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A.1 Robustness Results

Here we present the following empirical results:

Table A1l: Placebo Test Using Affiliate Sample
Table A2: Placebo Test Using SOE Sample
Table A3: Rauch Product Classification Results
Table A4: Other Dependent Variables

Table A5: Instrumental Variable Estimation Results Using Low CV
Deciles
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Measure of Markups
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Table A.3: Appendix Table-Rauch Product Classification Results

Dependent Variable: ﬁ

(1) (2)
homo/ref diff.

(3) (4) (5) (6)

overall  homo/ref  diff. overall

Firm’s Share

Region’s Share

0.167  -0.074"
(0.080)  (0.023)

-0.076*"  -0.026***
(0.011)  (0.008)

0127 -0.141  -0.046* -0.179"*
(0.051)  (0.202)  (0.024)  (0.040)

-0.067*  -0.296*** -0.016* -0.070***
(0.010)  (0.089)  (0.009)  (0.009)

Differentiated X Firm’s Share 0.042 0.126***
(0.056) (0.044)
Differentiated X Region’s Share 0.045*** 0.056***
(0.013) (0.012)
Differentiated Dummy -0.002 -0.001
(0.001) (0.001)
Year FEs YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES
Observations 273327 935702 1279149 75692 642132 1279149
Overall R? 0.036 0.024 0.027 0.015 0.019 0.027

Notes: Robust standard errors clustered at firm level in parentheses. Significance: ***: 1%, **: 5%, *: 10%.
Specifications 1-3 refer to product classification using “most frequent” principle; specifications 4-6 refer to

product classification using “pure” principle.

All specifications are regressions weighted by the number of

observations for each two-digit CIC sector production function estimation reported (following De Loecker et al.
2014). All regressions include a constant term.



Table A.4: Appendix Table-Robustness

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Dependent Variable = 1/ i
Firm'’s Share 0143 0.0997%  -0.163**  -0.0837** 0.046"  -0.080"
(0.021) (0.022) (0.027) (0.017) (0.018) (0.023)
Region’s Share -0.053***  -0.040***  -0.031*** -0.044***  -0.036***  -0.024***
(0.006) (0.006) (0.007) (0.006) (0.006) (0.007)
SEZ*Firm’s Share 0.095** 0.073**
(0.039) (0.035)
SEZ*Region’s Share -0.018* -0.021**
(0.010) (0.010)
Observations 1346860 1346860 1346860 1105162 1346860 1346860 1346860 1105162
Overall R? 0.028 0.027 0.028 0.026 0.028 0.027 0.027 0.026
Panel B: Dependent Variable = i/ (pnie — 1) (full sample)
Firm’s Share 225.521 195.421 388.275 469.783 439.703 800.015
(200.154) (204.416) (318.785) (474.848) (480.277)  (772.947)
Region’s Share 53.610 27.789 18.889 109.975 28.807 15.500
(33.033)  (25.908)  (31.765) (88.601)  (33.949)  (41.299)
SEZ*Firm’s Share -369.619 -694.560
(251.815) (525.775)
SEZ*Region’s Share 28.451 38.929
(26.538) (35.645)
Observations 1346860 1346860 1346860 1105162 1346860 1346860 1346860 1105162
Overall R? 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Panel C: Dependent Variable = pinit/(pnir — 1) (drop pn < 1.06)
Firm’s Share -3.229%** -1.985%**  _3.783***  -2.471*** -1.3117%* -2.488***
(0.561) (0.594) (0.745) (0.464) (0.500) (0.692)
Region’s Share -1.404***  -1.140***  -1.051*** -1.339***  -1.103***  -0.932***
(0.170) (0.183) (0.220) (0.161) (0.175) (0.208)
SEZ*Firm’s Share 3.248*** 2.545%**
(0.964) (0.905)
SEZ*Region’s Share -0.272 -0.372
(0.259) (0.251)
Observations 1228255 1228255 1228255 1006748 1228255 1228255 1228255 1006748
Overall R? 0.010 0.009 0.009 0.009 0.010 0.009 0.009 0.009
Panel D: Dependent Variable = log(mu)
Firm’s Share 0.174*** 0.118***  0.193***  0.099*** 0.051** 0.102%**
(0.027) (0.028) (0.035) (0.022) (0.024) (0.030)
Region’s Share 0.067***  0.052***  0.035*** 0.055***  0.046***  0.028***
(0.008)  (0.008)  (0.009) (0.007)  (0.008)  (0.009)
SEZ*Firm’s Share 5 -0.103* -0.085*
(0.053) (0.047)
SEZ*Region’s Share 0.034** 0.035***
(0.014) (0.013)
Observations 1346860 1346860 1346860 1105162 1346860 1346860 1346860 1105162
Overall R? 0.028 0.027 0.028 0.027 0.028 0.027 0.027 0.026
All Panels
Year FEs YES YES YES YES YES YES YES YES
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A.2 Derivation of the Demand Function

