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Appendix A: Proofs of Propositions

Proof of Proposition 1: In the text, we showed there is a unique deterministic equilibrium. Here we allow
for stochastic equilibrium paths for fpt; Rtg1t=0 and con�rm that the equilibrium is in fact deterministic.

First, note that for any date t, in equilibrium it must be the case that 0 < pt � e. If the price pt � 0 there
would be in�nite demand for the asset given its dividend d > 0 and there is free disposal. But the supply

of assets is �nite, so this cannot be an equilibrium. At the same time, the most any cohort can spend to

buy the assets is e. Let zt denote the return to buying the asset, i.e., zt � d+pt+1
pt

. This can be random if

pt+1 is random. Let Gt (z) denote the (possibly degenerate) distribution of the return zt. Since 0 < pt � e

for all t, the maximum return zmaxt is �nite, since zmaxt =
d+pmaxt+1

pt
� d+e

pt
<1, where pmaxt+1 is the maximum

possible realization of the price at date t+ 1.

The equilibrium satis�es two conditions. First, as in equation (3) in the text, all resources will be used

either to buy assets or to initiate production:Z 1

Rt

n (y) dy + pt = e (A1)

The implies Rt = � (pt) where �0 (�) > 0. Second, the interest rate on loans Rt must satisfy

(1 +Rt) pt = d+ pmaxt+1 (A2)

If the interest rate on loans 1 + Rt exceeded
d+pmaxt+1

pt
, no agent would want to buy assets, which cannot be

an equilibrium. If interest rate on loans 1 + Rt exceeded
d+pmaxt+1

pt
, agents could earn positive pro�ts from

borrowing, so demand for credit would be in�nite. Substituting Rt = � (pt) into (A2) implies

pmaxt+1 = (1 + � (pt)) pt � d

Suppose pt > pd. Consider the sequence fep�g1�=t that comprises the upper support of prices at each date
given the history of previous prices, starting from pt. Formally, set ept = pt and de�ne

ep�+1 = (1 + � (ep� )) ep� � d
Since pt > pd, the sequence ept would shoot o¤ to in�nity and would exceed e in �nite time. This means
there is a state of the world in which the price exceeds e, which cannot be an equilibrium. So pt � pd.

Next, suppose pt < pd. Again, we can construct the sequence fep�g1�=t that comprises the upper support
of prices at each date given the history of previous prices, starting from pt. That is, we set ept = pt and then

ep�+1 = (1 + � (ep� )) ep� � d
Since pt < pd, the sequence ept would turn negative. Hence, there is a state of the world in which the price
is negative, which cannot be an equilibrium. The distribution of the price at date t is degenerate with full

support at pd. From (A1), Rt = � (pt) is uniquely determined as well. �
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Proof of Proposition 2: Below we �ll in some of the missing steps from the discussion in the text.

First, we need to show that at any date t in which dt = D, the return on the asset will be higher if

dt+1 = D. That is, we need to show that

pDt+1 +D > pd + d

Suppose pDt+1 +D � pd + d. Since D > d, this requires pDt+1 < pd. From equation (3) in the text, we know

the equilibrium interest rate on loans RDt+1 must equal �
�
pDt+1

�
. If pDt+1 < pd, then since �0 (�) > 0, we have

RDt+1 = �
�
pDt+1

�
< �

�
pd
�
= Rd

But then we would have �
1 +RDt+1

�
pDt+1 <

�
1 +Rd

�
pd = pd + d:

This means that if dt+1 = D, an agent who borrows to buy assets at date t + 1 can make positive pro�ts

if dt+2 = d. But then there would be in�nite demand for borrowing to buy assets, which cannot be an

equilibrium given supply of credit is �nite. Since this is inconsistent with equilibrium, it follows that

pDt+1 +D > pd + d.

The text establishes that the equilibrium interest rate on loans must equal the maximal return on the

asset, and so pDt = pD and RDt = �
�
pD
�
. The step that remains is to solve for

�
�Dt
	1
t=0
. For this, we use

the expected return to the asset, denoted rDt , and the expected return to lending, denoted R
D

t . The former

is given by

1 + rDt = (1� �)
�
1 + D

pD

�
+ �

�
d+pd

pD

�
� 1 + rD (A3)

As for the expected return to lending, a fraction �Dt of lending is used to buy assets and the rest �nances

production. Since all of the proceeds from asset purchases accrue to the lender, the expected return to these

loans is just the expected return to buying an asset net of default costs, 1 + rD � ��. The remaining loans
that �nance production will be repaid in full, so the return on those loans is 1 +RD. This implies

1 + �RDt =
�
1� �Dt

� �
1 +RD

�
+ �Dt

�
1 + rD � ��

�
=

�
1� �Dt

� �
1 + D

pD

�
+ �Dt

�
1 + rD � ��

�
(A4)

If R
D

t > rD, savers would prefer lending over buying assets. The only agents who would buy assets would

be those who borrow to do so, and so �Dt =
pD

e . If R
D

t = rD, savers would be indi¤erent between buying

assets and lending. This means �Dt can assume any value between 0 and pD

e . Finally, if R
D

t < rD, savers

would prefer buying assets over lending. No agent would borrow to buy assets, implying �Dt = 0. Hence,

the expected return to lending R
D

t and the share of lending used to buy assets �
D
t are jointly determined.

To solve for R
D

t and �Dt , consider �rst the case where �
D = pD

e . This can only be an equilibrium if

R
D

t � rD when �Dt =
pD

e , i.e., only if�
1� pD

e

�
D
pD
+ pD

e

�
rD � ��

�
� rD
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Rearranging this equation and substituting in for rD implies �Dt =
pD

e is an equilibrium only if

� �
�
e
pD
� 1
��

D+pD�d�pd
pD

�
� �� (A5)

Next, consider the case where �Dt 2
�
0; p

D

e

�
. This can only be an equilibrium if R

D

t = rD when we evaluate

R
D

t at the relevant �
D
t . Since R

D

t is decreasing in �
D
t , this requires that R

D

t < rD when �Dt =
pD

e , or

� > �� (A6)

In this case, the equilibrium value of �Dt is the one that equates R
D

t and r
D, which implies

�Dt =
D+pD�d�pd

D+pD�d�pd+�pD (A7)

Finally, there cannot be an equilibrium in which �Dt = 0. This would require R
D

t � rD when �Dt = 0. But

�Dt = 0 implies R
D

t =
D
pD

> rD. Hence, the value of �Dt is unique and is either equal to pD

e or some value

between 0 and pD

e , depending on the cost of default �. �

Proof of Proposition 4: Here we �ll the missing steps in deriving the equilibrium at date 0 when there

is a quota. In the text, we argued that 1 + RD0 � pD+D
pD0

. Suppose 1 + RD0 strictly exceeded pD+D
pD0

. Then

no agent would borrow to buy assets knowing they would default. With agents only borrowing to produce,

lending would be safe and would yield a higher return than the asset. Savers would prefer to lend, but

under the quota can lend at most e � pD and must use the remaining pD to buy assets. Since only they

buy the asset, pD0 = pD. From the market clearing condition (3) in the text, we have RD0 = �
�
pD
�
= RD.

But we know 1 + RD = 1 + D
pD
, which contradicts our supposition that 1 + RD0 > pD+D

pD0
. It follows that

1 + RD0 = pD+D
pD0

. Combining this with equation (3) in the text implies RD0 = RD and pD0 = pD. Hence,

imposing a lending cap of e�pD at date 0 will not change the price of the asset or the interest rate on loans
relative to the equilibrium without a quota. Since savers spend at least pD to buy assets under the quota

and the value of assets is pD, there can be no borrowers who buy the asset, so �D0 = 0.

