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This appendix includes the following material: Appendix A offers additional details on
the theoretical framework used in the main text. Appendix B explains the econometric
approach and how we operationalize the theory robust sign restrictions. Appendix C doc-
uments and discusses a battery of robustness exercises. Appendix D provides additional
figures.

A ADDITIONAL DETAILS ON THE THEORETICAL MODEL

A.1 THE INITIAL STEADY STATE USED FOR SIMULATIONS

The steady state in the baseline, theoretical model follows recursively given an initializa-
tion of sl, sk, sd, Al, Υ and L:

r = β−1 − 1

PI = Υ−1

rk = PI (r + δ)
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I = δK

X = PII

C = Y −X
D = sdY

εp =
Mp

Mp − 1

Mw =Mp

εw =
Mw

Mw − 1

Ψ =
W

MwLϕC

Λ = C−σ exp

(
−Ψ

(1− σ)L1+ϕ

1 + ϕ

)
The steady state of the New Keynesian model (see Appendix A.4.2) is identical, except
that we also have to solve for nominal variables: given a choice of gross inflation Π (we
set Π = 1), we have ip = Π

β
− 1 and Πw = Π.

A.2 LONG-RUN INCOME SHARES

Given the definition of a long-run equilibrium in the main text, we set out to derive ex-
pressions of long-run income shares. We start with the profit income share. It follows
from the definition of profits and optimal price-setting behavior:

s̄d,t =
D̄t
Ȳt

= 1− 1

M̄p,t

Thus, the long-run profit income share depends only on firms’ markup, which is assumed
exogenous in the baseline model. In order to derive the long-run capital income share we
note that

r̄kt = Ῡ−1
t

[
β−1 − (1− δ)

]
The expression for firms’ optimal capital demand can then be used to arrive at the follow-
ing long-run capital share:

s̄k,t =
r̄kt K̄t−1

Ȳt
=

(
ᾱk,t
M̄p,t

)η (
β−1 − (1− δ)

ῩtĀk,t

)1−η

This expression shows that automation (firms’ markup) raises (lowers) the capital in-
come share. The effects of investment-specific or capital-biased technologies depend
qualitatively on whether or not η is higher than one. Labor-augmenting technology
and labor markups have no long-run effects on the capital share. Finally, the labor in-
come share is found by substituting the two expressions derived above into the identity
s̄l,t + s̄k,t + s̄d,t = 1:

s̄l,t =
W̄tL̄t
Ȳt

=
1

M̄p,t

[
1− ᾱηk,t

(
β−1 − (1− δ)

ῩtĀk,t
M̄p,t

)1−η
]

This is the equation used in the main text.
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A.3 DIRECT PRODUCTIVITY EFFECTS OF AUTOMATION

Next, we set out to characterize a situation in which an automation shock—a permanent
rise in αk,t—impacts total factor productivity (TFP). Such a direct productivity effect is
incorporated in some micro-founded models of task-based automation, see for example
Acemoglu and Restrepo (2018) and Martinez (2019). One concern in this respect is that
the direct productivity effect may lead to a violation of the sign restrictions we use to
identify the automation shock. In particular, if automation translates into higher TFP, then
the real wages may rise in the long run, thus, potentially invalidating our sign restrictions.
However, this is only a concern if the real wage increase takes place within the horizon at
which we impose our sign restrictions.

To fix ideas, we restrict attention to the long-run equilibrium described above but
consider a situation in which the production function is equal to

Ȳt = Āt

[
ᾱl,t
(
Āl,tL̄t

) η−1
η + ᾱk,t

(
Āk,tK̄t−1

) η−1
η

] η
η−1

.

