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I. Data and Simulation with Alternative Distress Thresholds

Model Simulation and Data
The table presents standard deviations and covariances for intermediary equity growth (Eq),

investment growth (I), consumption growth (C), land price growth (PL), and Sharpe ratio

(EB). Growth rates are computed as annual changes in log value from t to t+ 1. The Sharpe
ratio is the value at t+ 1. The columns labeled data are the statistics for the period 1975 to

2015Q4. The Sharpe ratio is constructed from the excess bond premium, and other variables
are standard and defined in the text. The data columns correspond to distress classification

of the 10% worst observations and the 20% worst observations. For the model simulation,

the distress period is defined as the 10% and 20% worst realizations of the Sharpe ratio.

Data 10 Model 10 Data 20 Model 20
Panel A: Distress Periods
vol(Eq) 38.16 32.08 29.63 22.67
vol(I) 8.71 8.14 7.31 7.27
vol(C) 2.39 6.70 1.88 5.72
vol(PL) 21.38 22.45 17.61 18.21
vol(EB) 101.27 113.90 76.66 83.90
cov(Eq, I) 2.71 2.15 1.29 1.27
cov(Eq, C) 0.68 -1.87 0.33 -1.06
cov(Eq, PL) 6.77 6.65 4.05 3.67
cov(Eq, EB) -27.32 -24.18 -11.39 -11.83
Panel B: Non-distress Periods
vol(Eq) 20.78 5.99 20.06 5.56
vol(I) 7.31 5.66 6.35 5.56
vol(C) 1.32 3.29 1.34 3.06
vol(PL) 10.73 9.47 10.28 8.84
vol(EB) 25.25 23.30 19.48 17.95
cov(Eq, I) 0.11 0.33 0.03 0.31
cov(Eq, C) 0.01 -0.16 0.01 -0.13
cov(Eq, PL) 0.03 0.56 -0.22 0.49
cov(Eq, EB) -0.67 -0.56 -0.22 -0.37

II. Derivation of ODE System

Note: equation references with * refer to the main paper text.

1



2 AMERICAN ECONOMIC JOURNAL MONTH YEAR

A. Asset returns and Intermediary Optimality

We write the evolution of et in equilibrium as

det = µedt+ σedZt,

The functions µe and σe are state-dependent drift and volatility to be solved in equilibrium.

The terms in equation (13*) can be expressed in terms of the state variables of the model. Consider the
risk and return terms on each investment. We can use the rental market clearing condition Cht = H = 1

to solve for the housing rental rate Dt:

Dt =
φ

1− φ
Cyt =

φ

1− φ
Kt(A− it −

κ

2
(it − δ)2),

where we have used the goods market clearing condition in the second equality. Note that it, as given

in (7*), is only a function of q(et). Thus, Dt can be expressed as a function of Kt and et.

Given the conjecture Pt = p(et)Kt, we use Ito’s lemma to write the return on housing as,

dRht =
dPt +Dtdt

Pt
=
Ktdpt + ptdKt + [dpt, dKt] +Dtdt

ptKt
(1)

=

p′ (e) (µe + σσe) + 1
2
p′′ (e)σ2

e + φ
1−φ

(
A− it − κ

2
(it − δ)2

)
p (e)

+ it − δ

 dt+ σht dZt,

where the volatility of housing returns is,

σht = σ + σe
p′ (e)

p (e)
.

The return volatility has two terms: the first term is the exogenous capital quality shock and the second

term is the endogenous price volatility due to the dependence of housing prices on the intermediary

reputation e (which is equal to equity capital, when the constraint binds). In addition, when e is low,

prices are more sensitive to e (i.e. p′(e) is high), which further increases volatility.

Similarly, for capital, we can expand (10*):

dRkt =

[
−δ +

(µe + σσe) q′ (e) + 1
2
σ2
eq
′′ (e) +A

q (e)

]
dt+ σkt dZt,

with the volatility of capital returns,

σkt = σ + σe
q′ (e)

q (e)

The volatility of capital has the same terms as that of housing. However, when we solve the model, we

will see that q′(e) is far smaller than p′(e) which indicates that the endogenous component of volatility

is small for capital.