A similar logic can be applied to a quota of e � pD at all dates as long as dt = D. The market clearing

condition (3) in the text remains unchanged at all dates. First, the argument that pDt+1 > pd for all t only

relies on the market clearing condition (16) in the text, and is true even if we introduce a quota. Next,

to ensure demand for borrowing is �nite, we need 1 + RDt � pDt+1+D

pDt
: Suppose 1 + RDt >

pDt+1+D

pDt
. In that

case, no agent would borrow to buy the asset for any � > 0, and savers would strictly prefer lending to

buying assets. Because of the quota, they would have to spend pD on the asset. Hence, pDt = pD, and

from the market clearing condition, RDt = �
�
pD
�
= RD. This would imply 1 + RD >

pDt+1+D

pD
. It follows

that pDt+1 < pD. But this is impossible, since the quota would require savers spend at least pD on the asset

at date t + 1 if dt+1 = D. The contradiction implies 1 + RDt =
pDt+1+D

pDt
. The equilibrium conditions are

therefore the same as in Proposition 2. The unique equilibrium is given by
�
pDt ; R

D
t

�
=
�
pD; RD

�
for all t.

The same argument as above implies �Dt = 0 for all t. �
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Appendix B: Monetary Policy

This appendix introduces within-period production, a monetary authority, and nominal price rigidity into

our setup as in our discussion in Section 4. We set up the model and derive the results that underlie

Propositions 5 and 6 in the text.

B.1 Agent Types and Endowments

Our approach largely follows Galí (2014) in how we incorporate production, nominal price rigidity, and

monetary policy into an overlapping generations economy with assets. As in our benchmark model, agents

live two periods and care only about consumption when old. Each cohort still consists of two types �savers

who are endowed with resources but cannot produce intertemporally and entrepreneurs endowed with no

resources who can convert goods at date t into goods at date t+ 1. We continue to model entrepreneurs as

in the benchmark model, but we now assume savers are endowed with the inputs to produce goods rather

than with the goods themselves. This allows for an endogenous quantity of goods that can potentially vary

with the stance of monetary policy.

More precisely, we assume two types of savers, each of mass 1. Half are workers, endowed with 1 unit of

labor each who must choose how to allocate it. The other half are producers, endowed with the knowledge

of how to convert labor into output but not with labor itself.14 Producers set the price of the goods they

produce and then hire the labor needed to satisfy their demand. Although producers and entrepreneurs

both produce output, they di¤er in when and how they produce it. Producers born at date t convert labor

into goods at date t. Entrepreneurs then convert the goods producers created at date t into goods at date

t+ 1. Producers operate within the period; entrepreneurs operate across periods.

B.2 Production, Pricing, and Labor Supply

Workers allocate their one unit of labor to home and market production. Home production yields the same

good as the market, but using a technology h (`) that is concave in the amount of labor ` allocated to home

production. We assume h0 (0) = 1 and h0 (1) = 0 for reasons that will become clear below.

Workers who sell their labor on the market earn a wage Wt per unit labor. Their labor services are

hired by producers, whom we index by i 2 [0; 1]. Each producer can produce a distinct intermediate good
according to a linear technology. In particular, if producer i hires nit units of labor, she will produce

xit = nit units of intermediate good i. The di¤erent intermediate goods can then be combined to form �nal

14This setup borrows from Adam (2003) rather than Galí (2014). The latter assumes agents are homogeneous, selling labor

when young and hiring labor when old. We want income to only accrue to the young as in our benchmark model.
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consumption goods according to a constant elasticity of substitution (CES) production function available

to all agents. That is, given xit of each i 2 [0; 1], the amount of �nal goods Xt that can be produced is

Xt =
�R 1

0
x1��it di

� 1
1��

(B1)

with � > 1. Let Pt denote the price of the �nal good and Pit denote the price of intermediate good i. At

these prices, the xit that maximize the pro�ts of a �nal goods producer solve

max
xit

Pt

�R 1
0
x1��it di

� 1
1�� �

R 1
0
Pitxitdi

The �rst-order condition with respect to xit yields

xit = Xt

�
Pit
Pt

�� 1
�

(B2)

If we set Xt = 1, we can compute the price of the cost of the optimal bundle of intermediate goods

xit =
�
Pit
Pt

��1=�
needed to produce one unit of the �nal good:R 1

0
Pitxitdi =

R 1
0
P
1� 1

�
it P

1
�
t di

Since any agent can produce �nal goods, the price Pt must equal the per unit cost of producing a good in

equilibrium. Equating the two yields the familiar CES price aggregator:

Pt =
�R 1

0
P

��1
�

it di
� �
��1

(B3)

Each intermediate goods producer chooses their price Pit to maximize expected pro�ts given demand (B2)

and wage Wt. To allow producers to move either before or after the monetary authority, we condition

producer i�s choice on their information 
it when choosing their price. Each producer will set Pit to solve

max
Pit

E

"
(Pit �Wt)Xt

�
Pit
Pt

��1=������
it
#

The optimal price is then

Pit =
E [WtXtj
t]

(1� �)E [Xtj
t]
(B4)

By symmetry, all producers will charge the same price, produce the same amount, and hire the same amount

of labor, i.e., nit = nt for all i 2 [0; 1]. The output of consumption goods is thus

Xt =
�R 1

0
n1��t di

� 1
1��

= nt

Workers receive (Wt=Pt)nt of these goods and producers get the remaining (1�Wt=Pt)nt. Workers also

produce goods at home. Their income is thus (Wt=Pt)nt + h (1� nt), which is maximized at

h0 (1� nt) =Wt=Pt (B5)

By contrast, the total resources available to young agents is et = nt + h (1� nt), which is maximized at

h0 (1� nt) = 1

Our assumption that h0 (0) = 1 implies total resources are maximized when nt = 1 and all goods are

produced in the market, and et = nt + h (1� nt) is increasing in nt for all nt 2 [0; 1].
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B.3 Assets, Credit, and Money

Since agents want to consume when old, they will wish to save their earnings et = nt + h (1� nt). As in
the benchmark model, they can buy assets and make loans. Without money, this speci�cation would be

equivalent to our benchmark model, the only di¤erence being that the income of savers et which before was

exogenous and �xed is now endogenous and potentially time-varying. Equilibrium in the asset and credit

markets involves the same conditions as in the benchmark model. First, regardless of the income they earn,

the young will spend all of their resources either funding entrepreneurs or buying assets, and so we still haveZ 1

Rt

n (y) dy + pt = et

where pt is the real price of the asset and Rt is the real interest rate on loans. The interest rate Rt must

still ensure agents cannot earn pro�ts by borrowing and buying assets. When dt = d, this requires�
1 +Rdt

�
pdt = d+ pdt+1

and when dt = D, this requires �
1 +RDt

�
pDt = D + pDt+1

We can then use Rt and pt to solve for the expected return on loans:

Rt =

(
Rdt if dt = d

max
n
rDt ;

�
1� pDt

et

�
RDt +

pDt
et

�
rDt � ��

�o
if dt = D

(B6)

where rDt is the expected real return to buying the asset. Below, we show that when prices are �exible or

money is absent altogether, the equilibrium real wage Wt=Pt will be constant over time. Employment nt
and total earnings of all savers et = nt + h (1� nt) will then also be constant. The reduced form of our

model in the absence of money thus coincides with our benchmark model.

