∗t is also always positive. Then by (8) we can

conclude that βk < 0 for all k ≥ 1.

To derive the IRF of the interest rate differential, note that since the foreign interest

rate is constant, ît − î∗t = ît = φπ + vt. From Lemma 1, the equilibrium inflation is given by

π̂t = γπb b̂ht + γπτ τ̂t −
vt
φπ

where γπb = γM + θ2(φπ−ρτ )(γΨ−γM (φπ−1))
φπ(κb(1−ρτ )+θ2(φπ−ρτ ))−θ(φπ−ρτ )

> 0, γπτ = − τ
bh

ρτ (γΨ−γM (φπ−1))
φπ(κb(1−ρτ )+θ2(φπ−ρτ ))−θ(φπ−ρτ )

.

Thus,

ît − î∗t = φπ(γπb b̂ht + γπτ τ̂t)

= φπ((γπb ab0 + γπτ aτ0)vt + (γπb ab1 + γπτ aτ1)vt−1 + . . . )

= ai0vt + ai1vt−1 + ai2vt−2 + . . .

where I have substituted in the Wold decomposition of b̂ht and τ̂t, and by the proof of Lemma

2, abk = 1+i
φπ
a

(k)
11 and aτk = 1+i

φπ
a

(k)
21 , with a

(k)
lm the (k, l) element of the matrix Ak. This defines

the Wold decomposition of the interest rate differential through the coefficients aik, where

aik = φπ(γπb abk + γπτ aτk) = (1 + i)

(
γπb
λk1p11 − λk2p22

|P |
+ γπτ

λk1 − λk2
|P |

)
= (1 + i)

(
λk1
|P |

(p11γ
π
b + γπτ )− λk2

|P |
(p12γ

π
b + γπτ )

)
and λ1 > λ2 > 0 are the ordered eigenvalues of A, and P is the matrix of eigenvectors,

with p11 = λ1−ρτ
(1−ρτ )κb

bh
τ

, and p12 = λ2−ρτ
(1−ρτ )κb

bh
τ

. Since the eigenvalues are ordered and positive,

p11 > p12 > 0, and hence |p11γ
π
b + γπτ | > |p12γ

π
b + γπτ |. If γπτ > 0 then it follows that

p11γ
π
b + γπτ > 0, and thus

(
λk1
|P |(p11γ

π
b + γπτ )− λk2

|P |(p12γ
π
b + γπτ )

)
> 0 and hence aik > 0.

On the other hand, if γπτ < 0, first we need to show p11γ
π
b + γπτ > 0. Start with,

p11γ
π
b − |γπτ | ∝ (θ − κb(1− ρτ )− θ2ρτ +

√
(θ − κb(1− ρτ ) + θ2ρτ )2 − 4θθ2ρτ )(γΨ(φπ − ρτ )− γM (i(φπ − ρτ )− κb(1− ρτ )φπ))

− 2κbθ2(1− ρτ )ρτ (γΨ + γM (1− φπ))

≥ (θ − κb(1− ρτ )− θ2ρτ )(γΨ(φπ − ρτ )− γM (i(φπ − ρτ )− κb(1− ρτ )φπ))− 2κbθ2(1− ρτ )ρτ (γΨ + γM (1− φπ))

The last equation is concave and quadratic in κb, so if it is positive for any k1 < k2,

then it’s positive for all values in between as well. Furthermore, note that in order for the the
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eigenvalues to be real and less than one in magnitude we must have κb ∈ (θ−θ2,
θ+θ2ρτ−2

√
θθ2ρτ

1−ρτ ],

and thus it is enough to show that the quadratic equation is positive at both ends of this

interval.

For κb = θ − θ2,

p11γ
π
b − |γπτ | ≥ γΨ(1− ρτ )(θ2 + θρτ − 2θ2(1 + θ − θ2)ρτ ) + γM((θ − θ2 − i)(1− ρτ )(θ2 + θρτ − 2θ2ρτ )

and since ρτ ∈ [0, θ2
θ

) it follows that (θ2+θρτ−2θ2ρτ ) > 0, and (θ2+θρτ−2θ2(1+θ−θ2)ρτ ) > 0.

Also θ − θ2 − i = (1 + i)γΨ > 0, and hence p11γ
π
b − |γπτ | > 0.

On the other hand, if κb = θ+θ2ρτ−2
√
θθ2ρτ

1−ρτ :

p11γ
π
b − |γπτ | ≥ 2γΨ((1− ρτ )

√
θθ2ρτ − θ2ρτ (θ2ρτ + 1 + θ − ρτ − 2

√
θθ2ρτ ) + 2γM (

√
θθ2ρτ − θ2ρτ )(θ + θ2ρτ − 2

√
θθ2ρτ − (1− ρτ )i)

= 2γΨ((1− ρτ )(
√
θθ2ρτ − θ2ρτ )− θ2ρτ (θ − 2

√
θθ2ρτ + θ2ρτ )) + 2γM

√
θ2ρτ (

√
θ −

√
θ2ρτ )(θ + θ2ρτ − 2

√
θθ2ρτ − (1− ρτ )i)

= 2
√
θ2ρτ (

√
θ −

√
θ2ρτ )

(
γΨ((1− ρτ )−

√
θ2ρτ (

√
θ −

√
θ2ρτ )) + γM ((

√
θ −

√
θ2ρτ )2 − i(1− ρτ ))

)
= 2
√
θ2ρτ (

√
θ −

√
θ2ρτ )

(
(γΨ − γM i)(1− ρτ ) + γΨθ2ρτ + γM (θ + θ2ρτ )− (2γM + γΨ)

√
θθ2ρτ

)
︸ ︷︷ ︸

=Ω

Since ρτ <
θ2
θ

and θ2 < θ1 it follows that
√
θ >
√
θ2ρτ . To evaluate the second piece in

parenthesis (which I have named Ω for brevity), substitute in θ = (1 + i)(1 + γΨ + γM) and

θ2 = 1 + γM(1 + i) and simplify to get:

Ω = ((γΨ + γM)(1 + γM(1 + i)) + γM(1 + γΨ + γM)(1 + i)ρτ )
2−(1+γΨ+γM)(γΨ+2γM)2(1+i)(1+γM(1+i))ρτ

This is a convex quadratic equation in ρτ , with zeros at ρ1 = θ2
θ

and at ρ2 = θ2
θ

(γΨ+γM )2

γ2
M

,

and since γΨ > 0, ρ1 < ρ2. Therefore, Ω > 0 for all ρτ <
θ2
θ

and thus we conclude that

p11γ
π
b − |γπτ | > 0.

