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A Supporting evidence

A.1 Dynamics of sovereign ratings over time

Figure 1 presents plots of the countries’ real GDP, together with the “sovereign bond rating
index”.1 Even though the economies entered a recession as early as in the second quarter
of 2008, markets continued to perceive their bonds as relatively risk-free investments until
about two years later. As a result, only around 2010-2011 do we observe a sequence of
sovereign rating downgrades among peripheral European countries, indicating that market
expectations about the sustainability of governments’ debt had deteriorated significantly.

Note: The GDP series are in constant 2010 prices, and their values are normalized such that
the third quarter of 2008 equals 100 (beginning of the financial crisis - shaded area). The bond
rating index is constructed by converting the sovereign ratings of the three leading agencies -
S&P, Moody’s and Fitch - into a numerical scale from 0 to 25 and computing a simple average.

Figure 1: Real GDP and sovereign bond rating index of the European economies: 2000-2014

1The index is a simple weighted average of the three leading rating agencies (S&P, Moody’s and Fitch),
converted into a numerical scale from 0 to 25.
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A.2 Learning about debt crises in emerging market economies

Aguiar and Gopinath (2006) show that emerging market bond spreads are better captured by
a model with permanent income growth shocks, rather than transitory ones. It is natural to
ask how the model developed in the present paper can be applied to the previous debt crises.
Figure 2 plots the evolution of GDP forecasts for Argentina, a representative emerging market
economy, around the time of its crash in 2001.2 Two differences stand out in comparison with
Figure 2 in the paper which plots analogous data for the European countries. First, even
though Argentina’s contraction is equally steep and much deeper than the ones of Portugal
or Italy, a swift recovery follows. Unlike the European economies, Argentina returns to its
peak output level of 1998 within six years. Second, forecasts for Argentina have an almost
invariant slope over time, regardless of whether the economy is currently in a boom or a
bust. As a result, large forecast errors arise most of the time, overestimating future GDP

Note: The GDP series is annual and in constant prices; values are normalized so that it
equals 100 in 1998. The red dotted lines represent one- and two-year ahead forecasts published
in the fall of each year by IMF. The shaded area marks Argentina’s debt crisis of 1998-2002.

Figure 2: Forecast and actual real GDP for Argentina

2I use IMF projections as it is the only source of forecast data out of the four I discuss in Section I.B in
the paper that contains Argentina.
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during a recession and underestimating it during a recovery. This suggests that forecasters
have noisy information about Argentina’s economy and form their projections based on the
average long-run trend growth. Thus, while adding a regime-switching process with learning
about its realizations to a model of emerging market debt crises is a possibility, there is
relatively little information to be inferred from historical forecast data.

A.3 Further evidence on forecast errors

Table 1 documents the root mean square errors (RMSE) observed for each of the four coun-
tries of interest. As is evident, the RMSE in each case follows the same pattern as the
average bias in Table 2 in the paper, i.e. it increases significantly during the first stage of
the recession (2008-2011), and then falls back (often below the pre-2007 level) during the
second stage (2012-2014).

Table 1: Root mean square errors in real-time historical forecasts for different time frames

Root mean square error OECD IMF EC CE

(a) Pre-recession sample: 2000-2007
Greece 2.18 2.25 2.18 2.13
Spain 0.77 0.94 1.02 0.97
Italy 1.43 1.56 1.47 1.43
Portugal 1.54 1.46 1.43 1.51
(b) Recession - first stage: 2008-2011
Greece 6.69 7.01 7.12 6.90
Spain 2.98 3.33 3.30 3.15
Italy 3.39 3.48 3.57 3.45
Portugal 2.62 2.82 2.60 2.82
(c) Recession - second stage: 2012-2014
Greece 1.60 1.88 1.89 1.45
Spain 1.36 1.63 1.23 1.35
Italy 0.79 0.85 1.13 0.94
Portugal 0.48 0.52 0.53 0.65

Note: The table presents root mean square errors of one-year-ahead forecasts of real GDP level. Fore-
casts are acquired from four sources: OECD, IMF, European Commission, and Consensus Economics
Inc. The error is expressed as a percentage of the 2010 level of real GDP for each country. All forecasts
come in two vintages, Spring and Fall, which I use jointly. The number of forecasters participating in
Consensus Economics surveys varies over time and across countries, with a minimum of four and a
maximum of twenty.
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B Data Appendix

