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This Online Appendix provides the description of the sampling simula-

tion used to construct confidence bands along with an additional result

using 12-month uncertainty.

Sampling Simulation

In point-identified models, sampling uncertainty can be evaluated using frequentist

confidence intervals or Bayesian credible regions, and they coincide asymptotically. In-

ference for set-identified SVARs is, however, more challenging because no consistent

point estimate is available. As pointed out in Moon and Schorfheide (2012), the cred-

ible regions of Bayesian identified impulses responses will be distinctly different from

the frequentist confidence sets, with the implication that Bayesian error bands cannot be

interpreted as approximate frequentist error bands. Our analysis is frequentist, and while

the two applications presented above illustrate how the dynamic responses vary across

estimated models, where each model is evaluated at a solution in B̄(B; k̄, τ̄ ,S), we still

need a way to assess the robustness of our procedure, especially since it is new to the

literature.

Unfortunately, few methods are available to evaluate the sampling uncertainty of set

identified SVARs from a frequentist perspective, and these tend to be specific to the im-

position of particular identifying restrictions. Moon, Schorfheide and Granziera (2013)

suggest a projections based method within a moment-inequality setup, but it is designed

to study SVARs that only impose restrictions on one set of impulse response functions.

Furthermore, the method is computationally intense, requiring a simulation of critical

value for each rotation matrix. Gafarov, Meier and Olea (2015) suggest to collect para-

meters of the reduced form model in a 1− α Wald ellipsoid but the approach is conserv-

ative. For the method to get an exact coverage of 1− α, the radius of the Wald-ellipsoid

needs to be carefully calibrated. As discussed in Kilian and Lutkepohl (2016), even with

these adjustments, existing frequentist confidence sets for set-identified models still tend

to be too wide to be informative. It is fair to say that there exists no generally agreed

upon method for conducting inference in set-identified SVARs.
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We use a bootstrap/Monte Carlo procedure to assess the sampling error of our inequal-

ity restrictions when St and G t are variables external to the three variable SVAR.

Let R be the number of replications in a repeated sampling experiment. Let “hats”

denote estimated values from historical data, e.g., êt denotes estimated structural shocks

and B̂ estimated structural covariance matrix. To denote simulated data, we use a “*”,

while to denote estimated values from simulated data, a “hat” is combined with a “*”.

To generate samples of the structural shocks from this solution in a way that ensures

the events that appear in historical data also occur in our simulated samples, we draw

randomly with replacement from the sample estimates of the shocks, êt , with the ex-

ception that we fix the values for these shocks in each replication in the periods τ 1 τ 2,

τ 3, τ 4 and τ 5, where τ 1 is the period 1987:10 of the stock market crash, τ̄ 2 is 1970:12,

τ 3 ∈ [2007:12, 2009:06], τ̄ 4 is 1979:10 and τ̄ 5 ∈ [2011:07, 2011:08]. Since we identify

a set of estimated parameters B̂ and therefore a set of estimated shocks êt , we generate R

samples of data from each êt in the set. This is then repeated for every solution/shock se-

quence in the identified set to obtain a confidence region for the identified set of impulse

responses.

Let M be the number of solutions in the identified set B̄(B; k̄, τ̄ ,S) and let m index

an arbitrary solution in the set. Index each draw from the estimated shocks with r and

denote the r th draw from the mth solution as emr
t . Each emr

t is combined with the B

parameters of the mth solution, B̂m to generate R samples of size T of ηmr∗
t = B̂memr

t .

Next, R new samples of Xt are recursively generated for each replication r = 1, ..., R

using Xt =
∑p

j=1 Â j Xt− j + ηmr∗
t , with initial conditions fixed at their sample values,[

X−p+1, ...,X0

]
. Using each of these new samples of Xt , we fit a VAR(p) model to

obtain new least squares estimates
[
η̂mr∗

t , Âmr∗
1 , ..., Âmr∗

p

]
and �̂mr∗ =cov

(
η̂mr∗

t , η̂mr∗
t

)
,

and B̂mr∗ = {B̂mr∗ = P̂mr∗Q : Q ∈ On , diag
(
B̂mr∗

)
≥ 0, ḡZ (B) = 0}, where where On is

the set of n × n orthonormal matrices and P̂mr∗ is the unique lower triangular Cholesky

factor of �̂mr∗.