Thus, we have shown that under Active Monetary Policy we have p11γ
π
b − |γπτ | > 0, and

thus since λ1 > λ2 > 0 we have
(
λk1
|P |(p11γ

π
b + γπτ )− λk2

|P |(p12γ
π
b + γπτ )

)
> 0. Therefore, under

Active Monetary policy, aik > 0 for all k.

Plugging this and the IRF for b̂ht in the UIP regression coefficients, I obtain

βk = −χb
Cov(b̂h,t+k−1, ît − î∗t )

Var(̂it − î∗t )

= −χb
σ2
v(ab,k−1ai,0 + ab,kai,1 + ab,k+1ai,2 + . . . )

Var(̂it − î∗t )
< 0
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where the inequality follows from χb > 0 and abk > 0 and aik > 0 for all k.

Above we implicitly assumed that A is diagonalizable. But the proof is very similar if

it is not, with the only difference being that

aik = φπ(γπb abk + γπτ aτk) = (1 + i)

(
γπb λ

k−1(λ+ k
p11

p12 − p11

) + γπτ k
λk−1

p12 − p11

)
= (1 + i)

(
γπb λ

k +
kλk−1

p12 − p11

(γπb p11 + γπτ )

)
But we have already shown (γπb p11 +γπτ ) > 0, and by the proof of Lemma 2, p12−p11 > 0,

hence aik > 0 for all k again, and we are done.

Part (i), sub-point (b): Here I work under the assumption that the roots are

complex - i.e. ρτ > ρ(κb) as defined in Lemma 2. We can express the UIP regression

coefficients as

βk =
Cov(−χbEt(b̂h,t+k−1), φπ(γπb b̂ht + γπτ τ̂t))

Var(φπ(γπb b̂ht + γπτ τ̂t))
= −χbφπ(γπb

Cov(Et(b̂h,t+k−1), b̂ht)

Var(φπ(γπb b̂ht + γπτ τ̂t))
+ γπτ

Cov(Et(b̂h,t+k−1), τ̂ht)

Var(φπ(γπb b̂ht + γπτ τ̂t))
)

Since Et(b̂t+k) = [1, 0]Akxt, we have

Cov(Et(b̂t+k), bt) = a
(k)
11 Var(b̂t) + a

(k)
12 Cov(b̂t, τ̂t) (9)

Cov(Et(b̂t+k), τt) = a
(k)
11 Cov(b̂t, τ̂t) + a

(k)
12 Var(τ̂t) (10)

Compute the variance on both sides of the tax policy rule to obtain

V ar(τ̂t) =
b2
h

τ 2

k2
b

(1 + ρτ )
(1− ρτ )V ar(b̂t) + 2

bh
τ

κbρτ
(1 + ρτ )

Cov(τ̂t, bt)

and then combine with

Cov(τ̂t, b̂t) = Cov(ρτ̂t−1 + a
(1)
21 b̂t−1, a

(1)
11 b̂t−1 + a

(1)
12 τ̂t−1 +

1 + i

φπ
vt)

= −ρ
2
τ

θ2

τ

b
Var(τ̂t) +

θ − (1− ρτ )κb
θ2

(1− ρτ )κb
b

τ
Var(b̂t) + (

θ − (1− ρτ )κb
θ2

ρτ − (1− ρτ )κb
ρτ
θ2

) Cov(b̂t, τ̂t)

to obtain

Cov(τ̂t, b̂t) = (1− ρτ )κb
bh
τ

(θ(1 + ρτ )− κb)
θ2 + ρτ (θ2 + 2κb − θ(1 + ρτ ))︸ ︷︷ ︸

=δ

Var(b̂t).
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Substituting this back in (9) yields Cov(Et(b̂t+k), bt) = (a
(k)
11 + δa

(k)
12 ) Var(b̂ht), and

similarly substituting things out in (10) yields Cov(Et(b̂t+k), τ̂t) = (a
(k)
11 δ+ a

(k)
12 (( bh

τ
)2 κ

2
b(1−ρτ )

1+ρτ
+

2 bh
τ
κbρτ δ
1+ρτ

)) Var(b̂ht), and hence the UIP coefficient becomes

βk+1 = −χbφπ Var(b̂ht)

V ar(̂it)
(γπb (a

(k)
11 + δa

(k)
12 ) + γπτ (a

(k)
11 δ + a

(k)
12 ((

bh
τ

)2κ
2
b(1− ρτ )
1 + ρτ

+ 2
bh
τ

κbρτδ

1 + ρτ
)))

= −χbφπ Var(b̂ht)

V ar(̂it)

a(k)
11 (γπb + γπτ δ)︸ ︷︷ ︸

=γa11

+a
(k)
12 (γπb δ + γπτ (((

bh
τ

)2κ
2
b(1− ρτ )
1 + ρτ

+ 2
bh
τ

κbρτδ

1 + ρτ
)))︸ ︷︷ ︸

=γa12


= −χbφπ Var(b̂ht)

V ar(̂it)

(
a

(k)
11 γa11 + a

(k)
12 γa12

)
= −χbφπ Var(b̂ht)

V ar(̂it)

(
γa11|λ|k(cos(kζ) +

x

y
sin(kζ))− γa12|λ|k

x2 + y2

y2
sin(kζ)

)
= −χbφπ Var(b̂ht)

V ar(̂it)
|λ|k

(
γa11 cos(kζ) + (γa11

x

y
− γa12

x2 + y2

y2
) sin(kζ))

)

= −χbφπ Var(b̂ht)

V ar(̂it)
|λ|k

√
γ2
a11

+ (γa11

x

y
− γa12

x2 + y2

y2
)2︸ ︷︷ ︸

=Γ

cos(kζ + ψ − π

2
)

= −χbφπ Var(b̂ht)

V ar(̂it)
|λ|kΓ cos(kζ + ψ − π

2
)

where ψ = arctan(
γa11

γa11
x
y
−γa12

x2+y2

y2

) + πI( γa11

γa11
x
y
−γa12

x2+y2

y2

< 0), and x and y are the real and

imaginary part of the eigenvectors as defined in Lemma 2, and ζ = arctan( b
a
) ∈ [0, π

2
) where

the eigenvalue is a+ bi. I am also using the convention that a
(0)
11 = 1 and a

(0)
12 = 0.