B.1 Detrending method

Figure 3 illustrates the detrending using a broken linear trend. For the baseline model, the
trend is calculated until 2008:Q2 (the subsequent decline is assumed to be due to a regime
shift, which is subsequently validated in Section B.3 with full-sample Bayesian inferences),
while for calibration of the simple AR1 the trend includes data until 2011:Q4. In each case,
two statistically significant breakpoints are detected using the Bai-Perron test (Bai and Per-
ron, 1998), and continuity of the trend line is imposed. In both cases, the two breakpoints
are detected at 1974:Q2 and 1999:Q4, coinciding with the democratic revolution in Portugal
and adoption of the Euro, respectively. The estimated quarterly trend growth rates for the
three time windows are 1.6%, 0.8% and 0.4% for the baseline case, and 1.6%, 0.8% and 0.3%
for the simple AR1 case, respectively.

Detrending the data using a broken linear trend allows me to use a longer time series in the
estimation, going back to 1960. This would not be possible with a single linear trend as
the resulting residual would not be stationary. Including all the available information since
1960 is important to capture the full volatility of business cycles during the “normal times”
regime, featuring regular expansions and recessions (the GDP data for European countries

(a) Baseline case (b) Simple AR1 case

Figure 3: Detrending the GDP using a broken linear trend
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exhibits very little variance in years 1999-2008).

B.2 Estimation technique

In this section, I describe my approach to estimating the parameters of the regime-switching
process (formula 1 in the paper). This is an extension of the Expectation-Maximization
algorithm as in Hamilton (1990). The main novelty is that I use two separate data sources
to inform the parameters: historical GDP series (as in the standard estimation), as well as
the real-time GDP forecasts (to capture the evolution of market expectations documented
in Section I.B in the paper).

The procedure starts by fixing the regime-switching probabilities with recent historical expe-
rience. I also normalize the high-regime mean µH to zero, following the standard assumption.
Denote the set of realized GDP data as YT = {y1, y2, ..., yT}, and denote the set of observed
forecasts as ŶTf

= {ŷ1, ŷ2, ..., ŷTf
}. Note that T 6= Tf because the forecasts are not available

for the same sample period as actual GDP data and only come in two vintages per year.3

Notice also that while both yt and ŷt are measured as log deviations from trend, the former
refers to quarterly GDP, while the latter refers to annual GDP. I assume that the forecasts
observed in the data are made by the agents in my model, with noise (which is necessary
to ensure that the historical GDP data, and the forecast data, are jointly consistent with
Bayes’ rule). Aggregating the model-generated forecasts to annual level we get:

ŷt = log
( 3∑

ti=0

(1 + g)ti∑3
tj=0(1 + g)tj

exp
(
E[yt+n+ti

|Yt]
))

+ ut (1)

In formula (1), n denotes the number of quarters ahead until the first quarter of the year the
forecast refers to, g represents the quarterly trend growth rate (the estimation of which is
described in Appendix B.1), and ut ∼ N (0, σ2

u) is an i.i.d. forecast error. Let pt ≡ [1−pt, pt]
be the agents’ belief vector in period t, let m ≡ (1− ρ)[µL, µH ], and let Π be the transition
matrix as defined in formula (formula 2 in the paper). Making sure that all eigenvalues of
ρΠ−1 are smaller than 1, the agents’ (detrended) forecast for i quarters ahead is given by

E[yt+i|yt] = ρiyt + p′tΠi
[
(I − Π−1ρ)−1

(
I − (Π−1ρ)i

)]
m

Denote zt ∈ {L,H} as a regime realization in period t. Taking as given a sequence of
smoothed full-sample beliefs Prob(zt = i|YT ) (inferred by the econometrician), I then pose

3I associate the spring vintage with Q1, and the fall vintage with Q3.
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an expected log-likelihood that takes into account the forecast errors

E
(
`Y,S,Ŷ |YT , θ

)
=

T∑
t=1

∑
i=L,H

Prob
(
zt = i|YT

)
×

−log
(√

2πσ2
)
− (yt −m(zt)− ρyt−1)2

2σ2



+
Tf∑
t=1

− log
(√

2πσ2
u

)
−

[
ŷt − log

(∑3
ti=0

(1+g)ti∑3
tj =0(1+g)tj

exp
(
E[yt+n+ti

|Yt]
))]2

2σ2
u

 (2)

As is standard, the algorithm then iterates on the following two steps until convergence:

1. (maximization) Taking as given the previous-iteration parameter vector θ0 ≡ {µL,0, ρ0, σ
2
0, σ

2
u,0}

and the full-sample smoothed probabilities of the two regimes, Prob(st = i|YT , θ0)
for i ∈ {L,H}, find the new parameter vector θ1 that maximizes the expected log-
likelihood function in (2). In particular, this involves solving numerically for ρ1 and
µL,1.