This is the same production function as the one used in the main text, except that now we
have an additional stochastic supply shifter, Āt. This variable is interpreted as TFP, and it
may or may not be a function of automation. The general formulation used by Acemoglu
and Restrepo (2018) implies that Āt depends on ᾱk,t, with ∂Āt

∂ᾱk,t
≥ 0. We do not specify

the pass-through from ᾱk,t to Āt here, but loosely refer to it as the direct productivity
effect of automation. Firms’ optimal factor demand schedules, taking TFP changes into
account, follow below:

r̄kt M̄p,t = ᾱk,t
(
ĀtĀk,t

) η−1
η

(
Ȳt
K̄t−1

) 1
η

W̄tM̄p,t = ᾱl,t
(
ĀtĀl,t

) η−1
η

(
Ȳt
L̄t

) 1
η

Using the same procedure as in subsection A.2, we can show that

s̄l,t =
W̄tL̄t
Ȳt

=
1

M̄p,t

[
1− ᾱηk,t

(
β−1 − (1− δ)

ῩtĀtĀk,t
M̄p,t

)1−η
]
.

Thus, in general, a direct productivity effect mutes (amplifies) the long-run labor share
decline in response to automation if η < 1 (η > 1), given that ∂Āt

∂ᾱk,t
≥ 0.1 We are not

in a position to draw further conclusions at this level of generality, but our normalization
strategy, following Cantore and Levine (2012) and others, facilitates further insights at the
expense of an additional assumption. The normalization of Āk,t, in particular—tailored to
make the initial steady state independent of η—implies that β−1−(1−δ)

ῩtĀtĀk,t
M̄p,t = ᾱk,t. This

is evident from the long-run labor share expression above. With this normalization, the
long-run labor share collapses to

s̄l,t =
W̄tL̄t
Ȳt

=
1− ᾱk,t
M̄p,t

,

1One could in principle also imagine that automation affects the levels of labor or capital augmenting
technologies Āl,t and Āk,t. We do not consider such cases here, but note that pass-through to Āl,t has zero
effect on the long-run labor share, while the implications of pass-through to Āk,t (or Ῡt) is determined by
whether or not η is greater than unity.
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so that we can parameterize the initial steady state of the economy without any reference
to the value of η.

What about real wages? Combing expressions, we can show that the general long-run
solution for the real wage is

W̄t = s̄l,t
Ȳt
L̄t

=
ĀtĀl,t
M̄p,t

((
1

ᾱl,t

)η [
1− ᾱηk,t

(
β−1 − (1− δ)

ῩtĀtĀk,t
M̄p,t

)1−η
]) 1

1−η

Taking the derivative with respect to ᾱk,t and imposing the normalization, we arrive at

∂W̄t

∂ᾱk,t
=

Āl,t
M̄p,t

∂Āt
∂ᾱk,t

.

Thus, in the very long run, the real wage will rise as long as ∂Āt
∂ᾱk,t

> 0. In our baseline

model, in contrast, ∂Āt
∂ᾱk,t

= 0 and automation does not affect the real wage permanently.
However, even with productivity effects present, the real wage may still decline in the
short and medium run, as it takes time to adjust capital. Whether or not the real wage
declines initially, depends on how sensitive TFP is to changes in automation.2 In the main
text, we effectively restrict attention to a scenario in which automation only has modest
effects on productivity, consistent with the findings in US data by Acemoglu and Restrepo
(2020).

A.4 ALTERNATIVE THEORETICAL ASSUMPTIONS

This section documents how robust our sign restrictions are to (i) mis-measurement of
profit income, and (ii) the inclusion of various real and nominal frictions.

A.4.1 MEASUREMENT OF PROFITS

A potential issue with the analysis in Section 3.1 in the main text concerns our mea-
surement of profit income. The profit variable displayed in Figure 2 and Figure 3 is
model-consistent and interpreted as sales net of factor payments. However, empirical
measurements of profits might be distorted by the inclusion of some unobserved, intangi-
ble capital income (Karabarbounis and Neiman, 2019). Therefore, as a robustness check
we now take the extreme view that all capital income is counted as profits in data, and
simply refer to profit revenues Dk,t as non-labor income:

Dk,t = Dt + rktKt−1 = Yt −WtLt

Given this new measure, we re-evaluate the model’s implied sign restrictions. Figure A.1
compares impulse responses of pure profits,Dt, with those of non-labor incomeDk,t. The
medium- to long-run signs of either variable are largely identical for all shocks. Our only
disclaimer in this regard is that, conditional on investment-specific technology shocks,
about 6% of the models imply a decline in Dk,t at horizons relevant for our sign restric-
tions.
2A micro-founded discussion along these lines is found in Acemoglu and Restrepo (2018), see their Figure
6.
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Figure A.1: Monte Carlo results: pure profits vs. non-labor income in the baseline model
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Note: Median (solid line), 90%, and 68% credible bands based on 10000 draws. Pure profits (d) and
non-labor income (dk) are both expressed in percentage deviations from initial values.

A.4.2 REAL AND NOMINAL FRICTIONS

The theoretical model presented in the main text abstracts from a number of commonly
used real and nominal frictions. One potential concern, therefore, is that our sign restric-
tions might be violated at certain frequencies if these frictions are included. This section
incorporates a few “bells and whistles” into the baseline, theoretical model. We add (i)
habit formation in consumption, (ii) adjustment costs in investments, (iii) variable capital
utilization, (iv) nominal price stickiness, and (v) nominal wage stickiness. We also allow
for partial indexation to past inflation in price and wage setting. Finally, we specify (vi)
a Taylor-type rule for monetary policy. While the two models share identical long-run
properties, the extended version implies different dynamics in the short to medium run.
A brief summary of the additions to our baseline model follows:

External habit formation: The period utility is changed to

Ut =
(Ct − hCt−1)1−σ

1− σ
exp

(
−Ψ

(1− σ)L1+ϕ
t

1 + ϕ

)
.

Investment adjustment costs: We assume a convex investment adjustment cost, so that

Kt = (1− δ)Kt−1 +

[
1− χ

2

(
It
It−1

− 1

)2
]
It.

Variable capital utilization: Wholesale firms rent effective capital services K̄t = UtKt−1,
where Ut is the utilization rate of capital. Higher utilization comes at a cost ACu,t paid by
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Figure A.2: Monte Carlo results: New Keynesian model with additional bells and whistles

10 20 30 40

0

0.5

10 20 30 40

-0.2

0

0.2

10 20 30 40

0

0.5

1

10 20 30 40

0

0.2

0.4

0.6

10 20 30 40

-0.2

-0.1

0

10 20 30 40

-0.2

0

10 20 30 40

0

0.5

1

10 20 30 40

0

0.2

0.4

10 20 30 40

0

0.5

10 20 30 40

-0.4

-0.2

0

10 20 30 40

0

1

10 20 30 40

-0.2

0

0.2

10 20 30 40

0

0.5

1

10 20 30 40

-1

-0.5

0

10 20 30 40

-5

0

10 20 30 40

0

1

10 20 30 40

-0.05

0

0.05

10 20 30 40

-0.2

0

10 20 30 40

0

0.5

10 20 30 40

0

0.1

0.2

Note: Median (solid line), 90%, and 68% credible bands based on 10000 draws. Income shares are ex-
pressed in percentage point deviations from initial values. Remaining variables are expressed in percentage
deviations.

households who own the capital, where

ACu,t = ξ′u (Ut − 1) +
ξuξ
′
u

2
(Ut − 1)2 .

Nominal price stickiness: We incorporate price stickiness á la Rotemberg (1982). Nomi-
nal price adjustments are costly for wholesale firms. We also allow for partial indexation
to past inflation and specify the cost function as

ACp,t =
ξp
2

(
Πjp,t

Π
γp
p,t−1Π

1−γp
p

− 1

)2

Yt.

Nominal wage stickiness: Wage stickiness á la Rotemberg (1982) is the final extension.
Nominal wage adjustments come at a cost paid by households:

ACw,t =
ξw
2

(
Πnw,t

Πγw
p,t−1Π1−γw

p

− 1

)2

Lt.