To introduce money, we follow Galí (2014) in assuming money does not circulate in equilibrium. That is,

money is the numeraire, and Pt and Wt denote the price of goods and labor relative to money. However,

no agent actually holds money in equilibrium. The monetary authority announces a nominal interest rate

it at each date t. The monetary authority commits to pay this rate at date t + 1 to those who lend to it

(with money it can always issue), and will charge it to those who borrow from it with full collateral. This

is roughly in line with what central banks do in practice, paying interest on reserves and lending at the

discount window against collateral. To ensure money doesn�t circulate, the real return on lending to the

monetary authority must equal the expected return on savings. Let �t = Pt+1=Pt denote the gross in�ation

rate between dates t and t + 1. Since agents always lend to entrepreneurs, the expected return on savings

will equal Rt, the expected return on loans. This implies

1 + it =
�
1 +Rt

�
�t (B7)

When the monetary authority changes the nominal interest rate it, either in�ation �t or the expected return

1 +Rt or both will have to adjust to ensure agents will neither borrow nor lend to the monetary authority.

6



B.4 De�ning an Equilibrium

Given a path of nominal interest rates f1 + itg1t=0, an equilibrium consists of a path of prices fPt;Wt; pt; Rtg1t=0
and a path of employment fntg1t=0 such that agents behave optimally and markets clear. Collecting the
relevant conditions from above yields the following �ve equations for these �ve variables:

(i) Optimal pricing: Pt =
E [WtXtj
t]

(1� �)E [Xtj
t]
(ii) Optimal labor supply: h0 (1� nt) =Wt=Pt

(iii) Optimal savings:
R1
Rt
n (y) dy + pt = et

(iv) Credit market clearing: 1 +Rt =

8<:
D+pDt+1
pDt

if dt = D
d+pdt+1
pdt

if dt = d

(v) Money market clearing: �t =
1 + it

1 +Rt

where the expected return on loans Rt in the last condition is given by (B6).

B.5 Equilibrium with Flexible Prices

We begin with the case where producers set their prices Pit after observing the wage Wt. This corresponds

to the case where prices are fully �exible, or alternatively where there is no money and so no sense in which

nominal prices are set in advance. Producers can deduce what other producers will do and the labor workers

will supply, they can perfectly anticipate total output Xt. Hence, their information set 
t = fWt; Xtg. It
follows that E [WtXtj
t] =WtXt and E [Xtj
t] = Xt. The optimal pricing rule (i) then implies

Pt =
Wt

1� �

The real wage is thus constant and equal to 1� �. Substituting this into (ii) yields

h0 (1� nt) = 1� � (B8)

Since h (�) is concave, nt is equal to some constant n� for all t. It follows that et = n� + h (1� n�) is also
constant for all t. We can then use (iii) and (iv) to solve for pt and Rt as in the benchmark model, and then

use (B6) to compute Rt. Finally, given Rt we can use the implied �t from (v) to derive fPtg1t=1 for any
initial value for P0. The initial price level P0 is indeterminate, in line with the Sargent and Wallace (1975)

result on the price level indeterminacy of pure interest rate rules. The nominal wage Wt = (1� �)Pt.

B.6 Equilibria with Rigid Prices

We now turn to the case where producers set the price of their intermediate good Pit before the monetary

authority moves. That is, producers set prices, the monetary authority sets 1 + it, and then producers hire

workers at a nominal wage Wt. This formulation implies prices are only rigid for one period.
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If monetary policy is deterministic, producers can perfectly anticipate the nominal interest rate and the

equilibrium nominal wage Wt, and so 
t = fWt; Xtg and Wt=Pt = 1� � as before.

Next, suppose monetary policy is contingent on some random variable, i.e., it = i (�t) where f�tg
1
t=0 is a

sequence of random variables. For simplicity, consider the case where �t is only random at t = 0, i.e.,

�0 =

(
H w/prob �

L w/prob 1� �
�t is deterministic for t = 1; 2; :::

From date t = 1 on, we know from the optimal price-setting condition (i) that Wt=Pt = 1 � �. It then

follows that nt = n� and et = e� � n� + h (1� n�) for all t � 1, and we can determine pt, Rt, and Rt for
t � 1 just as in the case where prices are �exible. All we need is to solve for the equilibrium at date 0.

We use a superscript � 2 fH;Lg to denote the value of a variable as for a given realization of �0. Assume
wlog that iH0 > iL0 . The optimal price setting condition (i) is now

�nH0
WH

0

P0
+ (1� �)nL0

WL
0

P0

�nH0 + (1� �)nL0
= 1� � (B9)

That is, the output-weighted average real wage over the two values of � is equal to 1 � �. Optimal labor

supply (ii) then implies

h0
�
1� nH0

�
= min

n
WH

0

P0
; 1
o

h0
�
1� nL0

�
= min

n
WL

0

P0
; 1
o

These are three equations for four unknowns, meaning the set of all equilibria can be parameterized by a

single parameter. Wlog, we choose the real wage when � = H to be this parameter. The three equations

above yield values for WL
0 =P0, n

H
0 , and nL0 given WH

0 =P0. From these, we can deduce earnings e�0 =

n�0 + h
�
1� n�0

�
for each � 2 fH;Lg. We can then use (iii) and (iv) to derive p�0 and R

�
0 by solvingZ 1

R�
0

n (y) dy + p�0 = e�0 (B10)�
1 +R�0

�
p�0 = D + pD (B11)

and then compute the expected return on loans R
�

0 using (B6), and, via (v), the in�ation rate �
�
0 for each

� 2 fH;Lg. As before, the price level P0 is indeterminate. Optimal pricing only restricts the average
real wage across states but not the real wage for each realization of �0, introducing an indeterminacy. The

equilibrium real wage can exceed 1�� for one realization of �0 if it falls below 1�� for the other realization.

The case where monetary policy has no e¤ect on real variables at date 0 remains an equilibrium. In this

case, WH
0 =P0 = WL

0 =P0 = 1 � �. But price rigidity expands the set of equilibria to include ones in which

real variables vary with the nominal interest rate. Since the nominal interest rate only serves as a signal to
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coordinate real activity but does not directly a¤ect it, there are equilibria in which WH
0 > WL

0 as well as

equilibria in which WH
0 < WL

0 .
15 Since higher nominal interest rates seem to be contractionary in practice,

we focus on equilibria in which WH
0 =P0 < 1 � � < WL

0 =P0, i.e., real wages are lower when the monetary

authority unexpectedly raises the nominal interest rate. In this case, from condition (ii) we know that a

higher nominal interest rate will be associated with lower employment (nH0 < n� < nL0 ) and hence lower

earnings (eH0 < e� < eL0 ). From (B10), we can infer that R�0 = ��
�
p�0

�
where �H (x) > �L (x) for the same

value x. As is clear from Figure 1, this implies a higher nominal interest rate will be associated with a lower

real asset price (pH0 < pD < pL0 ). This also implies a higher real interest rate on loans (R
H
0 > RD > RL0 ).

The real expected return to buying assets will also be higher (rH0 > rD > rL0 ). However, whether the real

expected return to lending R
H

0 will be higher is ambiguous. (B6) implies R
�

0 is either equal to r
�
0 or to a

weighted average of R�0 and r
�
0. In the latter case, although both terms are higher when � = H the weight

on r�0, which is p
�
0=e

�
0, can be higher or lower for � = H. These results are summarized in Proposition 5 in

the paper.