The supply of housing and capital via the market clearing condition (16*) pins down αkt and αht . We

substitute these market clearing portfolio shares to find an expression for the equilibrium volatility of
the intermediary’s portfolio,

(2) αkt σ
k
t + αht σ

h
t =

Kt

Et

(
σe(q

′ + p′) + σ(p+ q)
)
.
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From the intermediary optimality condition (13*), we note that:

(3)
πkt
σkt

=
πht
σht

= γ
Kt

Et

[
σe(q

′ + p′) + σ(p+ q)
]
≡ Sharpe ratio.

When Kt/Et is high, which happens when intermediary equity is low, the Sharpe ratio is high. In

addition, we have noted earlier that p′ is high when Et is low, which further raises the Sharpe ratio.

We expand (3) to find a pair of second-order ODEs. For capital:

(4) (µe + σσe) q
′ +

1

2
σ2
eq
′′ +A− (δ + rt)q = γ

(
σq + σeq

′) Kt
Et

(
σe(q

′ + p′) + σ(p+ q)
)

;

and for housing:

(µe + σσe) p
′ +

1

2
σ2
ep
′′ +

φ

1− φ

(
A− it −

κ

2
(it − δ)2

)
− (δ + rt − it) p

= γ
(
σp+ σep

′) Kt
Et

(
σe(q

′ + p′) + σ(p+ q)
)
.(5)

B. Dynamics of State Variables

We derive equations for µe and σe which describe the dynamics of the capital capacity. Applying Ito’s

lemma to Et = etKt, and substituting for dKt from (2*), we find:

(6)
dEt
Et

=
Ktdet + etdKt + σeσKdt

etKt
=
µe + σeσ + e (it − δ)

e
dt+

σe + eσ

e
dZt.

We can also write the intermediary reputation dynamics directly in terms of intermediary returns and

exit, from (6*). When the economy is not at at a boundary (hence dψ = 0), equity dynamics are given
by,

dEt
Et

= αkt

(
dRkt − rt

)
+ αht

(
dRht − rt

)
+ (rt − η)dt

= αkt

(
πkt dt+ σkt dZt

)
+ αht

(
πht dt+ σht dZt

)
+ (rt − η)dt.

We use (13*) relating equilibrium expected returns and volatilities to rewrite this expression as,

(7)
dEt
Et

= γ
(
αkt σ

k
t + αht σ

h
t

)2
dt+

(
αkt σ

k
t + αht σ

h
t

)
dZt + (rt − η)dt

where the portfolio volatility term is given in (2). We match drift and volatility in both equations (6)
and (7), to find expressions for µe and σe. Matching volatilities, we have,

(8)
Kt

Et

(
σe(q

′ + p′) + σ(p+ q)
)

=
σe

e
+ σ
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while matching drifts, we have,

γ

(
Kt

Et

(
σe(q

′ + p′) + σ(p+ q)
))2

+ rt − η =
µe + σeσ + e (it − δ)

e
.

Because
Et

Kt
=

min (Et, (1− λ)Wt)

Kt
= min (et, (1− λ) (p (e) + q (e))) ,

these equations can be rewritten to solve for µe and σe in terms of e, p (e) , q (e) , and their derivatives.

C. Interest Rate

Based on the household consumption Euler equation, we can derive the interest rate rt. Since

Cyt = Yt − itKt −
κKt

2
(it − δ)2 =

(
A− δ −

qt − 1

κ
−

(qt − 1)2

2κ

)
Kt,

we can derive Et
[
dCyt /C

y
t

]
and V art

[
dCyt /C

y
t

]
in terms of q (e) (and its derivatives), along with µe and

σe. Then using (8*) it is immediate to derive rt in these terms as well.

D. The System of ODEs

Here we give the expressions of ODEs, expecially write the second-order terms p′′ and q′′ in terms of

lower order terms. For simplicity, we ingore the argument for p (e), q (e) and their derivateives. Let

cy (e) ≡ A− δ − î (e)−
κ
[̂
i (e)

]2
2

, w (e) ≡ p (e) + q (e) , F (e) ≡
w (e)

e
− θ (e)w′ (e) ,(9)

and G (e) ≡ cy (e)κF (e) + q (e) q′ (e) (1− θ (e))w (e) ,

and

(10) H (e) ≡ (A− δ)
1

φ
+

(
p (e)−

1− φ
φ

)
î−

1− φ
φ

κ

2
î2t + δ (1− q (e)) ,

where

θ (e) ≡ max

[
w (e)

e
,

1

1− λ

]
and î (e) ≡

q (e)− 1

κ
.