This gives us the general expression of βk and shows that it is cyclical, and changes

sign as the cosine expression changes sign. Lastly, I will show that β1 < 0, which finishes the

proof by establishing that the regression coefficients start negative, and then will eventually

turn positive as k grows ( since ζ ∈ [0, π
2
)).

To show β1 < 0, start by re-writing it as β1 = −χbφπ Var(b̂ht)

V ar(̂it)
(γπb + γπτ δ) by using the fact

that a
(0)
11 = 1 and a

(0)
12 = 0, and notice that it is enough to show that γπb + δγπτ > 0. Substitute

in the definitions for the three variables, bring everything to a common denominator, and
since the resulting denominator is positive, the sign of γπb + δγπτ is the same as the sign of the
numerator:

(θ2(1 + ρτ ) + ρτ (2κb − θ(1 + ρτ ))(γΨ(φπ − ρτ ) + γMκb(1− ρτ )− γM (φπ − ρτ ))− κb(1− ρτ )ρτ (θ(1 + ρτ − κb)(γΨ − γM (φπ − 1))

(11)
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This is a convex quadratic function of κb ( ∂2.
(∂κb)2 = 2(1− ρτ )ρτ (γΨ + γM(φπ + 1)) > 0),

and I will show that it is positive for all κb > θ − θ2, by showing that it is positive and

increasing at κb = θ − θ2.

At κb = θ − θ2, the expression becomes

γΨ(1− ρτ )(θ2 + θρτ )(φπθ2 − ρτθ) > γΨ(1− ρτ )(θ2 + θρτ )(φπθ2 − θ2) > 0

where the first inequality follows from ρτ <
θ2
θ

, and the second from φπ > 1.

On the other hand, its derivative at κb = θ − θ2 is:

γΨρτ (θ(1− ρτ )2 + 2(φπ − ρτ − θ2(1− ρτ ))) + γM (θ(1− ρτ )ρτ (2φπ + 1− ρτ ) + 2iρτ (φπ − ρτ ) + θ2(1− ρτ )(φπ(1− ρτ )− 2ρτ ))

> (1− ρτ )2(γMθ2 + (γΨ + γM )θρτ )

> 0

where the first inequality follows from the fact that the top line is increasing in φπ and

φπ > 1. Thus, we have shown that (11) is positive and increasing at κb = θ − θ2, and hence

γπb + δγπτ > 0 which implies that β1 > 0. This completes the proof of part (i), sub-point b.

Part (ii): By the last part of the proof of Lemma 2, the eigenvalues of A are always

real in this case, and by similar steps to the proof of Proposition 1, Part (i), sub-point (a) we

can show that the IRF of ît is positive at all horizons and hence βk has the same sign for all

k. Moreover, from Lemma 3 we have the particular result that b̂h,t+k = 0 for all k, and hence

βk = −χb
Cov(b̂h,t+k−1, ît − î∗t )

Var(̂it − î∗t )
= −χb

Cov(0, ît − î∗t )
Var(̂it − î∗t )

= 0

D Model Discussion

D.1 Forward Exchange Rate Contracts and UIP Violations

In this section, I augment the model to include trade in forward contracts on currencies, and

show that the convenience yield mechanism generates UIP violations that emerge both when

looking at exchange rates and interest rates data only, and when looking at forward and spot

exchange rates.

With trade in forward markets, the compensating financial return that arises from

non-zero convenience yield differentials can come from both UIP and CIP deviations. When
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a US investors buys a foreign bond (say Euro bond) and sells the proceeds forward at rate

Ft, he creates a synthetic USD safe asset, because he now has safe stream of future USD

payments. This is similar to a US Treasury, except for the fact that it is a synthetic position,

as opposed to holding the physical US Treasury.

Let ΨUS
t be the convenience yield on the Treasury and Ψ̃US

t the convenience yield on

the synthetic US safe bond, constructed with a long position in a Euro bond whose currency

risk has been sold forward. No arbitrage in forward markets requires that

iUSt + ΨUS
t = ft − st + iEURt + Ψ̃US

t

If the synthetic position has a similar convenience yield to the physical bond ΨUS
t ≈ Ψ̃US

t

then CIP will approximately hold, otherwise there will be a CIP deviation.

Since empirically CIP has been shown to hold very well for the entirety of my sample –

it has only exhibited non-trivial deviations since the financial crisis (see Du et al. (2018)),

which is not part of the main sample – Iit appears that in normal times (pre-2008) the

synthetic position indeed possesses the same convenience yield as owning the physical bond.

The opening up of a persistent CIP deviation post–2008, and some preliminary evidence that

carry trade profits have declined since the crisis, could be evidence that markets have since

switched to a different equilibrium where the convenience yield drives a wedge in the CIP

condition. This could be an interesting avenue for future research but is outside of the scope

of the current paper, which will focus on the equilibrium where CIP holds.

Thus, when the synthetic and physical assets have the same convenience yield we have

the familiar result that

ft − st = iUSt − iEURt

This leads to the important result that (in log-approximation) the expected return on

buying foreign currency forward (a popular way of implementing the carry trade without

the need to transact in bond markets) is simply the exchange rate change plus the interest

rate differential on the underlying assets. Thus, taking a position in forwards is equivalent to

buying and selling the physical assets, hence:

Et(st+1 − ft) = Et(∆st+1 + i∗t − it) = Ψ̂H,t − Ψ̂F,t.

At the end of the day, the strategy implemented through forwards market has equivalent

financial and convenience returns to a trade in the home and foreign bonds themselves, hence

the forwards data would display equivalent UIP violations and the mechanism works in the
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same way. Due to this equivalence and for simplicity, the benchmark model abstracts from

trade in forward contracts.

D.2 Shutting down convenience yields

The convenience yield mechanism helps the model fit the joint behavior of interest rates and

exchange rates, but otherwise has a small effect on the implications of other macro aggregates.

In Table 1 I report the resulting moments of a model where the convenience yield mechanism

is shut down completely, side-by-side with the moments of the benchmark calibration and

the data.

Interestingly, shutting down the convenience yield mechanism has only a relatively

small effect on most moments. Clearly, this model has no excess currency returns or UIP

deviations. However, there is relatively little change in the results for macro aggregates like

output, consumption and government debt. In fact, the main change is in the lower persistent

and volatility of interest rates and interest rate differentials (both nominal and real).