B.7 Redistribution and Welfare

We now argue that it will be possible to use redistribution to ensure that a monetary contraction is Pareto

improving. To do this, ignore monetary policy temporarily and think about the e¤ects of a lump sum tax

�0 on savers at date 0 that is given to the old at that date. The wealth of savers is e � �0. Our analysis

above implies dRD
0

d�0
< 0, i.e., impoverishing savers leads to a higher interest rate. From the market clearing

condition, it follows that 0 < dpD0
d�0

< 1. Hence, taxing savers and giving it to the old will make the old

strictly better o¤. Since the derivatives dpD0
d�0

and dRD
0

d�0
are independent of �, so the e¤ect of the tax will

be the same regardless of �. But from equation (14) in the text, when � is su¢ ciently large, a higher �0
will increase expected total consumption of the young. Thus, a redistribution from savers to the old will

increase welfare for su¢ ciently large �. Intuitively, it is better to have the young give resources to the old

directly than to lend them to speculators who use them to buy assets from the old.

Since a lump sum tax �0 makes both the old and the young better o¤, it will also make both sides

better o¤ if we discourage the young from working and reduce total output, as long as the fall in output

is small. But this is exactly what contractionary monetary policy does. Hence, a redistribution combined

with contractionary monetary policy can be Pareto improving.

15One way to avoid such multiplicity is to assume dynamic monetary policy rules that are conditioned on past economic

variables. This allows a central bank to take actions that are unsustainable if a high interest rate today leads to certain

outcomes, eliminating equilibria with those outcomes. See Cochrane (2011) for a discussion of these issues.
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B.8 Promises of Future Intervention

Our last point concerns the e¤ects of a promise at date 0 to be contractionary at date 1 if the boom continues

into that date. In this case, �0 and �t for t � 2 are deterministic, while �1 = d1 2 fd;Dg. That is, we
assume producers set prices each period before dt is revealed. Solving for equilibrium at date 1 is identical

to how we solved for the equilibrium at date 0 when we assumed �0 was random. Consider equilibria in

which the real wage is lower if the boom continues, so

WD
1 =P1 < 1� � < W d

1 =P1:

This implies nD1 < n� < nd1 and so e
D
1 < e < ed1. In other words, if dividends fall and the boom ends,

monetary policy must be expansionary. By the same logic as above, such a policy would imply pD1 < pD

and pd1 > pd, as well as RD1 > RD and Rd1 < Rd. Turning back to date 0, conditions (iii) and (iv) implyZ 1

RD
0

n (y) dy + pD0 = e�
1 +RD0

�
pD0 = D + pD1

Comparative statics of this system with respect to pD1 reveals that pD0 < pD and RD0 < RD. That is,

while contractionary monetary policy at date 0 dampens pD0 but raises RD0 at date 0, a threat to enact

contractionary monetary policy at date 1 if dividends remain high will dampen both pD0 and R
D
0 at date 0.

These results are summarized in Proposition 6 in the paper.
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Appendix C: Macroprudential Regulation

In this appendix, we de�ne an equilibrium for an economy with multiple markets as in Section 5. We then

show that for an equilibrium in which all markets are active, various aspects of the equilibrium are uniquely

determined. We then discuss some comparative static results with respect to the set of active markets.

C.1 De�ning an Equilibrium

We begin with some notation. Let pt denote the price of the asset at date t. Given asset prices, we can

de�ne the return to buying the asset at date t as

zt � dt+1+pt+1
pt

The return zt can be random both because dt+1 might be uncertain (if dt = D) and because pt+1 might in

principle be stochastic. Let Gt (z) denote the (possibly degenerate) cumulative distribution of the return

zt, i.e., G (z) � Pr (zt � z). Let 1 + rmaxt denote the maximum possible return on the asset. As discussed

in the text, 1 + rmaxt is �nite, since rmaxt � D+2'e
(1�')e . We will use rt to denote the expected return to buying

the asset at date t, i.e.,

1 + rt �
Z 1+rmaxt

0

ztdGt (z)

We now de�ne variables for the di¤erent markets � 2 [0; 1) agents can borrow in. Let Rt (�) denote the
interest rate on loans in market �, so an agent who agrees to pay a share � of the project she undertakes

will promise to pay back 1 + Rt (�) for each unit she borrows. Since agents may default, let Rt (�) denote

what lenders expect to earn from lending in market � given the possibility of default. Finally, we represent

borrowing in markets with density functions fat (�) and f
p
t (�) for all � 2 [0; 1) such that the total amount

of resources borrowed to buy assets and to produce are given by
R
A
fat (�) d� and

R
A
fpt (�) d�, respectively.

Let ft (�) � fat (�) + f
p
t (�) denote the density of borrowing for any purpose in market �.

Representing the quantities agents borrow in each market as a density function ignores the possibility

that there may be equilibria in which agents borrow a positive mass of resources in certain markets. More

generally, we can allow for a set � � [0; 1) with countably many elements such that each market � 2 � is

associated with a positive mass of borrowing mx
t (�) > 0. The amount borrowed in any market � 2 [0; 1)n�

can still be represented with a density function. Heuristically, we can appeal to the Dirac-delta construction

and represent the amount borrowed in any market as if it were a density. That is, for any � 2 �, we set
the density fxt (�) = mx

t (�) �� (�), where �� (q) is the Dirac-delta function de�ned so that �� (q) = 0 for

q 6= 0 and
R 1
0
�� (q) dq = 1. This convention treats markets � 2 � as essentially having an in�nite density.

We will refer to a market � as inactive if ft (�) = 0 and active if ft (�) > 0 or if � 2 �.

Given these preliminaries, we de�ne an equilibrium as a path
�
pt; f

p
t (�) ; f

a
t (�) ; Rt (�) ; Rt (�)

	1
t=0

that

satis�es a series of conditions, (C1)-(C6), that ensure all markets clear when agents optimize.
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The �rst few conditions we describe stipulate that all agents act optimally. We begin with lenders.

Optimality requires that agents will only invest their wealth where the expected return is highest. Let Rt
denote the maximal expected return to lending in any market �, i.e.,

Rt � sup
�2[0;1)

Rt (�)

Optimal lending requires that agents lend in market �0 only if it they expect to earn Rt and if this rate

exceeds the expected return to buying the asset, i.e.,

ft
�
�0
�
> 0 only if Rt

�
�0
�
= Rt and Rt � rt (C1)

Entrepreneurs must also act optimally. We �rst argue this means they should use their endowment to

produce. Recall entrepreneurs have productivity y� where y� > rmaxt � rt from condition (15) in the text,

so producing is better than buying assets. But y� must also exceed the expected return to lending Rt. For

suppose Rt were higher than y�. Since y� > rmaxt , then Rt must also exceed rmaxt . In that case, no agent

would use their endowment to buy assets, nor would any agent borrow to buy assets given the interest rate

on loans in any active market must be at least Rt. Yet assets must trade in equilibrium: Owners sell their

assets whenever the asset price is positive, while demand for the asset would be in�nite if its price were

nonnegative. Since production o¤ers the highest return, entrepreneurs should use their endowment w to

produce.