We have

σe =
ew (e)σ (θ (e)− 1)

w (e)− eθ (e)w′ (e)
.

This, together with (8), implies that the Sharpe ratio is

(11) γ
Kt

Et

(
σew

′ (e) + σw (e)
)

= γ
(σe
e

+ σ
)

= γσθ (e)
w (e)− ew′ (e)

w (e)− eθ (e)w′ (e)
.
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Define

a11 ≡ p′ (e)

(
cy (e)κ

G (e)

(
− (1− θ (e)) ξ

(
1
2
q (e)σ2

e

cy (e)κ

)
w (e) + θ (e)

1

2
σ2
e

))
+

pφ

G (e)

(
q (e) q′ (e) θ (e)

1

2
σ2
e +

F (e)

2
qσ2
e

)
,

a12 ≡ p′ (e)

(
cy (e)κ

G (e)
θ (e)

1

2
σ2
e

)
+

1

2
σ2
e +

pξ

G (e)

(
q (e) q′ (e) θ (e)

1

2
σ2
e

)
,

a21 ≡ q′ (e)

(
cy (e)κ

G (e)

([
− (1− θ (e)) ξ

q (e)σ2
e

2cy (e)κ

]
w (e) +

1

2
θ (e)σ2

e

))
+

1

2
σ2
e +

q (e) ξ

G (e)

(
q (e) q′ (e) θ (e)

1

2
σ2
e +

F (e)

2
q (e)σ2

e

)
a22 ≡ q′ (e) θ (e)

1

2
σ2
e

[
cy (e)κ

G (e)
+
q2 (e) ξ

G (e)

]
,

and

b1 ≡
(
p (e)σ + p′ (e)σe

)
σγθ (e)

w (e)− ew′ (e)
eF (e)

−
p′ (e) cy (e)κ

G (e)


(1− θ (e))

ρ+ ξ

(
î−

(q′ (e))2 σ2
e

2cy (e)κ

)
−
ξ (1 + ξ)

[
cy (e)σ − q(e)q′(e)σe

κ

]2
2cy (e)2

− î (e)− η
w (e) + θ (e)H (e)



−
1− φ
φ

cy (e)− p̂i (e) +
p (e)

G (e)

 (
ρ+ ξ̂i (e)

)
cy (e)κF (e)− ξ F (e)

2
(q′ (e))2 σ2

e −
ξ(1+ξ)

2

F (e)κ

[
cy(e)σ− q(e)q

′(e)σe
κ

]2
cy(e)

−ξq (e) q′ (e)
(
−
(̂
i (e) + η

)
w (e) + θ (e)H (e)

)
 ,

b2 ≡
(
σeq
′ (e) + q (e)σ

)
σγθ (e)

w (e)− ew′ (e)
eF (e)

−
q′ (e) cy (e)κ

G (e)


(1− θ (e))

ρ+ ξ

(
î (e)−

(q′ (e))2 σ2
e

2cy (e)κ

)
−
ξ (1 + ξ)

[
cy (e)σ − q(e)q′(e)σe

κ

]2
2cy (e)2

− î (e)− η
w (e) + θ (e)H (e)



−A+ q (e) δ +
q (e)

G (e)

 (
ρ+ î (e)

)
cy (e)κF (e)− ξ F (e)

2
(q′ (e))2 σ2

e −
ξ(1+ξ)F (e)κ

[
cy(e)σ− q(e)q

′(e)σe
κ

]2
2cy(e)

−ξq (e) q′ (e)
(
−
(̂
i (e) + η

)
w (e) + θ (e)H (e)

)
 .

Then the second-order terms can be solved as

(12)

[
q′′

p′′

]
=

[
a11 a12

a21 a22

]−1 [
b1
b2

]
=

1

a11a22 − a12a21

[
a22b1 − a12b2
−a21b1 + a11b2

]
.