2. (expectation) Given the new parameter vector θ1, update the full-sample smoothed
probabilities of the regimes as in Kim (1994).

Steps 1-2 are repeated until |θ0 − θ1| < ε for some convergence criterion ε.

B.3 Estimation for other countries

In this section, I present the results of applying the estimation method described in Section
III.B in the paper to all four southern European countries. The purpose is to check how
applicable the model is to the remaining cases which jointly motivate the paper. For each
country, I maintain the assumption that the expected duration for the high regime and low
regime is 60 years and 10 years, respectively. Then, I estimate the remaining parameters
using the sample of GDP data for 1960:Q1-2019:Q4, and the sample of GDP forecasts in
years 1993-2014, using the algorithm described in Section B.2. Table 2 summarizes the ob-
tained parameter values. The persistence and standard deviation parameters are in line with
the common estimates for European economies. On the other hand, the estimated disaster
regime means range from around 25% below trend for Portugal and Italy to roughly 60%
below trend for Greece and Spain.

Figure 4 overlays the paths of forecasts from the model and the data for all four countries,4

in a detrended form, along with the paths of realized data 5 years later (the series ends
4The discrepancies between the model-generated forecasts and the data forecasts are due to forecasting

error.
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on 2014 because, as of writing, complete GDP data is only available until 2019). The fit
of model-generated forecasts is overall good, capturing the progression of pessimism in the
projections over time. Similarly to Figure 2 in the paper, all panels confirm that there was a
clear learning process for each country. In particular, the gaps between the forecasts and the
GDP data realized five years later tend to be large early on and shrink over time, possibly
turning negative after 2012.
Table 2: Calibrated parameters of the regime-switching endowment process for all countries

Regime Mean µ Persistence ρ St. dev. η St. dev. σu

Greece −0.779 0.924 0.021 0.056
Spain −0.966 0.993 0.010 0.035
Italy −0.286 0.955 0.008 0.045
Portugal −0.291 0.970 0.010 0.049

Note: parameters are estimated independently for each country following the procedure described in
Section III.B in the paper. In each case, the regime-switching probabilities are the same as in Table 3
in the paper. The GDP data for each country is detrended in the same fashion as it is described for
Portugal in Appendix B.1.

Figure 5 presents the inferred paths of the belief about being in the disaster regime for each
country. The filtered belief is the real-time Bayesian probability that the agents use in the
model; while the smoothed probabilities refer to full-sample inferences which are calculated
as in Kim (1994). The lower panels show the entire time period from 1960 to 2019, while the
upper panels focus on the most recent episode of interest, since 2000. The figures confirm
that fluctuations in the belief are generally rare and revert instantly for any time period
before the Great Recession. The analysis also indicates that the model is likely to be ap-
plicable to Greece, in addition to Portugal. For both of these countries the belief about
being in the high regime drops part ways on impact in 2009:Q1, and subsequently recovers
before collapsing all the way to zero. By contrast, for Italy and Spain the belief drops most
of the way in 2009:Q1 which possibly leads the agents in the model to underpredict future
GDP level in that time period (Figure 4). This does not necessarily mean that the theory
of gradual learning is not applicable to Italy or Spain, but rather that the model and the
proposed calibration technique is not able to capture the slow learning process. One way to
overcome this problem would be to augment the income process with a third regime. In this
scenario, the first two regimes would have a standard expansion/recession interpretation,
with frequent transitions between them, while the third regime would be a rare disaster.
The “regular recession” regime would then help matching the forecasts in 2009:Q1 without
an instant switch to the depression one.
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Note: Each point on the graph represents an annual detrended log-GDP level for five years ahead (for
example, 2008:Q1 corresponds to the GDP level in 2013). The solid blue line represents the actual
published forecasts (Q1 and Q3 refer to the spring and fall issues, respectively), while the dashed red
line denotes the ones generated by the calibrated model. The dashed-dot black line shows the actual
realized data that the corresponding forecasts refer to (only available until 2014:Q3, when the projection
for year 2019 was made).