Since entrepreneurs can leverage their endowment to produce at a larger capacity, we also need to char-

acterize their borrowing. If they borrow in market � where � < w, they can borrow enough to reach full

capacity. Optimality requires that there will be borrowing to produce in market �0 only if some entrepreneur

�nds it optimal to borrow in that market from all � 2 [0; 1], including � = 1 for no borrowing. This implies

fpt
�
�0
�
> 0 only if �0 2 arg max

�2[0;1]

(
[1 + y � (1� w) (1 +Rt (�))] if � � w

w

�
[1 + y � (1� �) (1 +Rt (�))] if � > w

)
for some w (C2)

Finally, agents who borrow to buy assets must act optimally. They will agree to borrow in market

� 2 [0; 1) to buy assets only if doing so yields a higher expected return than lending out the same resources.
De�ne

xt (�) � (1 +Rt (�)) (1� �)

The expected pro�ts from borrowing in market � to buy one consumption unit�s worth of assets isZ 1

xt(�)

(zt � xt (�)) dG (zt) (C3)

Agents will borrow in market � to buy assets only if (C3) equals
�
1 +Rt

�
�, the return they could have

earned on any wealth that they use to buy assets. If (C3) were lower than
�
1 +Rt

�
�, no agent would

borrow to buy assets. If (C3) were higher than
�
1 +Rt

�
�, then no one would ever lend given they can

borrow in market �0, and so ft
�
�0
�
= 0. But this contradicts the fact that fat (�) > 0. Optimality implies

fat
�
�0
�
> 0 only if

Z 1

xt(�0)

�
zt � xt

�
�0
��
dG (zt) =

�
1 +Rt

�
�0 (C4)
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Next, we require that savers use their entire endowment e to ensure consumption when old rather than

go to waste. Since entrepreneurs prefer to use their endowment w for production, all the resources used to

buy the asset must come from savers. This implies that e must be either lent to entrepreneurs to produce

or be spent on assets: Z 1

0

fpt (�) d�+ pt = e (C5)

Finally, we turn to equilibrium beliefs. In any active market �0, lenders must expect the return on lending

Rt
�
�0
�
to conform with the actual fraction of borrowers who borrow in market �0 with the intent to produce

and to buy assets, respectively. That is,

Rt
�
�0
�
=
fpt
�
�0
�

ft
�
�0
� Rt ��0�+ fat

�
�0
�

ft
�
�0
� Etmin�Rt ��0� ; dt+1 + pt+1

pt
� 1
�
if ft

�
�0
�
> 0 (C6)

In a market � 2 � with a positive mass of borrowing, the expression
fxt (�

0)
ft(�0)

will be replaced by mx
t (�)

mt(�)
.

Condition (C6) does not impose any restrictions on expectations in inactive markets where ft
�
�0
�
= 0.

C.2 Solving for Equilibrium

We now proceed to solve for an equilibrium. As in the text, we restrict attention to equilibria in which all

markets � 2 [0; 1) are active. Such equilibria are natural given we focus on the e¤ects of interventions to
shut down markets. Our �rst result characterizes the schedule of interest rates in such an equilibrium.

Proposition C1: In an equilibrium where all markets are active, there exists a value �t 2 [0; 1] such
that the equilibrium interest rate schedule will be given by

1 +Rt (�) =

( ext(�)
1�� if � 2 [0;�t)
1 +Rt if � 2 [�t; 1)

(C7)

where ext (�) is the value of x that solvesZ 1+rmaxt

z=x

(z � x) dGt (z) =
�
1 +Rt

�
� (C8)

The schedule of interest rates Rt (�) is a decreasing and continuous function of � for � 2 [0;�t].

Proof of Proposition C1: Our proof proceeds as two lemmas.

Lemma C1: In an equilibrium where all markets are active, 1 + Rt (�) = max
n ext(�)
1�� ; 1 +Rt

o
, whereext (�) equals the x that solves (C8) and Rt is the expected return to lending in any market �.

Proof of Lemma C1: Equilibrium condition (C4) holds that agents are either indi¤erent between

lending their wealth and using it as a down payment in some market � to buy assets, or else they strictly

13



prefer to lend their wealth. That is, for all � 2 [0; 1), we haveZ 1+rmaxt

z=xt(�)

(z � xt (�)) dGt (z) �
�
1 +Rt

�
� (C9)

In the latter case, since no agent borrows to buy the asset, we know that Rt (�) = Rt. This is one candidate

for the interest rate in market �. The other candidate is any value of Rt (�) which ensures (C9) holds with

equality. We now argue that is exactly one such candidate.

Consider the expression
R 1+rmaxt

z=x
(z � x) dGt (z). It is strictly decreasing in x, it tends to +1 as x! �1

and to 0 as x! 1+rmaxt . Hence, for any � 2 [0; 1) and any Rt � 0, there exists a unique x 2 (�1; 1+rmaxt ]

for which Z 1+rmaxt

z=x

(z � x) dGt (z) =
�
1 +Rt

�
� (C10)

Denote ext (�) as the unique solution to equation (C10). If the LHS of (C10) represents the payo¤ to

borrowing to buy an asset, the expression ext (�) would correspond to the debt obligation of an agent who
borrows in market �, i.e. ext (�) would equal (1 +Rt (�)) (1� �). Hence, the unique interest rate that
ensures (C9) holds with equality is given by

1 +Rt (�) =
ext (�)
1� �

Thus, there are two candidate expressions for the equilibrium interest rate in any market �, namely ext(�)
1��

and Rt. To show that 1 + Rt (�) = max
n
1 +Rt;

ext(�)
1��

o
, consider �rst a value of � for which ext(�)

1�� >

1 + Rt. We want to argue that in this case,
ext(�)
1�� is the only possible equilibrium interest rate. SinceR 1+rmaxt

z=x
(z � x) dGt (z) is decreasing in x, it follows thatZ 1+rmaxt

z=(1+Rt)(1��)

�
z � (1 +Rt) (1� �)

�
dGt (z) >

Z 1+rmaxt

z=ext(�) (z � ext (�)) dGt (z) = �1 +Rt��
Since the equilibrium interest rate Rt (�) must satisfy (C9), we cannot Rt (�) = Rt. The only possible

equilibrium for these values of � is 1 + Rt (�) =
ext(�)
1�� . In other words, for any � such that

ext(�)
1�� > 1 + Rt,

the equilibrium interest rate must leave agents just indi¤erent leveraging their wealth and borrowing to

speculate in market � and lending out the same wealth and earning an expected return of Rt.

Next, consider a value of � for which ext(�)
1�� < 1+Rt. In this case,

ext(�)
1�� cannot be an equilibrium interest

rate for market �, since it would mean the interest rate on loans in market is lower than the return lenders

can earn elsewhere. That cannot be true in equilibrium. Hence, if ext(�)1�� < 1 + Rt, the only one of the two

candidates that can be an equilibrium is Rt (�) = Rt. Given that
ext(�)
1�� < 1 +Rt, we can conclude that the

expected payo¤ from borrowing to buy the asset and defaulting if the return is low is worse than lending

at the safe rate Rt, so no agent will borrow to buy assets in market �. This establishes the lemma. �

Our second lemma establishes that ext(�)
1�� is a weakly decreasing and continuous function of �. Combined

with Lemma C1, this implies there exists a cuto¤ �t such that Rt (�) = Rt for � � �t.
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Lemma C2: In any equilibrium where all markets are active, ext(�)1�� is nonincreasing and continuous in �.