Suppose the household solves the following problem:

~

a—1 7=t
max DYy 1
e (000 W

subject to:
Y PY;<P

We take the budget of the household P to be exogenous. Cost minimization
on the part of the representative household implies the demand function:

v-n(%) ©)

The final product in each industry is assembled by competitive firms in each
industry that solves:

PY; =min Y puibni (3)

yni} nEQi

Y = <Zyn_>

Cost minimization on the part of these competitive firms implies:

Pni -
ni = Yi | & 4
Y (R-) @

subject to:

ol

o—1

Combining equations (2) and (4) implies:

o5 (3)°



A.3 Proof of Proposition 1

Suppose marginal costs of all firms are bounded and non-decreasing. Propo-
sition 1 has the following five parts:

1. If operating independently, firm markups are increasing in a firm’s own
market share,

2. If operating as a cartel, cartel markups are increasing in total cartel
market share with each firm’s own market share playing no additional
role,

3. Firm markups are higher under cartel decisions than when operating
independently,

4. Firm markups are more similar when operating as a cartel than when
operating independently,

5. Firm market shares are more similar when operating independently
than when operating as a cartel

Proof Suppose any firm n in industry ¢ weights the profits of the set of
firms S C §2; with constant x € [0, 1]. Then their objective is:

Yni
" mES

Then for pu,; defined as price divided by marginal cost and share defined as
the firm’s revenue divided by the sum of firm revenues in the industry, the
firm’s first order condition can be rewritten as:

dlog(pni) Smi 010g(Prmi)
) T < Sni alOg(ym’) (7>

=14+ (1-

Hor 0log(yni) —

If inverse demand is given by:

oy=1_
vy o—1
—1/0 1-1/0
= Dy (Zy /) (8)
me)
Then the cross-price elasticities are:

Olog(pn) _ (1 _ 1)
01og(yni) <0 7) " ©)

10



The own-price elasticity is:

Together these imply that:

1 1 1 1
=1-- - - - 1— ni mi
o e (a 7) (( K)Sni + K g s )

mesS

—~

11)

Firms operating independently is the case where xk = 0, so then:

1:1_l+<l_l>%i (12)

Honi o o Y

This implies result 1, when ¢ > . Likewise, if firms are operating as a
perfect cartel, then k = 1:

1,—1—1+<§—%)§:%n (13)

Honi o

This immediately implies the second result. Moreover, equations (12) and
(13) together imply the fourth result, as cartels have no variation in markups
(even if they have variation in market shares) while independent firms have
markups that vary with their shares.

To compare firms in a cartel to those operating independently, we con-
struct an artificial single firm that is equivalent to the cartel. That is, suppose
rk = 1 so that the cartel solves:

{yma} meS

where p,,; is given by (8). Now define a cartel aggregate of production:

o

Y= (Z y;;1/0> h (15)

meS

Let C(Y) be the cost function of the cartel defined as:

é(Y) = min C(Ymi; Xomi) (16)

{ymi} meS

11



o—1
subject to: Y = (Z y}{il/0>

meS

Then the following problem is equivalent to (14):

gr-21

~y o—1

max Dy'-Ye <Y1—1/" +) Yt ”) —C(Y) (17)
né¢sS

First notice that the Envelope Theorem applied to the problem in (16):

o
Vm € S, C'(Y)=\= ey

(18)

Then we can relate the size of the cartel to the cost of the cartel’s production.

Lemma 1 Consider a cartel made up of in T C S. Then for every level of
production Y, the marginal cost in the cartel composed of T is strictly higher
than in the cartel composed of S.