Monetary policy: Nominal rigidities imply the need to specify a nominal anchor. To this
end we assume a Taylor type rule for the policy rate ip,t:

1 + ip,t = (1 + ip,t−1)ρi
[
(1 + ip)

(
Πp,t

Πp

)ρπ ( GDPt
GDPt−1

)ρy]1−ρi
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Table A.1: Additional parameter bounds in the model with real and nominal frictions

M LB UB

h Consumption habits 0.45 0 0.9
χ Investment adjustment cost elasticity 5 0 10
ξu Capital utilization cost elasticity 1.525 0.05 3
θw Calvo parameter, wages 0.4 0 0.8
θp Calvo parameter, prices 0.4 0 0.8
γw Indexation, wages 0.375 0 0.75
γp Indexation, prices 0.375 0 0.75
ρi Interest inertia, Taylor rule 0.45 0 0.9
ρπ Inflation weight, Taylor rule 2 1 3
ρy Output growth weight, Taylor rule 0.5 0 1

Note: Bounds for the uniform distributions. Notation: M→ median; LB→ lower
bound; UB→ upper bound. The parameters θp and θw represent the probabilities
of being stuck with old prices and wages in the Calvo model. They do not appear
in our model because we use Rotemberg pricing. However, we exploit the first or-
der equivalence between Calvo and Rotemberg pricing in order to back out ξp and
ξw, given θp and θw. The parameters σp, σw, συ , and σαk

are normalized so that
impulse responses are computed conditional on a long-run change inMp,t,Mw,t,
Υt, and αk,t of 1 percent.

The Fisher equation (1 + ip,t) = (1 + rt) Πt+1 links nominal to real outcomes. We also
note that wage adjustment costs enter sl,t, utilization adjustment costs enter sk,t, while
price adjustment costs enter sd,t. However, these shares still sum to one, and the long run
properties of the model are unaffected. Finally, we note that the New Keynesian model
captures the neoclassical setup as a special case (h = χ = ξp = ξw = 0 and ξu→∞).

Bounds for the additional parameters are summarized in Table A.1 (all parameters ap-
pearing in the baseline model are drawn from the same distributions as those used in the
main text). Figure A.2 documents the distributions of theoretical impulse responses when
we include the real and nominal frictions just described. Importantly, the impulse re-
sponses are qualitatively similar across models even after a few periods, and the signs are
identical from quarter 16 and onwards. We conclude, therefore, that the sign restrictions
used in the main text are robust to the inclusion of real and nominal frictions.
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B BAYESIAN ESTIMATION OF THE VAR MODEL

Consider the reduced form VAR model presented in Section 3.2:

Yt = C +

p∑
j=1

AjYt−j + ut

The process above can be stacked in a more compact form as follows:

Y = XB + U

where:
1) Y = (Yp+1, ..., YT )′ is a (T − p) x n matrix, with Yt = (Y1,t, ..., Yn,t)

′.
2) X = (1,Y−1, ...,Y−p) is a (T − p) x (np+ 1) matrix, where 1 is a (T − p) x 1 matrix
of ones and Y−k = (Yp+1−k, ..., YT−k)

′ is a (T − p) x n matrix.
3) U = (up+1, ..., uT )′ is a (T − p) x n matrix.
4) B = (C,A1, ..., Ap)

′ is a (np+ 1) x n matrix of coefficients.
Vectorizing the equation above, we obtain:

y = (In ⊗X)β + u

where y = vec(Y), β = vec(B), u = vec(U) and u ∼ N(0,Σ⊗ IT−p).
Given the assumption of normality of the reduced-form errors, ut ∼ N(0,Σ), we can
express the likelihood of the sample, conditional on the parameters of the model and the
set of regressors X, as follows:

L(y|X, β,Σ) ∝ |Σ⊗ IT−p|−
T−p
2 exp

{
1

2
(y − In ⊗Xβ)′(Σ⊗ IT−p)−1(y − In ⊗Xβ)