E. Boundary Conditions and Numerical Methods

When e → ∞ without capital constraint. — When e → ∞, we have q and p as constants. Let
î = q−1

κ
, and since

Cyt =

(
A− δ − î−

κ̂i2

2

)
Kt,
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we have dCyt /C
y
t = dKt/Kt = îdt + σdZt. As a result, both assets have the same return volatility

σkR = σhR = σ, and the interest rate is

r = ρ+ ξ̂i−
ξ (1 + ξ)

2
σ2.

Because the intermediary’s portfolio weight θ = 1
1−λ , the banker’s pricing kernel is σγθ = γσ

1−λ . Therefore

µkR − r
σkR

=
γσ

1− λ
⇒ µkR =

γσ2

1− λ
+ ρ+ ξ̂i−

ξ (1 + ξ)

2
σ2 = ρ+ φ̂i+

2γ − ξ (1 + ξ) (1− λ)

2 (1− ξ)
σ2.

Because µkR = −δ + A
q

by definition, we can solve for

q =
A

ρ+ δ + ξ̂i+
2γ−ξ(1+ξ)(1−λ)

2(1−ξ) σ2
.

Because î = q−1
κ

, plugging in the above equation we can solve for

(13) q =
−
(
ρ+ δ +

2γ−ξ(1+ξ)(1−λ)
2(1−ξ) σ2 − ξ

κ

)
+

√(
ρ+ δ +

2γ−ξ(1+ξ)(1−λ)
2(1−ξ) σ2 − φ

κ

)2
+ 4Aξ

κ

2ξ
κ

which gives the value of q and î when e =∞.

Now we solve for p. Using
µhR−r
σh
R

= γσ
1−λ we know that µhR = ρ + ξ̂i +

2γ−ξ(1+ξ)(1−λ)
2(1−ξ) σ2. Since

φ
1−φ

(
A−δ−î−κî

2

2

)
p

+ î = µhR by definition, we have

(14) p =

(1−φ)
φ

(
A− δ − î− κî2

2

)
ρ+ (ξ − 1) î+

2γ−ξ(1+ξ)(1−λ)
2(1−ξ) σ2

.

Numerically, instead of (13) and (13) we impose the slope conditions p′ (∞) = q′ (∞) = 0 which gives

more stable solutions.

Lower entry barrier. — Consider the boundary condition at e which is a reflecting barrier due to
linear technology of entry. More specifically, at the entry boundary e, we have

dEt = θ (et)
[
dRaggt − rtdt

]
Etdt+ dUt

where dUt reflects Et at eK. Heuristically, suppose that at E = eK, a negative shock ε sends E to eK− ε
which is below eK. Then immediately there will be βx unit of physical capital to be converted into x

units of E, so that the new level Ê = eK − ε + x = eK̂ = e (K − βx). This implies that the amount of

capital to be converted to E is x = ε
1+eβ

> 0, and the new capital is K̂ = K − βx = K − β ε
1+eβ

.

Now we give the boundary conditions for p (·) and q (·). First, although entry reduces physical capital
K, since q is measured as per unit of K, the price should not change during entry. Therefore we must

have q′ (e) = 0. For scaled housing price p (·), there will be a non-zero slope. Intuitively, entry lowers

the aggregate physical capital K, hence future equilibrium consumption as well as future equilibrium
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housing rents are lower, translating to a lower P directly. Formally, right after the negative shock

described above, the housing price is p
(
E
K

)
K can be rewritten as p

(
E
K

)
K = p

(
e− ε

K

)
K, which must

equal the housing price p (e) K̂ = p (e)
(
K − β ε

1+eβ

)
right after the adjustment (otherwise there will be

an arbitrage). Hence,

p (e)

(
K − β

ε

1 + eβ

)
= p

(
e−

ε

K

)
K = p (e)K − p′ (e) ε⇒ p′ (e) =

p (e)β

1 + eβ
> 0

where we have used the fact that ε can be arbitrarily small in the continuous-time limit.