To prove this lemma, suppose ¥, is how much firm m produces when part
of the cartel composed of T and y>. is how much the same firm produces
when part of the cartel composed of S. Then for any given Y it must be the
case that:

1(,,S . 1T .
it Xond) Ol X)) < ')
Yimi oy Yumi V7y1fe

S T
ymi < ymz =

where the second implication follows from the fact that all firms have non-
decreasing marginal costs. The first inequality follows from bounded marginal
costs and Inada conditions in the aggregation of individual firm production
to cartel-level production. Therefore, if more firms are added to a cartel,
marginal costs for the cartel are reduced for every level of output.

Given this lemma, notice that as a cartel grows, the markup that the car-
tel charges strictly increases. This follows immediately from that fact that,
given the lemma, marginal costs decline so cartel production increases, and
as another firm from within the same industry is brought into the cartel, that
firm’s production is no longer counted in the denominator when computing
the cartel’s market share. Therefore, the cartel’s market share strictly in-
creases as more firms are added. Hence, by (13), the markup charged by the
cartel increases.

12



A special case of this result is part 3 of Proposition 1. If a firm is operating
outside of an existing cartel then is brought into it, the new cartel would
have strictly higher markups than either the original cartel or the formerly
independent firm.

To demonstrate the last result, consider any two firms n and m within
the same cartel. Manipulating (18) gives:

1 1
C, mzmez mi ks Smi =
C Wit Xomi) _ (Ymi\ " _ (19)
Cl(an an) Yni Sni
Then consider two other firms v and w that are operating independently.
Then the relationship between marginal cost and market share is:

C' (g X)) _ <_> LYot (fo—1s

C'(Yuwi; Xwi) 1—1/0 + (1/0 — 1/7)5u;

Suppose these two pairs of firms have the same relative marginal costs. Then:

Swi

= — 21

() = () Al bl

Without loss, if firms v and m have relatively high costs, then:

Sni Swi

= >1 = 22
1-1 /o —1 : : :
/U + ( /0 /7)81}2 1 _— Sni > Swi
1—1/o4+ (1/o — 1/7)Suwi Smi  Suvi

Therefore, independently operating firms have wider variation in market
shares conditional on marginal cost than do firms operating as a cartel. This
completes the proof.

13



A.4 Simulation of Model with Shocks to Demand and
Costs
We now consider a version of the model where some uncertainty in costs or

demand is realized after production choices are made. Firm ¢ in industry j
located in region k in year t solves the following problem:

ikt

max / /S (1= )mgule ) +5 S mugmlle,p) | dF(E)IG(p)

MEW; ikt

where:

_ 1/n\1-1/o 1/n \1-1/o Lijkt
migre(ls . p) = DjEinalifi) ™7 | Y Empntlyjia) ™ = Pijkt
mesj; ijkt

Here ¢ is the vector of demand shocks, p is the vector of cost shocks, and [
is the vector of production choices. The set of firms operating in industry
J at time t is €, and its subset of firms operating within region k is wj.
For any given firm, z;;; is the component of their costs that is known before
production decisions are made. Without heterogeneity in this, there would
be no heterogeneity in ;5. The parameter 7 allows for curvature in the cost
function.

Notice that ' and G are probability distributions over vectors, and we
will consider covariance at the cluster, industry and year levels.

The first order condition implies:

1—1/7m

/ NPijkt ijkt dG(p) _
S, Rijkt

1Un\1-1/0 1 /e
I{(gijktlij/lgt)l Y +(1_I{) Z (gnjktln?;t)l Y

0'—1 1 1 NEW; Kt
<[t |52 (5 5) > ol e

mjkt

mEth

where:

21a
aR

pz’jk‘t(la5> _ ngilﬁci/ali—jllf{na Z <5mjk:tlmjk:t)1/n(l_1/a)

mGth

14



Firms face a variety of shocks at different levels:
1 2 3 4 5
eijkt - I/lgt + VQEjt + I/3Eijk‘t + V4Ejk‘t + I/5€k,t

Pijkt = Hapy + M2l + HsPlk + Hapje + 15O

Therefore, we can separately analyze shocks at different levels.

A.4.1 Computational Implementation

The simulated dataset has T' years, J industries and K regions. Every
industry-region-year has [ firms within it. The vectors € and p are therefore
of length I x J x K x T'. First, both € and p are simulated M times. Then
a vector L is drawn. Then L is input as the vector of production choices
of firms. Using the first order condition, we then solve for the vector Z of
anticipated costs that rationalizes the vector L. Together, Z, L, and the
realization of shocks implies markups (using the method of De Loecker and
Warzynski) and market shares for each firm. Then, for each realization, the
regression described in the paper is run on the simulated data. This is done
M times.