}

Denote β̂ = vec(B̂), where B̂ = (X′X)−1X′Y is the OLS estimate, and let S = (Y −
XB̂)′(Y − XB̂) be the sum of squared errors. Then we can rewrite the likelihood as
follows:

L(y|X, β,Σ) ∝|Σ⊗ IT−p|−
T−p
2 exp

{
1

2
(β − β̂)′(Σ−1 ⊗X′X)(β − β̂)

}

exp

{
− 1

2
tr(Σ−1S)

}
By choosing a non-informative (flat) prior for B and Σ that is proportional to |Σ|−n+1

2 ,
namely:

p(B|Σ) ∝ 1

p(Σ) ∝ |Σ|−
n+1
2

We can compute the posterior of the parameters given the data at hand using Bayes rule,
as follows:

P (B,Σ|y,X) ∝ L(y|X, β,Σ)p(B|Σ)p(Σ)

= |Σ|−
T−p+n+1

2 exp

{
1

2
(β − β̂)′(Σ−1 ⊗X′X)(β − β̂)

}
exp

{
− 1

2
tr(Σ−1S)

}
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This posterior distribution is the product of a normal distribution for β conditional on Σ
and an inverted Wishart distribution for Σ. Thus, we draw β conditional on Σ from:

β|Σ,y,X ∼ N(β̂,Σ⊗ (X′X)−1)

and Σ from:
Σ|y,X ∼ IW (S, v)

through Gibbs sampling, where v = T − p− np− 1.
The identification procedure described in ?? is performed using the algorithm of

Rubio-Ramı́rez, Waggoner, and Zha (2010), which consists of the following steps, for
each given draw from the posterior of the reduced-form parameters:

1. Draw a nxnmatrixW fromN(0n, In) and perform a QR decomposition ofW , with
the diagonal of R normalized to be positive and QQ′ = In.

2. Let S be the lower triangular Cholesky decomposition of Σ and define A = SQ′.
Compute the candidate impulse responses as IRFj = CjA, where Cj are the re-
duced form impulse responses from the Wold representation, for j = 0, ..., J . If the
set of impulse responses satisfies all the sign restrictions, store them. If not, discard
them and go back to the first step.

We repeat steps 1 and 2 until M impulse responses that satisfy the sign restrictions are
obtained. The resulting set A, together with the reduced-form estimates, characterizes the
set of structural VAR models that satisfy the sign restrictions.
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C ROBUSTNESS TESTS AND ADDITIONAL RESULTS

In this section we report an extensive battery of robustness tests: first, we perform a Monte
Carlo study in order to assess whether our empirical approach is able to identify the main
drivers of the labor income share. Second, we check for robustness with respect to the
horizon in which sign restrictions are imposed, as well as lag specifications in the SVAR,
samples and priors. Third, we exploit additional sign and zero restrictions implied by
the theoretical framework. Finally, we inspect the implications for labor market variables
such as routine- and non-routine employment.

C.1 A MONTE CARLO EXPERIMENT

First we assess whether our empirical approach is suitable for identifying the main drivers
of the labor income share in data. As shown by Paustian (2007), SVAR models can have
a hard time recovering the structural shocks of interest if these shocks have a sufficiently
small variance. One may be concerned that our automation shock for example, which
explains a rather small share of the macroeconomic variables in the system, is subject
to this drawback. To this end, we set up a two-step procedure in order to evaluate the
baseline SVAR model’s ability to recover the relevant shocks for the labor share. The
procedure is effectively a controlled experiment: first, we use a version of the theoretical
model with fixed parameters in order to generate an artificial dataset which includes time
series of real GDP, real wages, hours, and real profits (i.e. the same variables that are used
as observables in the main text). Second, we estimate the baseline SVAR model on those
artificial data, and investigate whether the SVAR model is able to recover the true impulse
responses and variance decompositions. Most parameter values are set equal to the me-
dian of their uniform distributions in the main text (the median values correspond well
with typical values used in the literature), with one exception. The labor-capital elasticity
η is set to 0.5, so that the true impulse responses illustrate factor complementarity. This
is a common value, but lower than that estimated by Karabarbounis and Neiman (2014).
In order to obtain a case of comparison, we scale the shock variances (the innovations are
drawn from normal distributions) so that each shock’s relative importance for the labor
share, 40 quarters ahead, resembles what we get with the SVAR estimated on real data.3