The intuition for the relatively minor changes has to do with the fact that the long-run

behavior of the real exchange rate is roughly consistent with UIP, because the negative and

positive UIP violations cancel each other over time (as they do in the data). In turn, the

long-run dynamics of the model, and hence the unconditional macro moments, are also not

too far from the model where UIP holds at all horizons.

The key is the behavior of the level of the real exchange rate. Note that we can write

the level of the real exchange rate as:

qt =
∞∑
k=0

Et(r
∗
t+k − rt+k)−

∞∑
k=0

Et(λt+k+1)

Due to the reversal in UIP violations at longer horizons, at the benchmark calibration

(and similarly in my empirical estimates) we have
∑∞

k=0Et(λt+k+1) ≈ 0, hence

qt ≈
∞∑
k=0

Et(r
∗
t+k − rt+k) = qUIPt ,

meaning that the behavior of the real exchange rate is roughly equal to the behavior under a

model where UIP holds – see also the resulting impulse response functions in Figure 4. This

is why most of the moments of the model remain relatively unchanged.

This is an important result in itself, as it implies that macroeconomic analysis can

continue to rely on standard first-order models where UIP holds without much loss.
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Table 1: Unconditional Moments

Data Benchmark Model No Convenience Yield

Standard Deviations

∆st 5.74 2.96 3.23

∆qt 5.67 1.15 1.26

it − i∗t 0.75 0.32 0.21

rt − r∗t 1.09 0.74 0.61

Et(λt+1) 0.48 0.31 0

∆yt 0.78 1.06 1.18

∆ct 0.62 0.45 0.53

∆(bgt /yt) 3.15 2.49 2.65

it 0.84 0.44 0.30

rt 0.91 0.76 0.66

Autocorrelations

qt 0.93 0.91 0.88

it − i∗t 0.74 0.81 0.68

rt − r∗t 0.14 0.63 0.5

Et(λt+1) 0.74 0.95 0

∆yt 0.23 -0.18 -0.20

∆ct 0.43 -0.11 -0.14

∆(bgt /yt) 0.34 0.42 0.37

it 0.86 0.88 0.78

rt 0.27 0.67 0.56

Correlation with Real Exchange Rate

ρ(∆qt,∆yt) -0.03 0.95 0.95

ρ(∆qt,∆yt −∆y∗t ) 0.07 0.99 1

ρ(∆qt,∆ct −∆c∗t ) -0.05 0.99 1

ρ(∆qt,∆st) 0.98 0.84 0.87

ρ(qt, rt − r∗t ) -0.17 -0.44 -0.51

Cross-country correlations

ρ(∆yt,∆y
∗
t ) 0.42 -0.82 -0.80

ρ(∆ct,∆c
∗
t ) 0.31 0.64 0.66

ρ(it, i
∗
t ) 0.68 0.74 0.73

ρ(rt, r
∗
t ) 0.49 0.52 0.57

Notes: Standard deviations are expressed in percentage terms. The data on domestic variables is for the US,
the data on international variables is for the US against the other countries in the sample.
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Figure 4: Impulse Response Functions
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D.3 Interest Rates Across Different Types of Assets

It seems reasonable to think that some assets, like Treasuries, tend to have bigger convenience

yields than other short-term assets, like say inter-bank loans. Does the model then imply that

the interest rate differential (across countries) on Treasuries would behave very differently

than the interest rate differentials of other, less liquid assets? That would be a potential

concern, because in the data interest rate differentials across countries behave similarly, no

matter what type of short-term rate one uses.

Re-assuringly, the model has no such counter-factual implications. In the model, the

primary difference between different types of interests rates is in their level, where the interest

rate of an asset with a lower convenience yield is generally higher, but the overall dynamics of

interest rates across different types of assets is remarkably similar. In particular, the interest

rate of a hypothetical asset that has no convenience yield, call it ĩt ≡ −Et(M̂t+1), has almost

identical dynamics, and is highly correlated with the interest rate of the Treasury bill, it. As

a result, the interest rate differentials across different types of assets are also quite similar.

For example, in the benchmark calibration the correlation between the two interest

rates is 0.78, and their time series properties are quite similar – the autocorrelation of the

T-bill interest rate is 0.866 and that of ĩt is 0.843. Moreover, the standard deviation of ĩt is

0.0032 and that of it is 0.004. And this is just a conservative lower bound on the similarity we

could expect to see in the data, since there we observe assets that have lower, but still positive

convenience yields (i.e. Commercial Paper). A hypothetical asset with some convenience

yield, will look even more akin to the Treasury’s in the model.

The reason for this similarity is the fundamentally negative correlation between the

convenience yield and the Treasury interest rate – when the convenience yield is high, then

the interest rate on the Treasury is low as investors require a lower financial compensation

to hold that asset (the correlation is −0.63 in the benchmark calibration). However, this

countervailing force helps make ĩt behave similarly to it. To see this clearly, note that the

equilibrium condition linking the two interest rates in the model is

ĩt = it + Ψ̂H
t

As we saw in the main text, contractionary shocks increase it while lowering Ψ̂H
t – this

is the key feature generating the UIP Puzzle, since it leads to the result that high interest

rates are associated with high excess currency returns (which compensate for the low Ψ̂H
t ).

However, this exact same mechanism also leads to an increase in ĩt, which generates a positive

correlation between it and ĩt. Lastly, the convenience yield is considerably less volatile than

the Treasury interest rate itself – the std deviation of Ψ̂H
t is only half of that of it. These
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forces together result in a high, positive correlation between it and ĩt.

Thus, the bottom line is that the model implies that the interest rates on different types

of assets, some more liquid than others, will be highly correlated and overall behave very

similarly. Just like what we observe in the data.

D.4 Long-term Bonds

It is well known that the UIP holds better in the “long-run”. Specifically, Chinn (2006)

and others have shown that 5-year (and longer) excess currency returns display smaller UIP

deviations, than the typical estimates of the UIP Puzzle in short-term bonds.

In this section, I show that the model can match this observation. I will first show that

this is the case even if we make the strong (and counter-factual) assumption that long-term

bonds are perfect substitutes for short-term bonds in terms of liquidity, and hence earn the

same convenience yield. This is enough to conclude that in reality, since long-term bonds

most likely have lower convenience yields than short-term bonds, there is even less reason to

expect UIP deviations in long-term bonds.