Proof of Lemma C2: The function ext (�) corresponds to the value of x which solves (C8). Note that even
though the distribution Gt (z) can contain mass points, the integral

R 1+rmaxt

z=x
(z � x) dGt (z) is continuous

in x and so ext (�) is a continuous function of �. However, ext (�) may exhibit kinks. To show that ext (�) is
decreasing, it will su¢ ce to show that its directional derivatives are nonpositive for all � 2 [0; 1). Totally
di¤erentiating (C8) with respect to � implies

dext (�)
d�

= � 1 +RtR 1+rmaxtext(�) dGt (z)

For any � where ext (�) is a mass point of Gt (z), lim�0!�+
R 1+rmaxtext(�0) dGt (z) 6= lim�0!��

R 1+rmaxtext(�0) dGt (z).

Nevertheless, both lim�0!�+
dext(�0)
d�0 and lim�0!��

dext(�0)
d�0 are negative, so ext (�) is strictly decreasing in �.

But we want to show that ext(�)
1�� is decreasing in � and not just ext (�).

De�ne eRt (�) � ext(�)
1�� � 1. By construction, eRt (�) is continuous in � with possible kink-points. Di¤eren-

tiating the equation ext (�) = (1� �) (1 + eRt (�)) implies
dext (�)
d�

= �(1 + eRt (�)) + (1� �) d eRt (�)
d�

Rearranging and using the expression for dext(�)
d� above yields

d eRt (�)
d�

=
1

1� �

�
1 + eRt (�) + dext (�)

d�

�

=
1

1� �

241 + eRt (�)� 1 +RtR 1+rmaxtext(�) dGt (z)

35
=

1

(1� �)
R 1+rmaxtext(�) dGt (z)

"
(1 + eRt (�))Z 1+rmaxt

ext(�) dGt (z)�
�
1 +Rt

�#
(C11)

We want to argue that the expression in brackets is negative. There are two possible cases. First, supposeeRt (�) < Rt. Then

(1 + eRt (�))Z 1+rmaxt

ext(�) dGt (z) <
�
1 +Rt

� Z 1+rmaxt

ext(�) dGt (z)

� 1 +Rt

In that case, we have d eRt(�)
d� < 0 from (C11) regardless of the direction we take the derivative.

Next, suppose eRt (�) � Rt. Recall that ext (�) is the value of x that solves (C10). Substituting inext (�) = (1 + eRt (�))(1� �), we can rewrite (C10) as
Z 1+rmaxt

ext(�)
h
z �

�
1 + eRt (�)�i dGt (z) = �

"�
1 +Rt

�
�
Z 1+rmaxt

ext(�)
�
1 + eRt (�)� dGt (z)#
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The RHS of the equation above has the opposite sign as d eRt(�)
d� . Hence, we can establish that d

eRt(�)
d� � 0 if

we can show that Z 1+rmaxt

ext(�)
h
zt �

�
1 + eRt (�)�i dGt (z) � 0

Here, we use the fact that ex (�) = (1+ eR (�))(1��) to rewrite the LHS of (C10) evaluated at x = ext (�) asZ 1+rmaxt

ext(�) (z � ext (�)) dG (z) = Z 1+rmaxt

ext(�) (1� �) [zt � (1 + eRt (�))]dG (z) + Z 1+rmaxt

ext(�) �ztdG (z)

Note that when eR (�) > Rt, we must have ext (�) > 0. When the equilibrium interest rate in market �

exceeds Rt, some agents who borrow in market � must default, since the only way the expected return to

lending in market � can equal Rt in this case is if some agents default. Hence, there must be some values

of z for which an agent who borrows in market � to buy assets defaults. But given the equilibrium price of

the asset cannot be negative and the dividend d > 0, the lower support of z is bounded below by 0.

Armed with this observation, we can rewrite (C10) as

�
1 +Rt

�
� =

Z 1+rmaxt

ext(�) (1� �)
h
zt � (1 + eRt (�))i dG (z) + Z 1+rmaxt

ext(�) �ztdG (z)

�
Z 1+rmaxt

ext(�) (1� �)
h
zt � (1 + eRt(�))i dG (z) + Z 1+rmaxt

0

�ztdG (z)

=

Z 1+rmaxt

ext(�) (1� �) [zt � (1 +Rt)] dG (z) + (1 + rt)� (C12)

The inequality in the second row uses the fact that ext (�) � 0 whenever eRt (�) > Rt. But in an equilibrium

where all markets are active, we must have R
D

t � rDt , i.e. since any saver can buy an asset, the return on

savings Rt is at least as large as the return to buying an asset rt. This implies

0 �
�
Rt � rt

�
� � (1� �)

Z 1+rmaxt

ext(�) (zt � (1 +Rt)) dG (z)

We have therefore con�rmed that
R 1+rmaxtext(�) (zt � (1 +Rt)) dG (z) � 0. It follows that all directional deriva-

tives d eRt(�)
d� are nonnegative as claimed. �

From Lemmas C1 and C2, de�ne �t as either 1 or the minimum value in [0; 1] for which Rt (�) = Rt. It

follows that Rt (�) > Rt for � < �t and Rt (�) = Rt for all � � �t. This establishes the proposition. �

We can use the schedule of interest rates in Proposition C1 to determine how much entrepreneurs should

produce and in which markets to borrow if they do.

Proposition C2: In an equilibrium where all markets are active, entrepreneurs with wealth w will borrow
1� w units to produce, in a market with an interest rate equal to Rt (w).
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Proof of Proposition C2: Consider an entrepreneur with wealth w. If she borrows in a market � where
� � w, she can produce at full capacity and would only need to put down �

�
1�w
1��

�
resources to borrow

1� w to reach full capacity. This would earn her an expected pro�t of

1 + y� � (1 +Rt (�)) (1� w)

This value is maximized by choosing � to minimize Rt (�). From Proposition C1, we know Rt (�) is weakly

decreasing in � and is therefore maximized at � = w.

Next, suppose she borrows in a market � where � > w. In that case, she could not produce at full

capacity. Since y� > rmaxt = Rt (0) � Rt (�) for all � 2 [0; 1), it will be optimal to borrow enough to

produce at the maximal capacity possible. For � > w, this maximum is w
� . Her pro�ts would thus equal

w

�
(1 + y� � xt (�)) (C13)

where recall xt (�) = (1� �) (1 +Rt (�)) is the amount a borrower is required to repay per each unit of
resource she borrows. Since Rt (�) = Rt for all � 2 (�t; 1), there would be no bene�t to going to market
� > �t: She would have to produce less at the same interest rate as in market �t. The only case that

remains is the interval of markets � 2 [w;�t]. In that case, we can di¤erentiate pro�ts in (C13) to get

d

d�

�w
�
(1 + y� � xt (�))

�
= � w

�2

�
(1 + y� � xt (�)) + �

dxt (�)

d�

�
= � w

�2

"
(1 + y� � x (�))�

�
�
1 +Rt

�R 1+rmaxt

x
dGt (z)

#

= � w

�2
R 1+rmaxt

x
dGt (z)

"Z 1+rmaxt

x

(1 + y� � xt (�)) dGt (z)� �
�
1 +Rt

�#

Since y� > D+2'e
(1�')e > rmaxt , we have

d

d�

�w
�
(1 + y� � xt (�))

�
< � w

�2
R 1+rmaxt

x
dGt (z)

"Z 1+rmaxt

x

(z � xt (�)) dGt (z)� �
�
1 +Rt

�#

But for � � �t, the expression in brackets is equal to 0. Hence, borrowing in a market with � > w will

be strictly dominated by borrowing in the market with � = w. At the optimum, each entrepreneur borrow