Note, however, that the variance decompositions of other macroeconomic variables in the
model generated data could be very different from the SVAR’s variance decompositions
shown in Figure 6.

First we assess the implications of identification uncertainty and misspecification em-
bedded in the SVAR model.4 To this end, we generate one large sample of 10,000 ob-
servations and estimate the SVAR on those data using the same econometric procedure
and baseline restrictions described in the main text. We keep 1,000 draws that satisfy the
sign restrictions. Figure D.1 Panel (a) compares the estimated impulse responses of the
labor share from the SVAR model with the true model counterparts (i.e. those from the
theoretical model, in red), as well as the estimated and true variance decompositions. The
SVAR model does remarkably well in matching the responses of the labor share to the

3This scaling implies the following calibration: σ2
p = 0.0056, σ2

w = 0.1406, σ2
υ = 0.1139, and σ2

αk
=

0.0506.
4The SVAR is misspecified as we include only a subset of all the state variables in the SVAR model.
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important shocks. Not only is it able to recover the correct signs of the responses after
horizon 16, but in most cases the median labor share responses closely resemble those of
the true model even quantitatively. There is one exception: The SVAR overstates the labor
share decline after a wage markup shock. As a result, it also overestimates the importance
of wage markups in the variance decomposition. We suspect that this discrepancy would
be limited, had we added the long-run restriction that the wage-markup shocks cannot
affect the labor share permanently.

Next, we add estimation or small-sample uncertainty to the picture, as in Canova and
Paustian (2011). To this end we generate 200 samples of the same length as our baseline
sample with real data for the US economy (144 observations). For each generated sample,
we estimate the SVAR and keep 1,000 draws that satisfy the sign restrictions. This leaves
us with 200,000 posterior draws. Results are reported in Figure D.1 Panel (b). Again,
the SVAR model is able to match pretty well the true model, both qualitatively (in terms
of signs) and quantitatively. If anything, it underestimates the importance of automation
shocks when the sample is small, while we still tend to overestimate the importance of the
wage markup. But in total, our identification procedure seems successful in recovering
the main drivers of the labor share.

C.2 ALTERNATIVE HORIZONS, LAG SPECIFICATIONS, SAMPLES AND

PRIORS

The baseline SVAR model presented in the main text is estimated using 4 lags, imposing
the sign restrictions of Table 2 at a horizon 16 quarters ahead, using the variables in dif-
ferences with a flat prior and on a quarterly sample that spans 1983Q1-2018Q3. Here we
check the robustness of our results to changes in all of these specifications. For the sake of
exposition, we present only the variance decompositions of the labor share corresponding
to the different sensitivity checks, but the complete set of results is available upon request.

The results are shown in Figure D.2. The first two rows present the variance decom-
positions of the labor share using, respectively, different horizons and lag specifications.
Changing the horizon at which the sign restrictions are imposed does not seem to affect
the results presented in the previous section. The same is true if we use a different lag
specification, although the role of price markups in explaining labor share fluctuations be-
comes slightly higher at long-run horizons when we include more feedback in the system.
In the first two panels of the third row, we first expand the sample to go back to 1948Q1
and then restrict it from 1990Q1 onwards. Interestingly, price markups seem to have sig-
nificantly less explanatory power in the first decades after the second World War. This
evidence supports the view that firms’ market power started to rise in the beginning of
the 1980s and then accelerated in the 1990s and 2000s. The third panel, instead, presents
the variance decomposition of the labor share using annual data in the estimation of the
baseline model. The three panels of the fourth row refer to three different exercises. In
the previous two, we use two different prior specifications: we estimate the VAR in lev-
els using the dummy observation prior proposed by Sims and Zha (1998) and the priors
for the long run (PLR) of Giannone, Lenza, and Primiceri (2019), which resemble our
baseline specification in differences when infinitely tight. Differently from our baseline
empirical framework, in these cases shocks do not necessarily have permanent effects. In
the latter, we consider the median-target impulse responses proposed by Fry and Pagan