The key empirical result centers on the regression

st+N − st +R
∗,(N)
t −R(N)

t = α(N) + β(N)(R
(N)
t −R∗,(N)

t ) + ε
(N)
t+N

where the R
(N)
t = N ∗ i(N)

t is the cumulative interest rate on a N−period bond (i
(N)
t is the

yield on the N-period bond). The left-hand variable is the excess return on N-period foreign

bond over a N-period home bond when both are held to maturity. It turns out, that while

β(N) is large and significantly negative for N ≤1 years, the estimates are smaller and often

insignificant for N ≥ 5 years. In other words, long-term bond returns appear to be equalized

across countries, even though the short-term bonds display a clear violation of UIP.

In the model, this observation is trivially true if we assume that long-term bonds do

not offer any of the convenience benefits of short-term bonds. But the point of this section is

to show that the relation will still hold, even if long-term bonds are perfect substitutes for

short-term bonds. The intuition is that multi-period excess currency returns offset the sum of

expected convenience yield differentials that accrue throughout the life of the bond. So if we

are looking at a 5-year bond, then the 5-year cumulative excess return will equal the expected

sum of convenience yield differentials for the next 5 years. Crucially, the convenience yield

differential switches signs at longer horizons (recall that this is what generates the reversal in

UIP violations), and thus for long-term bonds (in particular 7+ years) the sum of expected

convenience yield differentials is roughly zero. Thus, long-term excess currency returns end

up being equalized, even though the short-term excess returns are not, due to the cyclical
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movements in the convenience yield differential analyzed in the main body of the text.

To make this concrete, assume that the convenience benefit is again derived from a

similar transaction cost function Ψ(ct,mt, b
T
t , b
∗,T
t ), where bTt this time is the total amount of

home bonds, across all maturities, in the agent’s portfolio:

bTt = b
(1)
t + b

(2)
t + . . .

and b∗,Tt is similarly the total amount of foreign bonds owned. Thus, the short-term bonds

are no longer special relative to the longer maturity ones – they all enter equivalently in the

transaction costs function.

The resulting Euler equation for 1-period bonds is the same as before:

Et(∆st+1 + i∗t − it) = Ψ̂H
t − Ψ̂F

t (12)

where Ψ̂H
t and Ψ̂F

t are the log-linearized home and foreign convenience yields. Note that the

convenience yields on bonds across all maturities are the same, because the derivatives of

the transaction cost Ψ(.) in terms of different maturities are equal. That is, all bonds of the

same currency denomination are equivalent to each other in terms of liquidity.

We can derive a similar Euler equation for an arbitrary N -periods to maturity bond:

Et(∆st+1 + p̂
∗,(N−1)
t+1 − p̂∗,(N)

t − (p̂
(N−1)
t+1 − p̂(N)

t ) = Ψ̂t − Ψ̂∗t

where p̂
(N)
t is the (log-linearized) price of the N period (zero-coupon) bond. The cumulative

interest rate payments of the bond are R
(N)
t = N ∗ i(N)

t = 1
pNt

, and hence

Et(∆st+1 + R̂
∗,(N)
t+1 − R̂

(N)
t+1 − (R̂

∗,(N−1)
t − R̂(N−1)

t )) = Ψ̂t − Ψ̂∗t

Solving recursively for R̂
∗,(N−1)
t − R̂(N−1)

t , and substituting it back and leads to

Et(∆st+1 + R̂
∗,(N)
t+1 − R̂

(N)
t+1) = Et

N−1∑
k=0

(Ψ̂t+k − Ψ̂∗t+k)

This is very intuitive – the excess return on a carry trade (held to maturity) is the sum

of expected future convenience yield differentials. Thus, when operating with 1-period bonds

we have equation (12), so that only the current convenience yield matters, but when we

consider long-term bonds then it is the whole path of expected convenience yield differentials.

And since in the model the convenience yield differential changes signs at longer horizons

(see Figure 4 in the main text for example), the sum Et
∑N−1

k=0 (Ψ̂t+k − Ψ̂∗t+k) in fact grows

smaller for higher N . Due to their cyclical dynamics that underpin the key results of the
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model, the convenience yields further into the future cancel out the shorter-horizon ones. In

particular, in the benchmark calibration of the model, the sum at horizons of 7 years or more

is roughly zero, which matches the data well.

D.5 Term-Structure Effects in UIP violations in the data

We can further examine the empirical evidence on the UIP violations, and decomposes the

documented UIP violations into a pure exchange rate effect and a term-structure effect due to

violations in the expectations hypothesis (EH) of the interest rate term-structure. The results

show that the pure exchange rate component is the primary driver of the estimated UIP

violations and their changing nature. This is another reason for why abstracting away from

long-term bonds and term structure effects, as I do in the model, is unlikely to be important.

According to the EH, cumulative long-term interest rates are equal to the sum of

expected future short-rates over the duration of the long-term interest rate. This implies that

a zero coupon n-month bond’s cumulative interest rate, R
(n)
t , is given by

R
(n)
t =

n−1∑
k=0

Et(it+k),

where, as before, it is the 1-month interest rate at time t. We can then use this relation to

back out risk-neutral expectations of future short-rates from the term-structure itself. Let

it,t+k be the time-t risk-neutral expectation of the 1-month interest rate at time t+ k, also

known as the forward interest rate at time t, and note that this is given by the difference in

interest rates of a (k + 1)-months bond and a k-months bond:

it,t+k = R
(k+1)
t −R(k)

t ,

Clearly, it,t = it, but as has been shown extensively in the bond literature, the EH hypothesis

fails at longer horizons (e.g. Campbell and Shiller (1991)), and the forecast errors

ηt,t+k = it,t+k − it+k

are forecastable by today’s (time t) short-rate.

To see how this could affect currency return forecasts, add and subtract the forward

interest differential i∗t,t+k − it,t+k from the excess currency return λt+k+1 to obtain

Et(λt+k) = Et(∆st+k + i∗t,t+k−1 − it,t+k−1) + Et(i
∗
t+k−1 − it+k−1 − (i∗t,t+k−1 − it,t+k−1)︸ ︷︷ ︸

η∗t,t+k−1−ηt,t+k−1

). (13)
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Forecastability in excess currency returns could arise from either of the two components

above. The first piece measures how well exchange rates offset forward interest rates, and

captures the pure exchange rate effect. In essence, it is the expected excess currency return

in a world where the EH holds.2 The second component measures the forecastability of

interest-rate excess returns themselves, which captures the term-structure anomaly effect.