For these results we choose 0 =5, v = 3, and kK = 0.3. We set T' = 11,
J=5 K =8,1=10and M = 1000. We assume that the log of each shock
is a standard normal random variable.

A.4.2 Effects of Shocks: Comparative Statics

First we look at the effects of all twelve types of shocks individually. The
table below presents the results of setting uy = ... = us =1 = ... = v5 = 0,
then individually setting each to 1.

In each iteration of the simulation we run the following regression:

1
—————— = o+ BiSijee + BaCjke + Oijie
markup,
where: -
B (eijueyijie) =1
Sijkt =

Z (gmjktymjktyil/g

mGth
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Table A.8: Simulation Results: Ex Post Shocks

No Fixed Effects

Region-Year and Firm FEs

Cost Shocks: Avg. & St. Dev. & Adj. R? | Avg. & St. Dev. & Adj. R?
Year 0.2997 0.0059 -0.0000 | 0.3000 0.0094 0.5525
Industry-Year 0.2997 0.0038 -0.0003 | 0.3000 0.0116 -0.0003
Firm-Year 0.2009 2.1071 -0.0000 | 0.1889 17.9759 -0.0000
Cluster-Year 0.5954 43.1666 0.0016 | 0.6822 25.4955 0.0024
Region-Year 0.5571 8.9698 0.0015 | 0.3029 0.0163 0.4564
Demand Shocks: | Avg. & St. Dev. # Adj. R? | Avg. & St. Dev. & Adj. R?
Year 0.2998 0.0037 0.0006 | 0.3003 0.0083 0.7246
Industry-Year 0.2998 0.0024 0.0001 | 0.2998 0.0064 0.0001
Firm-Year 0.0927 0.1097 0.0024 | 0.0950 0.1252 0.0022
Cluster-Year 0.8398 0.2227 0.0205 | 0.8362 0.0780 0.0212
Region-Year 0.5769 12.6588 0.0018 | 0.3006 0.0117 0.4516
Firm FEs Region-Year FEs
Cost Shocks: Avg. & St. Dev. & Adj. R* | Avg. & St. Dev. & Adj. R?
Year 0.3004 0.0057 -0.0001 | 0.3001 0.0091 0.5538
Industry-Year 0.2992 0.0088 -0.0003 | 0.3001 0.0087 -0.0003
Firm-Year 0.1676 3.0608 -0.0000 | 0.1489 26.1445 -0.0001
Cluster-Year 0.6232 6.6294 0.0019 | 0.6574 13.2127 0.0025
Region-Year 0.6075 10.8352 0.0020 | 0.3010 0.0081 0.4529
Demand Shocks: | Avg. & St. Dev. # Adj. R? | Avg. & St. Dev. & Adj. R?
Year 0.2993 0.0052 0.0004 | 0.3004 0.0049 0.7179
Industry-Year 0.3001 0.0034 0.0002 | 0.3003 0.0051 0.0002
Firm-Year 0.0754 0.1022 0.0027 | 0.0937 0.1140 0.0228
Cluster-Year 0.8169 0.8512 0.0171 | 0.8479 0.0677 0.0228
Region-Year 0.6283 42.3770 0.0022 | 0.3003 0.0107 0.4519

Cikt = E Sljkt

Zijkt

Here we present the simulated moments of & defined by:

B
B+ B2

R

The results from these experiments are given in Table A.8. We provide
four sets of results based on the set of fixed effects considered, and for each
case we provide the average and standard deviation of x across the 1000
simulations. We also provide the adjusted R* averaged across the 1000 sim-

ulations.
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These results demonstrate two important things to help understand how
our estimates of k could be biased. Firm-year shocks bias estimates of s
downward, and cluster-year and region-year shocks bias estimates upward.
The region-year shocks can be mitigated with region-year fixed effects: the
bias is almost eliminated for cost shocks and is less severe for demand shocks.
In the other cases, the adjusted R? of the model can fall considerably, but
we see little evidence of bias in estimates of .