Figure 4: IMF- and model-generated projections for all countries

It is also worth reiterating, as Section III.A in the paper explains, that Spain and Italy are
not necessarily the best countries to explain using the model in this paper. The reason is that
both had large stocks of domestic, rather than external, debt and the height of their crisis
coincided with the unprecedented actions of the European Central Banks in the summer of
2012. This makes explanations based on rollover crises, such as in Bocola and Dovis (2019)
or Aguiar et al. (2020), or domestic default as in Bocola, Bornstein and Dovis (2019) a
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(a) Greece (b) Italy

(c) Portugal (d) Spain

Figure 5: Inferred paths of beliefs for each country

more promising avenue for rationalizing the events in these countries. On the other hand,
countries such as Greece and Portugal are a better target for analysis using this model and
the learning process naturally turns out to be more relevant for them.
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C Supplementary analysis of bond spreads

In this section, I present additional results about bond spreads generated by the baseline
model.

C.1 Determinants of simulated spreads

I start by showing that the highest spreads in the model are driven by the collapse of the
belief. Figure 6 presents a heatmap of simulated spreads in the baseline model with respect
to income and belief. The graph confirms the main points of the analysis in Section III.D
in the paper. As long as the belief is high enough (around 0.7 and above), the spread
remains negligible. By contrast, the highest spreads in equilibrium are concentrated in the
states where the belief is close to zero and (log) income is around -0.17. This number is
noteworthy: it is considerably higher than ŷ = −0.23, the level of (log) income above which
default imposes a direct cost to income (marked on the graph with a vertical line). As we
move towards that threshold, the spreads remain elevated, but they no longer attain the
highest values. This implies that the largest spreads that can be realized in this model occur
when the belief is close to zero (such that agents have no doubts that the economy is in a
depression regime), while income remains relatively high. A default is very costly in such
a state, and the government sometimes chooses to tolerate unusually high spreads until it
either manages to reduce its debt enough, or until income reaches a level at which the default
cost is milder.

Figure 6: Heatmap of simulated spreads in the model
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Figure 7 reinforces this point by comparing the scatter plots of simulated spreads with respect
to (log) income in the baseline model to the standard AR1 model. In the latter, spreads
tend to increase monotonically, as income declines, up to the default penalty threshold ŷ.
In particular, the highest spreads on the equilibrium path tend to materialize for income
realizations that are just above the threshold. In the former, on the other hand, there is
no such apparent monotonicity. The highest spreads tend to occur away from the threshold
ŷ = −0.23, starting already around (log) income of -0.1. Another way to appreciate this
fact is to note that the unconditional correlation between spreads and (log) income in all of
the simulations is negative, −0.35, which is unsurprising and in line with what the standard
model would deliver. However, when we condition on the largest spreads, say greater than
0.5, that correlation becomes positive, 0.12, meaning that the largest spreads are expected
for higher income levels.

(a) Disasters and learning (b) Simple AR1

Figure 7: Scatter plot of simulated spreads in the two models

C.2 Analysis of highest spreads

The ability of the baseline model to deliver high spread values on equilibrium path is unusual
among the quantitative sovereign default models, and thus deserves more attention. Figure 8
plots the averaged simulated paths of key exogenous and endogenous variables around peak
spreads (normalized to t = 0) that are greater than 0.5. On average, such a peak amounts
to around 0.7 and coincides with a slump in the belief to 0.1. Consistent with the previous
analysis, this tends to occur at rather high levels of (log) income around −0.16, significantly
above the default penalty threshold. The government tends to deleverage sharply around
the peak, on average reducing its debt throughout the episode. In particular, at peak spread,
the government almost does not borrow any new debt above the current outstanding stock
of long-term bonds.
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Figure 8: Analysis of episodes oh highest spreads

Note: the figure depicts averaged simulated paths of variables centered around peak spreads (at t = 0)
that are greater than 0.5. Outstanding, previous, and new debt refer to (1− δ)b, b, and b′ in the model,
respectively.