Next, I decompose the forecastability of excess currency returns into these two components.

To do so, I construct a zero-coupon term-structure of interest rate differentials by

using the forward discount at maturities of up to a year, and data on interest rate swaps

from Bloomberg for longer maturities. Data on long-maturity interest rates is only available

starting in 1990, and the shorter time-series leads me to drop the Euro-legacy currencies

from the benchmark results, because they are left with less than 10 years of data. This

leaves me with a data on 10 currencies for the period 1990-2013, for which I compute the two

components in (13) and run separate forecasting regressions on each

st+k − st+k−1 + i∗t,t+k−1 − it,t+k−1 = αj,k + δk(ij,t − i∗j,t) + νj,t+k

i∗t+k − it+k − (i∗t,t+k − it,t+k) = aj,k + θk(ij,t − i∗j,t) + vj,t+k

to estimate δk and θk, which by construction sum up to the original UIP coefficients βk

βk = δk + θk.

Thus, these two series of estimates decompose the UIP violations into a pure exchange

rate effect, δk, and a term-structure effect, θk. The results are plotted in Figure 5, where the

blue line represents the original β̂k estimates (but now estimated on the smaller data set for

comparison purposes), the red dash-dot line plots δ̂k and the green dashed line plots θ̂k. The

shaded region represents the 95% confidence interval around the estimates of δk.

The results show that the exchange rate behavior is the primary driver of the cyclicality

in excess currency returns. The δ̂k estimates are statistically significant, track β̂k closely and

display a very similar pattern across horizons, where they start out negative, and then turn

positive at the same time as β̂k. In terms of overall magnitudes, the δ̂k coefficients account for

virtually all of the negative UIP violations at horizons of less than 36 months, and for more

2This is not a purely theoretical construct, this return can be obtained by going long the excess return on
a foreign k + 1 months bond and short the excess return on a k-months foreign bond:

∆st+k+1 + i∗t,t+k − it,t+k = st+k+1 − st +R
(k+1)∗
t −R(k+1)

t − (st+k − st +R
(k)∗
t −R(k)

t )
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Figure 5: UIP Violations Decomposition
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than two-thirds of the positive UIP violations at longer horizons.3 On the other hand, while

the term-structure effects are also non-zero and switch from negative to positive, their timing

is quite different and the magnitude is much smaller. Thus, the results point to exchange

rate behavior as the most important driver of the changing nature of UIP violations, with

term-structure effects playing only a secondary role. As such, modeling short-term bonds

only is sufficient to understand the first-order features of the puzzle.

D.6 Empirical Debt Dynamics

Cyclical debt dynamics are an integral part of the mechanism, and in this section I verify that

the data displays non-monotonic dynamics similar to the model. I focus on US government

debt, because it is available at a quarterly frequency for the whole sample period, while

foreign government debt series are available only at the annual level before 1991.

I estimate the impulse response of government debt using the same Jorda projection

methods as the ones used to estimate the dynamics of the excess currency return. So I run a

series of regressions indexed by k

bt+k = µ+ βkbt + εt+k,

where bt is the log of US federal debt held by the public (variable FYGFGDQ188S in FRED),

3While the δ̂k estimates barely miss the 95% significance cut-off at 60-80 month horizons, they are
significant at the 90% level at all horizons.
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after removing an exponential time trend.4 Lastly, the data is quarterly, hence the index k

controls the number of quarters ahead each forecast is made for. As before, the sequence of

βk forms an estimate of the impulse response of government debt to an increase in today’s

debt level.

I estimate the dynamics of debt in this way for two reasons. First, I want to remain

agnostic about the source of shocks, and rather than try to identify specific structural shocks,

I want to estimate the overall dynamics government debt. As we saw in section ??, the

source of shocks does not matter in the model – due to the interaction of monetary and fiscal

policy, the dynamics of government debt are determined by complex roots, and thus display

cyclicality regardless of the shock. Second, the key motivating empirical fact of cyclical excess

currency returns are also estimated via the same Jorda projections method.

The resulting IRF is plotted in Figure 6 below. As we can see, in the data US debt

dynamics display the type of cyclicality implied by the model. Debt is highly persistent

and an increase in debt lasts for several years. Importantly, on the way down debt does not

converge monotonically, but dips significantly below its long-run mean before converging. In

other words, it displays the type of cyclicality implied by the model and also observed in the

excess currency return in the data. Moreover, the timing of crossing zero is similar to the

one observed in currency returns – debt falls below steady state after about 4-5 years, which

is roughly the same as with the currency returns.

Figure 6: Debt Impulse Response
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4Moreover, the results remain qualitatively the same when using VARs and structural identification
schemes. Results are also unchanged if we use Debt-to-GDP ratio instead of detrended debt in levels.
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D.7 Steady State Implications

At the zero-inflation steady state, the Euler equations for domestic and foreign bonds imply

that the interest rate differential and the steady state excess currency returns are given by

i− i∗ =
1

β
(ΨF −ΨH)

(1 + i∗)
S ′

S
− (1 + i) =

1

β
(ΨH −ΨF )︸ ︷︷ ︸

Convenience Yield Differential

Thus, if there are cross-sectional differences in the steady state convenience values of

assets denominated in different currencies, this will drive a corresponding difference in their

steady state interest rates as well. Importantly, we would expect that a higher convenience

yield differential is associated with a lower interest rate differential. In addition, differences

in the convenience yields will also lead to a non-zero steady state excess currency return.

When the home convenience yield is higher than the foreign one, the foreign currency will be

compensated through a positive excess return, in order to keep investors indifferent between

home and foreign bonds.

Hence, the model can explain the Hassan and Mano (2018) evidence that a big portion

of carry trade returns are due to persistent cross-sectional differences in currencies and

unconditional premia, and not time-variation in conditional premia. For example, the model

would imply that part of the reason why the Japanese yen is consistently a funding currency

and the Australian dollar is consistently an investment currency, is because the Japanese yen

is a major international reserve currency while the Australian dollar is not. As such, the yen

earns a higher convenience yield on average, and thus has a relatively lower interest rate and

negative excess returns versus the Australian dollar.