A.4.3 Calibrated Example

The previous subsection demonstrates that the most serious bias arises when
ex post shocks are at the firm-year and cluster-year level. We now repeat
the numerical exercise from the previous section but now we parameterize
the model to replicate the results of our baseline results in column 7 of Table
4 in the paper. As in that regression, we include firm and year fixed effects
and cluster standard errors at the firm level. We consider ex post shocks to
productivity at the firm-year level and the cluster-year level, and we include
measurement error at the firm-level. We also have idiosyncratic firm-year ex
ante shocks. Each shock is assumed to be log-normal.

We calibrate six parameters: the variance of the three shocks, v, o, and
k. We match six moments: the coefficient estimate on the firm’s own share
and on the cluster’s share, the standard errors on the firm’s own share and
on the cluster share, the average markup, and the regression’s within-R?2.

The calibrated value of x is 0.29, while the value in the model, as in the
data, is 0.28. This demonstrates that, in this case, we actually underestimate
the degree of collusion with our procedure relative to its true value. The
calibrated standard deviation of the firm-year productivity shock is 0.011
while that of the cluster-year shock is 0.009. Our estimate of ¢ is 4.57 and ~
is 2.74. The standard deviation of the measurement error is 0.044.

A.4.4 Departure from CES Demand

Next we consider the case where the demand system is instead given by:

Dijkt + D TP\
e = | 2 _® 23
we=(52) (%) )

Proceeding with the same simulation technique as above, we consider the
case where there are no ex post shocks and vary the magnitude of p.
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Figure 1: Varying Non-Homotheticity: Estimated s
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The results are summarized below in Figures 1 and 2. As the value of
p varies, as shown on the horizontal axis in both figures, on average our
measure of k will be affected monotonically as shown in Figure 1. As before,
the true value of  in this simulation is equal to 0.3. Figure 2 shows that this
bias is entirely due to bias in the coefficient on firms’ own shares. In fact,
the coefficient on cluster shares is unbiased by p.

This supports our conclusion that a non-CES demand system of this type
affects our estimate of the magnitude of collusion. However, if we interpret
the t-test of whether or not the coefficient on the cluster share is positive to
be a test of collusion, that test is unaffected by non-CES demand systems of
this form.

A.4.5 Measurement Error

Next, we consider the case where revenues are measured with error. We
proceed as before, but now instead of unanticipated shocks, we study the
effect of increases in the variances of the measurement error.

Following the parameterization in the first simulation exercise, Table A.9
shows the effects of measurement error. In the “Idiosyncratic” columns,
we assume that measurement error has no correlation across firms. In the
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Figure 2: Varying Non-Homotheticity: Coefficient Estimates
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Table A.9: Effects of Measurement Error
Measurement Error, Idiosyncratic

Var. of Error | Avg. & St. Dev. & Avg. 51 Avg.fs

0.1 0.2935 0.1401 -0.1096  -0.0461
0.2 0.2885 12.0245 -0.1173  -0.0480
0.3 0.2821 4.6233 -0.1251 -0.0516
0.4 0.2825 37.1823 -0.1307  -0.0533
0.5 0.2582 16.6251 -0.1348  -0.0542

Measurement Error, Cluster
Var. of Error | Avg. & St. Dev. & Avg. 51 Avg.fs

0.1 0.2978 0.3590 -0.1088  -0.0461
0.2 0.3121 16.0014 -0.1139  -0.0505
0.3 0.3247 11.4702 -0.1202  -0.0532
0.4 0.3371 7.8773 -0.1261  -0.0565
0.5 0.3886 44.0116 -0.1327  -0.0569

“Cluster” columns, we consider the extreme case of correlation within clusters

where measurement errors are equal in all firms of the same cluster.
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A.4.6 Bias in Production Function Estimation

To estimate markups, we apply the methods of De Loecker and Warzynski
(2012). This requires us to estimate the elasticity of output with respect
to inputs, which we do by estimating production functions. We apply the
methods of Ackerberg, Caves and Frazer (2015). However, we do not have
data on physical quantities of output (we observe revenues) and our model
explicitly includes imperfect competition instead of exogenous output prices.
We find that this leads to downward bias in our estimates of production
elasticities. However, we find no evidence that this biases our estimates of «,
the measure of the extent of cooperation that we derive.

To do this, first we replicate the exercise in Ackerberg, Caves and Frazer
(2015) using the code made available by Kim, Luo and Su (2019). We then
modify this code to reflect our demand system. We then conduct production
function estimation in 5 cases: perfect competition (¢ = v — 00), monopo-
listic competition (¢ = v = 5), and three cases with imperfect competition
and variable markups (0 =5, v = 3.5, k € {0,0.3,1}).