C.3 Assessing the elasticities of bond spreads

Analyzing Figure 8, we observe that the sharp spikes in bond spreads occur simultaneously
with sharp reductions in both income and the belief. Separating the relative contributions
of the two is not straightforward, as the latter derives from the former rather than being a
shock of its own (which could be shut down). One way to disentangle the relative impact of
income shocks and belief fluctuations is to compare the elasticities of the simulated spread
with respect to these two states. To do so, I conduct the following exercise. At every
simulated time period, I evaluate the bond price q(b′, y, p) at a perturbed state (income or
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belief) and calculate the resulting elasticity of the bond spread, for i ∈ {y, p}:5

es,i = ∂s(b′, y, p)
∂i

× i

s(b′, y, p) (3)

Table 3 reports the elasticities, averaged out across the simulated time periods, conditional
on bond spreads being above several thresholds. In particular, column 2 reports elasticities
for the unconditional sample, showing that a 1% reduction in income causes an 18% increase
in the spread, while a 1% decline in the belief leads to an 7% increase. The difference
between these elasticities is growing when we condition on higher spreads. To interpret
these elasticities, we need to consider the typical relative variation in the two states. Of
particular interest are the spread hikes, thus in the next two rows I report average negative
growth rates exhibited by the two state variables. The size of income reductions is mostly
determined by the standard deviation of the shock, around 1%. On the other hand, the
belief on average decreases by anywhere between 6% (unconditionally) to almost 40% (for
spreads higher than 6%). Taking the product of the elasticities and the mean growth rates
(last two rows of Table 3), we find that the bond spread fluctuates much more in response
to the typical changes in the belief than to the average changes in income for most of the
simulated sample. Only in the case of the highest spreads, the impact of the two variables
is quantitatively similar.

Table 3: Bond spread elasticities

Spread greater than:
0.00 0.02 0.04 0.06

Elasticity w.r.t. y −17.79 −29.10 −35.75 −40.24
Elasticity w.r.t. p −7.14 −1.54 −0.89 −0.71
Mean negative growth in y −0.01 −0.01 −0.01 −0.01
Mean negative growth in p −0.06 −0.33 −0.37 −0.39
Mean rise in spread due to y 0.15 0.26 0.32 0.37
Mean rise in spread due to p 0.44 0.51 0.33 0.28

Note: The formula for elasticities is given in (3). Mean negative growth in state i ∈ {y, p} is
calculated as: E

(
it+1−it

it
| it+1−it

it
< 0
)

. Mean rise in spread due to state i is a product of the two.

5A natural question regarding this calculation is whether we should hold the optimal choice b′ constant
or let it change optimally according to the perturbed state. The results I present take the former approach,
but adjusting the policy function would not affect them significantly.
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C.4 Unpacking the impact of the belief on bond spreads

The bottom-right panel of Figure 8 shows that towards the typical peak of the spread, default
probability also spikes. With bonds having long durations, the impact of the belief on spreads
evaluated in the previous section masks two separate forces: i) the effect on expectations
about long-term movements of bond prices; ii) the effect on next-period default probability.
Formally, consider the bond price equation (formula 11 in the paper) reformulated as follows:

q (b′, y, p) = 1
1 + r∗

(∑
z

∑
z′
Prob(z) π(z′|z)

∫ ∞
ỹ(b′,y,p,z′)

fz′(y′, y)
[
δ + (1− δ)

(
κ+ q (b′′, y′, p′)

)]
dy′
)

In the formulation above, ỹ(b′, y, p, z′) is an income threshold that makes the government
indifferent between repaying and defaulting. By perturbing p (say, reducing it), we impact
the bond price q both by affecting the expected future price q (b′′, y′, p′) (it goes down), and
by changing the default threshold ỹ (it goes up).

To decompose the contribution of these two forces quantitatively, I modify the exercise from
Section C.3 in the following way. I calculate the elasticity of the bond spread with respect
to p while holding ỹ constant, i.e. using the same default threshold that was obtained for
the unperturbed belief. In this way, we isolate the impact of the belief on the spread that is
due to the change in long-term income expectations.