11



(2011). Overall, the results are in line with our baseline, although price markups seem
slightly less relevant when we use the VAR in levels with the sum of coefficients prior or
PLR.

C.3 MEASUREMENT OF PROFITS VS. OTHER NON-LABOR INCOME

In our baseline SVAR for the nonfarm business sector, and for our extensions to the busi-
ness and manufacturing sectors, we used data on output, wages, hours and deflators for
the particular sector of interest, but profits for the whole economy (the after tax measure
with IVA and CCadj from the BEA). The same measure of profits at the sectoral level
is available for the nonfinancial corporate sector only. This is because this sector is the
only sector for which the BLS has income-side data, and thus the only sector for which
the BLS can break out non-labor payments into non-labor costs and profits. Non-labor
payments are defined as “the excess of current-dollar output in an economic sector over
corresponding labor compensation, and include non-labor costs, corporate profits and the
profit-type income of proprietors. Non-labor costs include consumption of fixed capital,
taxes on production and imports less subsidies, net interest and miscellaneous payments,
and business current transfer payments”. Thus, non-labor payments include both prof-
its and capital income. In our theoretical model, this measure would correspond to the
difference between output Yt and labor costs WtLt. In what follows, we perform the fol-
lowing exercise: instead of including a measure of profits for the whole economy (or for
the non-financial corporate sector), we use non-labor payments but impose the same sign
restrictions as in the baseline setup. The sign restrictions are likely to hold even in this
case, as shown in subsubsection A.4.1. Results are shown in Figure D.3 and Figure D.4.
While the variance decomposition changes for some of the other variables in the system,
the labor share results are robust to the use of non-labor payments instead of profits.

C.4 ADDITIONAL MEDIUM- AND LONG-RUN IDENTIFICATION

RESTRICTIONS

In our baseline specification of Table 2, we have shown a minimum set of identifying re-
strictions that are sufficient to set apart the four shocks under consideration. The theoreti-
cal model, however, provides additional overidentifying restrictions that could potentially
be exploited, both to check for robustness and as a mean to sharpen the inference. In
this section, therefore, we investigate how the results are affected by various medium-run
sign restrictions as well as long-run zero restrictions. All the restrictions we consider are
consistent with the theoretical framework presented in the main text.

Figure D.5 shows the results when we add additional medium-run sign restrictions to
those in the baseline. The first row adds the restriction that hours increase in response to
a negative price markup shock. In the second row, we impose the restriction that hours
increase in response to a positive investment-specific technology shock. The third row
presents results when we combine restrictions: hours increase in response to both price
markup and investment-specific technology shocks, profits increase in response to wage
markup shocks and automation. All additional restrictions are imposed 16 quarters ahead.
Our baseline results are largely confirmed. If anything, the evidence in favor of capital-
labor complementarity becomes stronger once we restrict hours to increase in response to
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investment technology.
Next, we investigate whether the baseline results are robust to selected long-run zero

restrictions as well. Some of these have a well-grounded theoretical justification and may
help us to further sharpen the identification of shocks. Here we add the following long-
run zero restrictions to the baseline identification scheme summarized in Table 2: (i) only
the price markup shock can have a permanent effect on the profit share Dt/Yt, and (ii)
the real wage Wt, and labor productivity Yt/Lt, cannot be permanently affected by wage
markup shocks. The first restriction is consistent with standard models of monopolistic
competition, but does not necessarily hold if we consider more strategic interaction in
goods markets.5 The second restriction is based on the neo-classical assumption that real
wages and labor productivity are fully determined in the long run by technical change
and other supply-side factors. Our theoretical framework in Section 2 illustrates this
assumption: factor prices and inputs—hence the labor income share—are pinned down
by the production function as well as equations 9 and 10.