Results from the production function estimation are given in Table A.10.
We find that the perfect competition case recovers the true production pa-
rameters, as expected. However, with monopolistic competition the param-
eters are biased downward. Yet we do not see any change in this downward
bias in the cases with variable markups as s changes. This demonstrates
that imperfect competition is potentially a problem for recovering unbiased
estimates of production function parameters. However, this problem is not
affected by the presence of cooperation among firms.

Finally, we evaluate the possibility that bias in production function esti-
mation influences our estimates of x, the extent of cooperation among firms.
To do this, we take the estimated production function parameters from the
simulations described before, use those to measure markups with the De
Loecker and Warzynski (2012) formula and run the regressions that consti-
tute the main results in our paper to estimate s using the simulation methods
described in the previous subsection. The results of this are reported in the
last two columns of Table A.10. We find that the estimated values of x are
close to their true values. In the cases with perfect competition or monopo-
listic competition there is no scope for cooperation and the estimated values
are near zero, as expected.
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Table A.10: Production Function Estimates, Varying Demand Structures

Capital (8y) Labor (/) Cooperation (k)

Demand System Mean St. Dev. | Mean St. Dev. | Mean St. Dev
Perfect Competition 0.3996  0.0153 | 0.6000  0.0091 | 0.0607 13.5859
Constant Markups 0.3200  0.0165 | 0.4799  0.0029 | 0.0527 11.5285

Variable Markups, k =0 | 0.2795  0.0125 | 0.4637  0.0256 | 0.0004 0.0164
Variable Markups, x = 0.3 | 0.2736  0.0106 | 0.4627 0.0032 | 0.2996 0.0177
Variable Markups, x =1 | 0.2965 0.2459 | 0.4620  0.0060 | 0.9976  0.0355

Table A.11: Varying the Fraction of Firms Collaborating

Fraction Collaborating (p) | Avg. & St. Dev. & Avg. 1 Avg.0s %
0.05 0.0151 0.0157 -0.1440 -0.0022 | 0.3012
0.15 0.0432 0.0167 -0.1401  -0.0063 | 0.2879
0.25 0.0733 0.0164 -0.1354 -0.0108 | 0.2932
0.35 0.1027 0.0160 -0.1312  -0.0150 | 0.2935
0.45 0.1304 0.0158 -0.1274  -0.0191 | 0.2898
0.55 0.1591 0.0160 -0.1229  -0.0232 | 0.2892
0.65 0.1881 0.0164 -0.1188  -0.0275 | 0.2894
0.75 0.2183 0.0170 -0.1142  -0.0318 | 0.2910
0.85 0.2472 0.0156 -0.1099 -0.0361 | 0.2908
0.95 0.2766 0.0173 -0.1057  -0.0403 | 0.2912

A.4.7 Unknown Sets of Cooperators

Our main exercises assume that we know the set of firms that are cooperating.
Here we dispense with this assumption and see how our estimates of x are
affected. In particular, we assume that a fraction p of firms cooperate with
one another, but that all firms are pooled together when estimating our
main regression specifications. Here we assume that the true value of x is
0.29, and we vary the fraction of firms that collaborate p from 5% to 95%.
The resulting estimates of x are presented in Table A.11. In the right-most
column, we can see that dividing the estimated value of & by the fraction of
collaborating firms p generates values close to the true value of k for each
p. Hence, our estimated s could be interpreted either as a measure of the
fraction of firms that cooperate, or the intensity with which they cooperate.

A.5 Profitability of Cooperation by Productivity Level

We now show how profits change with x by productivity level. We follow the
simulation described in the previous subsection of this appendix. We then
put productivity levels into bins, and compute average profit by bin for three
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Table A.12: Profit by Productivity Level

Productivity Range k=0 k=10.3 k=1
-1 0 2.24 x10™° 2.26 x10™° 2.33 x107°
0 1 4.58 x10™* 4.39 x10™* 4.39 x10~*
1 2 0.0187 0.0189 0.0195
2 3 0.3609 0.2931 0.2893
3 4 10.272 10.384 10.706
4 5 110.84 112.83 113.85
5 6 1255.6 1266.5 1268.8
6 7 19243 19488 20248

values of x: 0, 0.3 and 1. The results appear in Table A.12. We see that
profits increase for each productivity bin as k gets larger.
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