1� w at a rate of Rt (w). �

Proposition C3: In an equilibrium where all markets are active, the equilibrium price of the asset will

be given by pt = (1� ') e

Proof of Proposition C3: Condition (C5) implies that all the resources of the young in cohort t will be
used to either produce or to buy assets. From Proposition C2, we know that all entrepreneurs will produce

at capacity, so the total amount used to produce is given byZ 1

0

(2'e) dw = 2'e
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This implies

pt + 2'e = (1 + ') e

and so pt = (1� ') e as claimed. �

Propositions C1-C3 did not involve any restrictions on the distribution of the return zt =
pt+1+dt+1

pt
. But

given Proposition 3 and the process for dividends, we can determine the distribution of this return to obtain

a sharper characterization. When dt = d, the return on the asset 1 + rt will have a degenerate distribution

with full mass at d
(1�')e . Substituting this into (C8) reveals that ext (�) = (1� �)

�
1 + d

(1�')e

�
for all �,

that d eR(�)
d� = 0 for all �, and the cuto¤ �t = 0. Hence, when all markets are active, Rt (�) = Rt =

d
(1�')e

for all � 2 [0; 1) as described in the text. One equilibrium in which all markets are active if it entrepreneurs

with wealth w borrow in market � = w. But other equilibria in which all markets are active also exist.

Next, when dividends dt follow the regime-switching process between d and D and at date t we have

dt = D, the return zt would have a two-point distribution:

zt =

(
1 + D

(1�')e w/prob 1� �
1 + d

(1�')e w/prob �

In this case, equation (C10) which de�nes ext (�) reduces to
(1� �)

�
1 +

D

(1� ') e � ext (�)
�
=
�
1 +R

D

t

�
�

or

ext (�) = 1 + D

(1� ') e �
1 +R

D

t

1� � � (C14)

From this we can derive the implied interest rate 1 + eRDt (�) in market � while dt = D:

1 + eRDt (�) =
1

1� �

"
1 +

D

(1� ') e �
1 +R

D

t

1� � �

#

� 1� ��
1� �

where � �
�
1+R

D
t

�
=(1��)

1+D=((1�')e) . Since the return on savings is at least as large as the return to buying the asset,

1 +R
D

t � 1 + rDt

= 1 +
(1� �)D + �d
(1� ') e

> (1� �)
�
1 +

D

(1� ') e

�
This means � > 1, which in turns implies the interest rate on loans eRDt (�) is strictly decreasing in � for
� > 0, in line with what we discuss and depict in Figure 3 in the text.
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Recall that, by de�nition, �Dt is the minimum value of � at which eRDt (�) = 1 + R
D

t . We can therefore

solve for �Dt by setting � = �
D
t in (C14) and equating ext ��Dt � with 1 +RDt , i.e. by setting

1
1��Dt

h
1 + D

(1�')e �
�
1 +R

D

t

�
�Dt
1��

i
= 1 +R

D

t

Rearranging, we have

�Dt =
1��

�
�
1+R

D
t

� � D
(1�')e �R

D

t

�
(C15)

Since RDt (�) is decreasing in � for � 2 [0;�Dt ), Proposition C2 implies only borrowers with wealth w borrow
in market � = w for w 2 [0;�Dt ). Hence, f

p
t (�) = 2'e for � 2 [0;�Dt ). By contrast, f

p
t (�) is indeterminate

for � 2 [�Dt ; 1). However, we know that f
p
t

�
�Dt
�
> 0, since borrowers with wealth w = �Dt will have to

borrow in this market to borrow 1� w. As for the amount borrowed to buy assets, fat (�), we can deduce

fat (�) for � 2 [0;�Dt ] from RDt (�), R
D

t , and f
p
t (�) using (C6). For � > �Dt , the fact that

dRD
t (�)
d� < 0 at

� = �Dt , combined with the fact that
dRD

t (�)
d� < 0 for � > �Dt from Lemma C2, implies that no agent would

want to borrow to buy assets. So fat (�) = 0 for all � � �Dt .

Finally, we need to solve for R
D

t . Consider the return on all forms of savings in this economy. First,

savings are used to �nance production by entrepreneurs, which yields savers a payo¤ ofZ 1

0

�
1 +RDt (w)

�
(1� w) (2'e) dw

Second, savings are used to buy assets, directly or indirectly through loans. The expected earnings from

these investments equal
�
1 + rDt

�
pDt . From this, we must net out expected default costs. We use 
Dt to

denote the fraction of spending on assets that is �nanced with some debt. These purchases will result in

default if returns are low. Since default is proportional to the size of the borrower�s project, expected default

costs equal �
Dt �p
D
t = �
Dt � (1� ') e. These payo¤s must add up to (1 +R

D

t )e, i.e.,

(1 +R
D

t )e =
�
1 + rD � �
Dt �

�
(1� ') e+

Z 1

0

�
1 +RDt (w)

�
(1� w) (2'e) dw (C16)

We also need an equation to characterize 
Dt . When the expected return to lending R
D

t exceeds the expected

return to buying the asset rD, only agents who borrow will buy the asset. In that case, 
Dt = 1, and we can

solve for 1+R
D

t by plugging in 

D
t = 1 in (C16). When R

D

t = rD, then 
Dt would have to ensure that R
D

t is

indeed equal to rD, where we know the latter is equal to (1��)D+�d
(1�')e . We can combine these two conditions

into a single equation:

1 +R
D

t = max

�
1 + rD;

�
1 + rD � ��

�
(1� ') +

Z 1

0

�
1 +RDt (w)

�
(1� w) (2') dw

�
(C17)

Equation (C17) ensures that when R
D

t > rD, we must have 
Dt = 1, and when R
D

t = rD, the value of 
Dt
must equate the two returns. Since rD is time invariant, the solutions to these equations, R

D
and 
D, are

also time invariant. Given a value for R
D
, we can solve for the time invariant cuto¤ �D as the smallest

value of � for which RD (�) = R
D
. This completes the characterization of an equilibrium when all markets

are active.
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C.3 Comparative Statics with a �oor

Finally, we consider equilibria where all markets above some �oor � are active. These results correspond to

Propositions 9 and 10 in the text. The �rst result concerns how the equilibrium changes with �.

Proof of Proposition 9: In the text, we derive the equilibrium values pD and rD are show that they

are increasing and decreasing in �, respectively. Here, we show that R
D
is decreasing in �. Recall that in

equilibrium, R
D � rD, i.e. the return on savings must be at least as high as the return agents can earn

from buying the asset. We need to show that R
D
is decreasing in � when R

D
> rD.