Figure D.6 summarize the results when we add the zero restrictions just described
to the baseline identification scheme. The restrictions are implemented following Arias,
Rubio-Ramı́rez, and Waggoner (2018). Long run restrictions on wages and labor pro-
ductivity are shown in the first row, long-run restrictions on the profit share in the second
row, and finally the combination of both in the last row. Qualitatively, our main results are
robust to these additional restrictions. Quantitatively, however, the inclusion of long-run
restrictions facilitate a tighter identification of the dynamics. The labor share responses
to investment-specific technology shocks, for example, are more precisely estimated with
our zero restrictions on the profit share. Zero restrictions on real wages and labor pro-
ductivity, in contrast, imply a greater role for wage markup shocks at short horizons. But
automation and price markup shocks remain the main drivers of the labor income share
across all specifications.

C.5 A FURTHER INVESTIGATION OF LABOR MARKET VARIABLES

C.5.1 WAGE BARGAINING, LABOR PARTICIPATION AND EMPLOYMENT

It is well known that wage mark-up shocks and labor supply shocks are observationally
equivalent in the standard neoclassical model (and thus also in our baseline model). How-
ever, the two shocks propagate differently in models with search and matching frictions
and endogenous participation, as shown by Foroni, Furlanetto, and Lepetit (2018). In fact,
a decrease in the bargaining power of workers leads to a negative co-movement between
output and participation while an exogenous increase in labor supply leads to a positive
co-movement between output and participation for a broad range of parameterizations.
In addition, the former shock leads to a negative co-movement between output and un-
employment while the latter leads to a positive co-movement. Therefore, using data on
participation and/or unemployment makes it possible to disentangle the two shocks in
our SVAR, as done in Foroni et al. (2018). To this end we extend the baseline SVAR
model by identifying a labor supply shock using data on the participation rate according
to the restrictions presented in Table C.1.6 Results are summarized in Figure D.7 and
5Since we assume monopolistic competition among atomistic firms, the profit share becomes a function
solely of the price markup, which is exogenous.

6Results are very similar when using data on the unemployment rate and are available upon request.
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Table C.1: Sign Restrictions

Wage Automation Firms’ IST Labor
Bargaining αk ↑ Mp ↓ Υ ↑ Supply

GDP + + + + +
Wages - - + + -
Hours + - / / +
Profits / / - + /
Participation - / / / +

Note: The restrictions are imposed at quarter 16.

Figure D.8. Although both labor market shocks turn out to play a minor role for the labor
share dynamics, they are important drivers of hours and participation (and to some extent
also GDP and wages).

C.5.2 ROUTINE AND NON-ROUTINE EMPLOYMENT

Finally, we disentangle the separate effects on routine- and non-routine labor, respectively.
From a theoretical point of view, it seems reasonable that routine employment, which is
more exposed to automation of production tasks, may react stronger to the automation
shock. In order to check this hypothesis, we use data on routine and non-routine per capita
employment, obtained from Zhang (2019), which in turn updates the data constructed by
Jaimovich and Siu (2020). Results are shown in Figure D.9. Interestingly, while wage
markup shocks are important drivers of both routine and non-routine employment, au-
tomation has a much stronger negative effect on routine employment at short horizons.
Also price markups are more important for routine than non-routine employment. When
compared with the baseline variance decomposition of hours in the main text, non-routine
employment has a very similar behavior to hours. Routine employment, in contrast, fea-
tures a much larger role on impact for automation and, over the entire horizon, for price
markups.
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D ADDITIONAL FIGURES

Figure D.1: Monte Carlo results with artificial data generated from the theoretical model
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(b) 200 small samples, each of 144 observations
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