Thinking about the drivers of the unconditional premia of carry trades is an interesting

question, but is distinct from the primary motivation of this paper – the cyclical nature

of UIP violations. To understand the UIP regression evidence, and its changing nature at

different horizons, one needs to understand the equilibrium dynamics of the conditional

excess currency returns. To this end, in this paper I focus on the symmetric steady state

where ΨH = ΨF in order to isolate the effect of the time-variation in the convenience yield.

Analyzing the behavior the model around asymmetric steady states is an interesting avenue

for future work. For work in this direction, please see Chahrour and Valchev (2017) who

provide a model with multiple steady states, including asymmetric ones.
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E Debt and Excess Currency Returns Extra Results

Including post-2007 data: Table 2 below re-estimates the regression specifications of

Section 6.1 in the main text,

λj,t+1 = αj + β(it − i∗j,t) + γ ln(
DebtUSt
GDPUSt

) + γ∗ ln(
Debt∗jt
GDP ∗jt

) + δ ln(
CPUSt
GDPUSt

) + Controls+ εj,t+1,

by also including the post-2007 period. The results remain similar to the benchmark

specification in the main text – namely the coefficient on US government debt is large,

negative and significant, and while smaller in magnitude, the coefficient on foreign government

debt also generally shows up as statistically significant.

Table 2: Excess Currency Returns and Debt: 1991-2013

(1) (2) (3) (4) (5)

(it − i∗t ) ∗ 100 -1.41∗∗∗ -1.52∗∗∗ -0.77 -1.38 -1.23

(0.46) (0.46) (0.49) (0.94) (0.96)

ln(
Debt

GDP
) -0.47 -3.02∗∗∗ -3.85∗∗∗ -3.67∗∗∗

(0.39) (1.06) (1.32) (1.36)

ln(
Debt∗

GDP ∗ ) 0.17 0.25∗∗ 0.13 0.21∗

(0.11) (0.12) (0.13) (0.11)

ln(
CP

GDP
) -2.47∗∗∗ -3.20∗∗∗ 3.05∗∗∗

(0.94) (1.28) (1.30)
NFA

GDP
1.29

(1.12)

V̂ IX 0.25

(0.40)

.

KVJ2012 Controls No No No Yes Yes

# Currencies 18 18 18 15 15

Fixed Effects Yes Yes Yes Yes Yes

Estimates with Driscoll and Kraay (1998) standard errors robust to heteroskedasticity, serial correlation
and cross-equation correlation. The debt stock variables are exponentially detrended. ∗∗∗, ∗∗ and ∗ denote
significance at the 1%, 5% and 10% level respectively. The LHS variable, excess currency returns, is expressed
in terms of percent, i.e. the LHS is λj,t+1 ∗ 100

Quarterly Frequency Results: Table 3 below re-estimates the regression specifica-

tions of Section 6.1 in the main text,
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λ3m
j,t+1 = αj + β(i3mt − i

3m,∗
j,t ) + γ ln(

DebtUSt
GDPUSt

) + γ∗ ln(
Debt∗jt
GDP ∗jt

) + δ ln(
CPUSt
GDPUSt

) + Controls+ εj,t+1,

by using quarterly frequency data only. To match the data frequency, the excess currency

returns and the interest rate differentials are for 3-month horizons. The overall results and

significance is very similar to the main specifications reported in the main text. Crucially, the

coefficient on US government debt to GDP remains large, negative and significant, in line with

the benchmark results. The magnitude of the coefficient estimate here is about 3 times as

large as the benchmark estimates, as should be expected given that the left-hand side here is

3-month excess returns, whereas it is 1-month excess returns in the daily frequency regressions.

Table 3: Excess Currency Returns and Debt, Quarterly Frequency: 1991 -2007

(1) (2) (3) (4) (5)

(i3mt − i
3m,∗
t ) ∗ 100 -1.48∗∗ -1.37 0.17 0.76 1.73

(0.72) (0.95) (1.96) (2.29) (2.23)

ln(
Debt

GDP
) -1.43 -18.06∗∗ -16.34∗ -23.99∗∗

(2.35) (8.55) (9.36) (11.74)

ln(
Debt∗

GDP ∗ ) 0.39 -0.23 0.02 0.53

(0.69) (0.54) (0.51) (0.51)

ln(
CP

GDP
) -11.20∗ -11.01 -12.23

(6.14) (7.06) (8.72)
NFA

GDP
21.58

(17.04)

V IX 5.34∗∗

(2.32)

.

KVJ2012 Controls No No No Yes Yes

# Currencies 10 10 10 10 10

Fixed Effects Yes Yes Yes Yes Yes

Estimates with Driscoll and Kraay (1998) standard errors robust to heteroskedasticity, serial correlation
and cross-equation correlation. The debt stock variables are exponentially detrended. ∗∗∗, ∗∗ and ∗ denote
significance at the 1%, 5% and 10% level respectively.The LHS variable, excess currency returns, is expressed
in terms of percent, i.e. the LHS is λj,t+1 ∗ 100

Utilizing longer US data series: Table 4 below re-estimates the regression specifi-

cations of Section 6.1 in the main text,
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λj,t+1 = αj + β(it − i∗j,t) + γ ln(
DebtUSt
GDPUSt

) + γ∗ ln(
Debt∗jt
GDP ∗jt

) + δ ln(
CPUSt
GDPUSt

) + Controls+ εj,t+1,

by making use of the longer availability of US data for government debt and commercial

paper. Thus, the data for those regressions starts in 1984, the earliest availability of USD

commercial paper data. By necessity, the regressions exclude foreign debt and the VIX index

due to the lack of data going back to 1984 – the VIX starts in 1990 and the foreign debt

data in 1991, so for those specifications refer to the main text results in Section 6.1. The

controls vector, still includes foreign stock market volatility and yield slope, but once those

are included the sample shrinks to 15 countries, out of 18 total.

All results remain the same as before, both quantitatively and qualitatively – there is a

large and significant negative coefficient values on US debt, even in this longer sample.