Define ∆ ≡ p(e)β
1+eβ

. In numerical solution instead of imposing β, we directly impose the following

boundary conditions for equilibrium pricing functions

(15) p′ (e) = ∆ and q′ (e) = 0.

We will treat ξ as our primitive parameter, calibrated to match land price volatility.

Numerical method. — Given (15), the following results is useful. From (11), we know that at e the

Sharpe ratio is (recall w (e) = p (e) + q (e))

B = σγθ (e)
w (e)− ew′ (e)

w (e)− eθ (e)w′ (e)
= σγ

w (e)

e

w (e)− ew′ (e) ∆

w (e)− ew(e)
e

∆
= σγ

w (e)− e∆
e (1−∆)

which implies that

(16) p (e) + q (e) = w (e) =
Be (1−∆)

σγ
+ e∆.

Based on (16) numerically we use the following 2-layer loops to solve the ODE system in (II.D) with

endogenous entry boundary e.

1) In the inner loop, we fix e. Consider different trials of q (e); given q (e), we can get p (e) =
Be(1−∆)

σγ
+ e∆− q (e) . Then based on the four boundary conditions

p (e) , q (e) , p′ (∞) = q′ (∞) = 0,

we can solve this 2-equation ODE system with boundary conditions using the Matlab builtin

ODE solver bvp4c. We then search for the right q (e) so that p′ (e)− q′ (e) = ∆ holds.

2) In the outer loop, we search for appropriate e. For each trial of e, we take the inner loop, and

keep searching until q′ (e) = 0.

III. Households with Direct Asset Holdings

Consider the modification in which the household sector consists of three groups of household members:

equity households, debt households, and asset households. For the newly introduced asset households,

we assume that these households directly invest (1− ζχ)PtH(= (1− ζχ) ptKt) dollars into housing and
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(1− χ) qtKt dollars into capital, where χ ∈ (0, 1) and ζ ∈ (0, 1) are constants. These household investors

are constrained in allocating their wealth into H and K.

In this modification, debt and equity households invest their wealth in the intermediary sector, as in

our baseline model. Their wealth, and hence the size of the inermediary balance sheet, is:

(17) χ (ζpt + qt)Kt︸ ︷︷ ︸
Intermediary Asset Holdings

= Wt︸︷︷︸
Aggregate Wealth

− [(1− ζχ) ptKt + ζqtKt]︸ ︷︷ ︸
Direct Holding of Asset Households

(with Wt = Kt (pt + qt)). We maintain the same assumption on equity and debt households as in the

baseline model, i.e., equity households invest 1 − λ fraction of χ (ζpt + qt)Kt into intermediary equity,

but constrained by Et which is the aggregate intermediary equity capacity.

In (17), χ captures the household’s direct holdings of real assets relative to the indirectly, through

intermediaries, holdings of these assets. Intermediaries’ aggregate balance sheets consists of ζχptKt

housing assets and χqtKt physical capital sitting. Note that the ratio of housing to capital assets is

ζpt/qt. But, from the perspective of the entire economy, the ratio between these two assets is pt/qt.

Therefore the introduction of asset households offers a degree of flexibility in calibrating the parameter

ζ, which allows relative ratio between housing to capital assets held by intermediaries to differ from the

relative ratio in the economy. But as we discuss when calibrating the model, the data suggest that these

relative ratios are similar, so that we set ζ = 1 in the calibration.

The modified model can be solved in a similar way as the baseline, after redefining the state variable

to be the intermediary capital capacity Et divided by χKt:

et ≡
Et
χKt

.

We highlight that the resulting ODE system for p (e) and q (e) depends on ζ, but not χ. More

specifically, when ζ = 1, as in our calibration, so that the relative shares of housing and capital held by

intermediaries and that held directly by households are the same, the modified model admits the same

solutions (same pricing functions, e.g. p (e), p (e) and same policy functions e.g. i (e)) and dynamics

as the baseline model without asset households. Potentially the parameter χ matters in determining an

initial condition for a simulation, but it is irrelevant in our paper because our simulation exercises focus

on the steady state distribution.

Intuitively, the pricing equations are still determined by the banker’s optimization behavior, which

depend on the relative supplies of housing and capital held by bankers, and hence not on χ. Given this

result, investment policy It and the aggregate household consumption Ct = AKt − It do not change,

implying the same equilibrium interest rate.