To generate samples of the external variables S1t and S2t from mth solution in a way

that ensures that the correlations with the uncertainty shocks that appear in our historical

data also appear in our simulated samples, we first generate historical idiosyncratic stock

market shocks em
S1t and gold price shocks em

S2t as the fitted residuals from regressions

of S1t and S2t on a single autoregressive lag and on êt , respectively. Next, we draw

randomly with replacement from em
S1t and em

S2t with the exception that, as above, we

fix the values for these shocks in each replication in the periods τ 1 τ 2, τ 3, τ 4 and τ 5,

to obtain r = 1, ..., R new values emr
S1t and emr

S2t and R new values of S1t and S2t by

recursively iterating on

Smr
1t = dm

01 + ρ̂1Smr
1t−1 + dm′

1 emr
t + emr

S1t(A1)

Smr
2t = dm

02 + ρ̂2Smr
2t−1 + dm′

2 emr
t + emr

S2t(A2)

with initial conditions fixed at their initial sample values, [S11, S21] . The parameters ρ̂1

and ρ̂2 are the sample estimate slope coefficients from a first order autoregression of each
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variable in historical data. The parameters dm′
1 and dm′

2 in (A1) and (A2) are calibrated

to target the observed correlations corr(S1t , ê
m
t ) and corr(S2t , ê

m
t ) for the mth solution

in historical data so that corr
(
Smr

1t , e
mr
t

)
and corr

(
Smr

2t , e
mr
t

)
equal the observed historical

corr(S1t , ê
m
t ) and corr(S2t , ê

m
t ) on average across all replications R.

We construct confidence sets for the set of IRFs in repeated samples as follows. The

number of replications is set to R = 1, 000. In each replication of each solution,

K = 1.5 million rotation matrices Q are entertained, but only Kmr ≤ K rotations will

generate solutions that are admitted into the identified set for that replication, B̄mr∗(·).
Let 2m,r,k

i, j,s be the s-period ahead response of the i th variable to a standard deviation

change in shock j at the k-th rotation of Kmr , for replication r and solution m.1 Let

2m,r
i, j,s = mink∈[1,Kmr ]2

m,r,k
i, j,s and 2

m,r

i, j,s = maxk∈[1,Kmr ]2
m,r,k
i, j,s . Each (2m,r

i, j,s,2
m,r

i, j,s) pair

represents the extreme (highest and lowest) dynamic responses in replication r of solu-

tion m. From the quantiles of the set
{
2m,r

i, j,s

}M,R

m=1,r=1
that includes all replications for

all solutions we can obtain the α/2 critical point 2i, j,s(α/2). Similarly, from the quan-

tiles of
{
2

m,r

i, j,s

}M,R

m=1,r=1
, we have the 1− α/2 critical point 2i, j,s(1− α/2). Eliminating

the lowest and highest α/2 percent of the samples gives a (1 − α)% percentile-based

confidence interval defined by

C Iα,g =
[
2i, j,s(α/2), 2i, j,s(1− α/2)

]
.

C Iα,g denotes the confidence intervals for sets of solutions that satisfy all constraints, in-

cluding the event and external variable constraints: ḡZ (B) = 0, ḡE(B; τ̄ , k̄) ≥ 0, ḡC(B;S) ≥
0. We use C Iα,gZ

to denote the confidence intervals for sets of solutions that satisfy only

the reduced form covariance restrictions ḡZ (B) = 0.

Longer Horizon Uncertainty

We examine longer horizon uncertainty. Figure A1 presents the IRFs when we use a

system with h = 12 month-ahead macro and financial uncertainty, along with i pt . This

system is denoted X
(12)
t = (UMt (12) , i pt ,UFt (12))′ , where UMt (12) denotes twelve-

month-ahead macro uncertainty, and likewise for UFt (12). The same identifying restric-

tions are used as for the h = 1 month-ahead base case system. These results are similar

to those for the cases that use h = 1 month ahead uncertainty.

1The s-period ahead dynamic responses to one-standard deviation shocks in the /j th variable are defined as

∂Xt+s

∂e j t
= 9̂mr∗

s b̂mrk j∗,

where b̂mrk j∗ is the j th column of B̂mrk∗ and the coefficient matrixes 9̂mr∗
s are given by 9̂mr∗(L) = 9̂mr∗

0
+9̂mr∗

1
L+

9̂mr∗
2

L2 + . . . = Âmr∗ (L)−1.



4 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Figure A1. 12 Month-Ahead Uncertainty. The figure shows results from the identified set for system Xt =
(UMt (12) , i pt ,UFt (12))′ using 12 month-ahead uncertainty and the full set of constraints with each argument of k̄

set to their 75th-percentile values of the unconstrained set. It reports the identified set of impulse response to positive,

one standard deviation shocks in units of percentage points. The sample spans the period 1960:07 to 2015:04.
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