Table 4 shows the original and modified elasticities of the spread with respect to belief,
averaged out across the simulations and conditional on different spread levels. The main
finding is that the impact of a change in the belief on the default threshold ỹ is quantitatively

Table 4: Modified bond spread elasticities

Spread greater than:
0.00 0.02 0.04 0.06

Elasticity w.r.t. p −7.14 −1.54 −0.89 −0.71
Elasticity w.r.t. p (no change in ỹ) −7.13 −1.51 −0.83 −0.64
Mean negative growth in p −0.06 −0.33 −0.37 −0.39
Mean rise in spread due to p 0.44 0.51 0.33 0.28
Mean rise in spread due to p (no change in ỹ) 0.44 0.50 0.31 0.25

Note: The formula for elasticities is given in (3). Mean negative growth in p is calculated as:
E
(

pt+1−pt

pt
|pt+1−pt

pt
< 0
)

. Mean rise in spread due to p is a product of the two.

15



small for most of the simulated periods. This is not surprising, given that the default
probability in this model is close to zero for long streaks associated with “normal times”.
In such cases, the default threshold may lie below the feasible range of income shocks to
begin with, and hence its movements do not matter. It is only when spreads are high, the
immediate default probability spikes (as can be seen in Figure 8) that the impact of p on ỹ

matters more. But overall, it still tends to be dominated by the effect on future bond prices.

C.5 Association between belief and spread in the event study

Here, I turn my attention to the role of belief fluctuations in driving the bond spread during
the European Debt Crisis. Figure 9 is a transformation of Figure 7 in the paper that
overlays the predicted spread with the (negative) log of the belief. It is noteworthy that
the two variables follow a very similar pattern and have a correlation of 0.95 (compared to
the correlation of -0.69 of the spread with log income). Of course, this does not imply that
income is unimportant for the determination of the spread; on the contrary, without the
decline in income a debt crisis would not be possible in the first place. Instead, the point if
that the precise timing of the movements in bond spread during the European Debt Crisis
(the main object of interest in this paper) seems to be shaped by the relative changes in the
belief.
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Figure 9: Belief and spread in the event analysis
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C.6 Evolution of GDP forecast errors in model event studies

In this section, I analyze the evolution of GDP forecast errors from the event study of the
European Debt Crisis (Section III.E in the paper) using both variants of the model. The
goal is to create a model counterpart of the data depicted in Figure 2.6 Panel 10(a) reveals
a similar pattern: forecasts roughly align with the data until 2008, and then start a gradual
adjustment process (become flatter over time), resulting in sizable errors. By 2012, the
forecasts are much more pessimistic and again align with the data. This contrasts with the
pattern evident in panel 10(b), where no such downward revision in the forecasts ever takes
place. This is because, with a simple AR1 process, output always mean-reverts in the same
direction. In this way, panel 10(b) reproduces the pattern of forecasts around Argentina’s
default in 2001 (Figure 2) more closely than the one around the European Debt Crisis.

(a) Disasters and learning

(b) Simple AR1

Figure 10: Evolution of GDP forecasts in event studies with the two versions of the model

6A notable difference between Figure 2 in the paper and Figure 10 is that the former is more granular
due to the fact that the data forecasts arrive twice a year and refer to annual GDP levels.
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D Calculation of the debt write-off from bailouts

In the event studies presented in Section III.E in the paper, I assume that upon defaulting
the government re-enters the market with an exogenous debt write-off. This aims to mimic
the bailout that Portugal received from the European Commission and the IMF at the end
of 2011. In this Appendix, I show how such a write-off can be quantified.

I start with the facts. In May 2011, Portugal entered a joint emergency lending program by
the IMF and the European Commission (EFSM+EFSF). The total extended credit amounted
to 79 bn euro, out of which 76.8 was actually disbursed. At the time when the bailout was
announced, the market value of Portuguese government’s external debt securities was 68 bn
euro.