When ζ 6= 1, one can show that we have the same boundary conditions as in Section (II.E), and the
form of ODE system is the same as in (12) but with some modifications. More specifically, keep the same

definition as in (9), a11, a21, b1 and b2; but modify the definition of H (e) in (10) to be

H (e) ≡ (A− δ)
ζ + φ− ζφ

φ
+ ζ

(
pt −

(1− φ)

φ

)
î (et)− ζ

1− φ
φ

κ

2
î2t + δ (1− q) .
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and a12 and a22 to be

a12 ≡ p′ (e)

(
cyκ

G (e)
θ (e)

ζ

2
σ2
e

)
+

1

2
σ2
e +

p (e) γ

G (e)

(
q (e) q′ (e) θ (e)

ζ

2
σ2
e

)
,

a22 ≡ q′ (e)
cyκ

G (e)
θ (e)

ζ

2
σ2
e +

q2 (e) γ

G (e)
q′ (e) θ (e)

ζ

2
σ2
e.

IV. Derivation for Hidden Leverage Case

The dynamics of the state variable are, det = µedt + σedZt. We recompute µe and σe based on the
higher leverage. The reputation dynamics are:

dEt
Et

= αkt

(
πkt dt+ σkt dZt

)
+ αht

(
πht dt+ σht dZt

)
+ (rt − η)dt,

where αkt = 1

1−λ̂
qtKt
Wt

and αkt = 1

1−λ̂
Pt
Wt

are larger than the baseline equilibrium portfolio shares to

reflect the higher leverage based on λ̂. For illustration here we focus on the case where capital constraint

is not binding and the leverage is simply the intermeidary leverage is simply 1

1−λ̂
. When the capital

constraint is binding, the leverage is determined by Wt/Et as the baseline model.

We assume that the interest rate (rt) and ex-ante risk premia (πkt , π
h
t ) are the functions of et that

solve the model based on λ rather than λ̂. That is we hold expected returns and interest rates fixed in

the experiment. Recall that,

σht = σ + σe
p′ (e)

p (e)
and, σkt = σ + σe

q′ (e)

q (e)
.

We also assume that the price functions, p(e) and q(e), solve the model based on λ rather than λ̂. We
account for the fact that higher leverage implies a more volatile σe which in turn means that σht and σkt
rises. That is, a given shock dZt causes et to fall which feeds back into a further fall in asset prices and a

larger fall in et. It is essential to account for this amplification since it is the non-linearity of the model.
Thus,

dEt
Et

= αkt

(
πkt dt+

(
σ + σe

q′ (e)

q (e)

)
dZt

)
+ αht

(
πht dt+

(
σ + σe

p′ (e)

p (e)

)
dZt

)
+ (rt − η)dt

=
(
αkt π

k
t + αht π

h
t + rt − η

)
dt+

1

1− λ̂

[
σ +

w′ (e)

w (e)
σe

]
dZt(18)

where the second equality uses the fact that αkt = 1

1−λ̂
qtKt
Wt

, αkt = 1

1−λ̂
Pt
Wt

, and Wt = Kt (p (e) + q (e)) =

Ktw (e). From (6), we can also write,

(19)
dEt
Et

=
µe + σeσ + e (it − δ)

e
dt+

σe + eσ

e
dZt.

By matching (18) and (19), we can solve for µe and σe with hidden leverage. For instance, for σe, we
have

1

1− λ̂

[
σ +

w′ (e)

w (e)
σe

]
=
σe

e
+ σ ⇒ σe = σ

1

1−λ̂
− 1

1
e
− 1

1−λ̂
w′(e)
w(e)

Increasing λ to λ̂ increases the numerator and decreases the denominator. In particular, σe rises more
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than one for one with the increase in the leverage 1

1−λ̂
, which is 1.5 times of the leverage in the base

model. Moreover, this amplification effect is stronger when the economy is closer to crisis. We find that

the σe rises by around 1.5 times relative to the baseline in the first quarter of the simulation, but rises

by about 15 times at the point in the simulation when the capital constraint binds.