When R
D
> rD, we have 
D = 1, and the equilibrium conditions for R

D
and �D are given by two

equations. First, since �D corresponds to the minimum value of � for which RD (�) = R
D
, we know from

(C14) that

1 +R
D
=

1

1� �D
h
1 + D

(1�(1��)')e �
�
1 +R

D
�

�D

1��

i
(C18)

Second, using the same approach to compute the return on savings as before, we have a similar equation

for R
D
as in (C16):

1 +R
D

= (1� ' (1� �))
�
1 + rD � ��

�
+

2'

Z 1

0

h
min

n
w
� ; 1

o
� w

i �
1 +RD (max fw; �g)

�
dw (C19)

If R
D
> rD, we argue that the �oor � must be below the cuto¤�D. For suppose � � �D. Then all markets

where agents might default will be shut down. But without default, the expected return on lending and the

expected return on the asset must be equal to ensure both the credit market and asset market clear. Since

� < �D, we can expand the integral term in (C19) into the sum of three distinct terms:Z 1

0

h
min

n
w
� ; 1

o
� w

i �
1 +RD (max fw; �g)

�
= (1 +R (�))

�
1

�
� 1
�Z �

0

wdw +Z �D

�

(1 +R (w)) (1� w) dw +
�
1 +R

D
�Z 1

�D
(1� w) dw

We then use the fact that 1+RD (�) = 1
1��

�
1 + D

(1�(1��)')e �
�
�
1+R

D
t

�
1��

�
to evaluate the three terms above:

(1 +R (�))

�
1

�
� 1
�Z �

0

wdw =
h
1 + D

(1�(1��)')e � �
�
1+R

D

1�� � 1
�i �
2

(C20)Z �D

�

(1 +R (w)) (1� w) dw =

Z �D

�

�
1 + D

(1�(1��)')e �
w
�
1+R

D
t

�
1��

�
dw (C21)

�
1 +R

D
�Z 1

�D
(1� w) dw =

1

2

�
1 +R

D
� �
1� �D

�2
(C22)

We can write (C18) and (C19) more compactly as

h1

�
R
D
;�D

�
= 0

h2

�
R
D
;�D

�
= 0

20



Totally di¤erentiating this system of equations gives us the comparative statics of the equilibrium R
D
and

�D with respect to any variable a as"
@h1
@R

D
@h1
@�D

@h2
@R

D
@h2
@�D

#"
dR

D
=da

d�D=da

#
=

"
�@h1

@a

�@h2
@a

#

Di¤erentiating (C18) and (C19) using expressions (C20)-(C22) yields

@h1
@R

D = 1� �D + �D

1��
@h1
@�D

= �(1+R
D
)

1��
@h2
@R

D = 1 + '
h

1
1��

�
�D
�2 � �1� �D�2i @h2

@�D
= 0

When we evaluate comparative statics with respect to �, we now have"
dR

D
=d�

d�D=d�

#
=

"
@h1
@R

D
@h1
@�D

@h2
@R

D
@h2
@�D

#�1 "
dh1
d�
dh2
d�

#

=
'

�

24 0 �
1��

�
1 +R

D
�

1 + '
(�D)

2

1�� � '
�
1� �D

�2 �
�
1� �D + �D

1��

�
3524 � D

(1�(1��)')2e

� 2D(1+�D')
(1�(1��)')2e � (1 + ��)

35
where � = �(1+R

D
)

1��

�
1 + '

(�D)
2

1�� � '
�
1� �D

�2�
> 0. It follows that

dR
D

d�
= �'

�
1 + '

�
1

1� �
�
�D
�2 � �1� �D�2���1 " 2D

�
1 + �D'

�
(1� (1� �)')2 e

+ (1 + ��)

#
< 0

Since R
D
is decreasing in � whether R

D
> rD or R

D
= rD, the claim follows. �

Proposition 10 concerns how changing � a¤ects the expected costs of default 
D�pD. Since we already

know pD is increasing in �, any changes in expected default costs occur entirely through 
D. Our next

result argues that there exists cuto¤s �0 and �1 such that d
D=d� = 0 when � < �0 or � > �1. When

�0 < � < �1, we only claim it must be decreasing for some � in this interval.

Proof of Proposition 10: De�ne

� (�) =
R
D

(1� (1� �)')

Using the fact that dR
D

d� < 0, we have

d� (�)

d�
=
dR

D
=d�� '� (�)

1� (1� �)' < 0

Since

R
D
=rD = [(1� �)D + �d] � (�)

it follows that the ratio R
D
=rD is decreasing in �. Hence, there exists a value �0 � 0 such that R

D
> rD

for � < �0 and R
D
= rD for � � �0. Since R

D
> rD when � < �0, then 
D = 1 for � < �0. It follows that
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expected default costs �
D�pD = ��pD are increasing in � in this region. A higher � for � < �0 reduces

the amount entrepreneurs produce and increases the foregone output when dividends fall. Each cohort will

therefore be left with fewer goods to consume.

We next turn to the case where � � �0. Here, we know R
D
= rD. Substituting this into (C18) yields�

1� �D
� �
1 + rD

�
=
h
1 + D

(1�(1��)')e �
�D

1��
�
1 + rD

�i
which, upon rearranging,

�D = (1��)(D�d)
(1�(1��)')e+(1��)D+�d

From this, we can conclude that �D � � if

(1��)(D�d)
(1�(1��)')e+(1��)D+�d � �

or, upon rearranging, if

(1� �) (D � d) � � [(1� (1� �)') e+ (1� �)D + �d] (C23)

The RHS of (C23) is a quadratic in � with a positive coe¢ cient on the quadratic term. The inequality is

satis�ed when � = 0 and violated when � = 1. Hence, there exists a cuto¤ �1 2 (0; 1) such that �D > �

if � 2 [0;�1) and �D < � if � 2 (�1; 1). By de�nition, �0 is the smallest value of � � 0 for which setting
� � �0 ensures R

D
= rD. By contrast, �1 is the smallest value of � � 0 for which setting � � �1 ensures

that no agent borrows to speculate in any market above �. But in that case, all lending is riskless, and we

know that the equilibrium interest rate on loans will equal the return on the asset. Hence, �1 � �0. To

show that the inequality is strict, recall that when � = 0, we know that 
D > 0 since some agents borrow

to buy the asset. But 
D is continuous in �, and we know that 
D = 0 when � � �1. Hence, there must be
some value of � 2 [0;�1) for which 
D < 1. But 
D < 1 i¤ R

D
= rD. It follows that �1 > �0.

When � > �1 no agent will borrow to buy the asset, so 
D = 0. Expected default costs are 0, and so the

only e¤ect of increasing � is to reduce production. This will leave fewer goods for each cohort to consume.

Finally, we turn to the case where �0 < � < �1. We do not analyze this case in general. However, when

�D = �, the interest rate in all active markets would equal R
D
, since the only active markets are those

with � � � = �D. Since � � �0, we know that R
D
= rD and so the interest rate in all active markets is

rD. The equilibrium condition that determines 
D is given by

�
1 + rD

�
= (1� (1� �)')

�
1 + rD � 
D��

�
+ 2'

Z 1

0

h
min

n
w
� ; 1

o
� w

i �
1 +RD (max fw; �g)

�
dw

= (1� (1� �)')
�
1 + rD � 
D��

�
+ 2'

�
1 + rD

� Z 1

0

h
min

n
w
� ; 1

o
� w

i
dw

= (1� (1� �)')
�
1 + rD � 
D��

�
+ 2'

�
1 + rD

�
[�=2 + (1� �)� 1=2]

= 1 + rD � 
D (1� (1� �)')��
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Hence, when � = �1, we have 
D = 0. For � < �1, however, 
D > 0, sinceZ 1

0

�
1 +RD (max fw; �g)

� h
min

n
w
� ; 1

o
� w

i
dw

will be strictly greater than 1
2

�
1 + rD

�
(1� �). Hence, in the limit as � " �1, we have d
D=d� < 0 expected

default costs �
D�pD must be decreasing in � since this expression goes from a positive value to 0.

To show that this can generate a Pareto improvement, observe that increasing � while dividends are high

will make the initial old at date 0 better o¤ given pD0 increases. Cohorts born after dividends have fallen

will be una¤ected if � is only increased while dividends are high. Cohorts who are born while dividends are

high expect to consume the dividends from the asset net of default costs E [dt+1]���
DpDt as well as the
output produced by entrepreneurs. If � is su¢ ciently large and ' is small, we can promise these agents a

higher expected consumption. �
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