The debt write-off stems from the fact that the bailout loans carried a low, essentially risk-
free, interest rate at the time when the yields on Portugal’s bonds were high. Hence, ignoring
any differences in maturity structure of the two debt types, the total aid provided to the
Portuguese government can be modeled as

aid = `× [qf − q]

where ` is the total face value of the emergency loans, qf is the price of a risk-free bond, and
q is the average price of a Portuguese bond. From the facts presented above, we know that
` can be expressed as

`

q × b
= 76.8

68 = 1.13 =⇒ ` = 1.13(q × b)

where b represents the total outstanding debt securities of the government at the time of the
bailout, and q × b is their market value. The bond prices can be expressed as

qf = δ + (1− δ)κ
rf + δ

q = δ + (1− δ)κ
rf + E(s) + δ

where the average spread, E(s), is 1.75% in the sample until 2019. Finally, we can calculate
the debt write-off as

write-off = aid
b

= 1.13 q[qf − q]

Using the parameters assumed in the model, the write-off amounts to 20%.
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E Model with disasters and full information

In this section, I present the calibration and business cycle statistics for the model with rare
disasters and full information about their realizations, which is used for the counterfactual
exercise in Section III.F in the paper. Note that the parameters of the income process are
kept at the same level as in the main model. Table 5 summarizes the calibrated structural
parameter values. It can be noticed immediately that the moments-matching exercise results
in the values of β and ŷ that are similar to the model with partial information.

Table 5: Calibration of structural parameters in the model with full information

Symbol Meaning Full info Source

σ Risk aversion 2 Literature
r∗ Risk-free rate 0.01 Literature
θ Re-entry probability 0.049 Literature
δ Probability of maturing 0.053 Data
κ Coupon payment (in %) 1.250 Data
ŷ Default cost par. 0.806 Calibration
β Discount factor 0.987 Calibration
Calibration targets Full info Data

E (debt/GDP) 38.66 38.58
E (spread) 1.75 1.75

Note: targeted moments are given in percentage points. Simulations are repeated 10,000
times for a period of 1998-2019.

Table 6 presents the business cycle moments for this variant of the model. Note that the
main differences relative to a benchmark AR1 model still hold in this case. It is also clear
that learning about rare disasters has an important quantitative impact on real variables,
contributing to a lower variance of consumption and trade balance relative to income. It is
also worth noting that 99% of all defaults in this model occur in the disaster regime. The
average maximum spread in the conditional distribution is 21%.
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Table 6: Simulated behavior of the model with full information
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Note: moments for the bond spread, debt-to-GDP ratio and the long-run default probability (annual)
are given in percentage points. Ergodic (long-run) simulations extend to 10,000 quarters and are
repeated 10,000 times, following closely Chatterjee and Eyigungor (2012). Conditional (short-run)
simulations mimic the period of 1998-2019 (88 quarters) and are repeated 10,000 times starting from
the actual levels of debt and GDP observed in 1998:Q1. Each short-run sample is constructed such
that: i) the series start from the actual 1998:Q1 debt and income levels, and ii) the regime switches
from good to bad in 2008:Q3. Consumption data is detrended using the common GDP trend.

Aguiar, Mark and Gita Gopinath (2006): “Defaultable debt, interest rates and the current
account”, Journal of International Economics 69, 64-83.

Bai, Jushan and Pierre Perron (1998): “Estimating and Testing Linear Models with Multiple
Structural Changes,” Econometrica, 66, 47-78.

Bocola, Luigi and Alessandro Dovis (2019): “Self-Fulfilling Debt Crises: A Quantitative
Analysis”, American Economic Review, 109, 4343-77.

Bocola, Luigi, Gideon Bornstein and Alessandro Dovis (2019): “Quantitative Sovereign De-
fault Models and the European Debt Crisis”, Journal of International Economics, 118,
20-30.

Chatterjee, Satyajit and Burcu Eyigungor (2012): “Maturity, Indebtedness, and Default
Risk”, American Economic Review, 102, 2674-2699.

Hamilton, James D. (1990): “Analysis of time series subject to changes in regime”, Journal
of Econometrics 45, 39-70.

Kim, Chang-Jin (1994): “Dynamic Linear Models with Markov-switching”, Journal of
Econometrics 60, 1-22.

20


	Appendices
	Supporting evidence
	Dynamics of sovereign ratings over time
	Learning about debt crises in emerging market economies
	Further evidence on forecast errors

	Data Appendix
	Detrending method
	Estimation technique
	Estimation for other countries

	Supplementary analysis of bond spreads
	Determinants of simulated spreads
	Analysis of highest spreads
	Assessing the elasticities of bond spreads
	Unpacking the impact of the belief on bond spreads
	Association between belief and spread in the event study
	Evolution of GDP forecast errors in model event studies

	Calculation of the debt write-off from bailouts
	Model with disasters and full information