Table 4: Excess Currency Returns and Debt: 1984-2007 (US debt only)

(1) (2) (3) (4) (5)

(it − i∗t ) ∗ 100 -1.07∗∗∗ -1.13∗∗∗ -1.02∗∗ -1.13∗∗ -1.17∗∗

(0.41) (0.41) (0.45) (0.47) (0.47)

ln(
Debt

GDP
) -1.49∗∗∗ -1.75∗∗∗ -1.83∗∗∗ -2.17∗∗∗

(0.58) (0.65) (0.69) (0.77)

ln(
CP

GDP
) -0.35 0.03 0.99

(0.43) (0.48) (1.03)
NFA

GDP
3.38

(3.23)

.

KVJ2012 Controls No No No Yes Yes

# Currencies 18 18 18 15 15

Fixed Effects Yes Yes Yes Yes Yes

Estimates with Driscoll and Kraay (1998) standard errors robust to heteroskedasticity, serial correlation
and cross-equation correlation. The debt stock variables are exponentially detrended. ∗∗∗, ∗∗ and ∗ denote
significance at the 1%, 5% and 10% level respectively. The LHS variable, excess currency returns, is expressed
in terms of percent, i.e. the LHS is λj,t+1 ∗ 100
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F UIP Violation Reversals and Monetary and Fiscal

Policy

Another important feature of the model is the key role played by the interaction of monetary

and fiscal policy. The model predicts that we should see clear reversals in the UIP violations

only for countries that have both (i) active monetary policy and (ii) sluggish fiscal policy,

and in this section I verify this in the data. This analysis is related to Bansal and Dahlquist

(2000) who find that countries with higher and more volatile inflation display significantly

lower violations of the classic, short-horizon UIP condition, and reason that this evidence

calls for a mechanism that has an explicit role for monetary and fiscal policy. I extend their

work by showing that there is also a strong cross-sectional link between monetary and fiscal

policy and the reversal of UIP violations at longer horizons, as predicted by the model.

I examine this relationship in the data by first sorting currencies on their monetary

policy stance, and then further sorting on their tax policy sluggishness. For completeness, I

consider four different proxies for the monetary stance of a country. In addition to the two

proxies used in Bansal and Dahlquist (2000), average inflation and the standard deviation of

inflation, I use the Central Bank Independence Index (CBI) of Grilli et al. (1991) (updated

with recent data by Arnone et al. (2007)), and the degree of capital controls, as measured

by the Chinn and Ito (2006) index.5 Since the proxies are generally only available at a low

frequency, I focus on exploiting the cross-sectional dimension of the data. For each currency,

I compute the corresponding average value for each proxy (e.g. average CBI for the UK over

1976-2013 and etc.), and then for each proxy I sort the currencies into two bins – high and

low. Finally, I find the intersection of all the top bins, which yields five countries (Canada

(CAD), Germany (DEM), the Netherlands (NLG), Switzerland (CHF) and the UK (GBP))

that score in the top half in all measures of monetary policy independence. And similarly

obtain the intersection of the bottom bins, which yields (Ireland (IEP), Italy (ITL), Spain

(ESP), Portugal (PTL)). Then I re-estimate the series of UIP regressions at different horizons,

eq. (2) in the main text, for both sets separately and compare the results.

Figure 7 plots the estimates and shows a remarkably consistent message. In panel a)

we see that currencies with high monetary independence display a much more pronounced

evidence of cyclicality in UIP violations, and generally exhibit a larger magnitude of UIP

violations at all horizons. Panel b) shows that the difference between the two estimates,

βTopk − βBottomk , is in fact statistically significant (at the 5% level). Thus, currencies with a

more independent monetary policy do not only display larger UIP violations at short-horizons,

5Capital controls are commonly used as a de facto measure of CB independence – see for example Alesina
and Tabellini (1989), Drazen (1989), Grilli and Milesi-Ferretti (1995), and Bai and Wei (2000)
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Figure 7: UIP Violations and Monetary Policy

(a) Top vs Bottom Third

0 20 40 60 80 100 120 140 160 180

Horizon (Months)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

(b) βTopk − βBottomk

0 20 40 60 80 100 120 140 160 180

Horizon (Months)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

but also stronger evidence of a reversal in their direction at longer horizons.

However, since the US scores high in all four proxies, one leg of each currency pair

displays strongly independent monetary policy throughout the whole sample (recall that all

currencies are quoted against the dollar). Since according to the model this is a necessary

condition for UIP reversals to occur, it is interesting to also consider results where the base

currency has low monetary independence. To do so, I use the set of currencies that are in the

bottom bin according to all proxies (IEP, ITL, ESP, PTE) as alternative base currencies, and

construct four different sets of currency pairs (e.g. ITL-AUD, ITL-ATS, . . . ). This gives me

four data sets of 18 currencies each, that I then use to re-estimate the initial set of regressions

in eq. (2) in the main text. The results are plotted in Figure 8 and are quite striking – in all

four plots the UIP violations exhibit virtually no evidence of a reversal. Thus, it appears that

the cyclicality in UIP violations is indeed associated with strong and independent monetary

policy.

The above results are evidence that a hawkish monetary policy is a necessary condition

for reversals in UIP violations, but what about fiscal policy? To answer this question, I now

focus on the subset of currencies that have hawkish monetary policy (CAD, DEM, NLG, CHF,

GBP and USD) and further sort them on their fiscal policy in two ways. First, I compute

the autocorrelation of the growth in public debt (both in levels and relative to GDP), which

will be positive when taxes are relatively sluggish and debt displays non-monotonic dynamics

(as evidenced by the moments in the quantitative model). Only three countries have positive

such autocorrelations – CAD, GBP and USD. Second, I estimate the tax policy rule posited

by the model, compute the implied threshold value ρ(κb) as per Lemma 2 and check which
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Figure 8: UIP Regressions, 1 to 180 months
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countries have ρτ estimates above that threshold (and thus would be predicted to display

cyclical dynamics). By this second criterion, we would again expect to see UIP violations

reversals for CAD, GBP and USD (and to a lesser extent DEM).

To check these predictions, I now compute a version of Figure 8 where I use the six

currencies with strong monetary policy as alternative base currencies. I plot the results in

Figure 9, which shows that the predictions of the model are borne out by the data. It is

not the case that all of the six currencies display cyclicality in the UIP violations. Only the

currencies with sluggish tax policies (CAD, GBP and USD) clearly do so, which supports the

model’s implication that monetary policy is only a necessary, but not sufficient condition.

Crucially, it is the interaction of both an active monetary policy and a sluggish fiscal policy

that is associated with cyclical movements in UIP violations, just as predicted by the model.
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