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A Additional Proofs and Results

A.1 Market Clearing in the Primal Economy

Here we supplement our discussion in the main body with a parametric example that demon-

strates how imposing market clearing in the primal economy precisely rules out the case where

agents have exactly no information about prices.

Consider again the example from Section 2.2. Concretely, suppose that market clearing

in the incomplete information economy requires

Ēh
t [rt] ≡

∫
E[rt|Ih

i,t] di = −yt. (A.1)

The analog condition in the primal representation is given by

rt + τt = −yt, (A.2)

where τt =
∫
τi,t di is the average expectation error across housholds. Suppose that the joint

process for yt and τt is parametrized by

τt = αyt + ut,

where α > 0 parametrizes the correlation of τt with yt, and ut is orthogonal to yt. Here,

the restriction that α > 0 is an immediate implication of Theorem 1.1 Substituting τt into

1Specifically, using the notation of the theorem, we have µi,t = rt+τi,t. Hence, for τi,t to be implementable,
it must satisfy Cov[τi,t, rt+ τi,t] = 0, or equivalently, Cov[τt, rt+ τt] = −Var[∆τi,t]. Using (A.2) to substitute
for rt, we obtain Cov[τt, yt] = Var[∆τi,t] > 0 and, hence, α > 0.
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(A.2), the market clearing rate is pinned down by rt = −(α + 1)yt − ut, which entails an

“equilibrium expectation” of

Ēh
t [rt] = rt + τt =

1

α + 1
(rt + ut) . (A.3)

We conclude that simply assuming that the exogenous wedge process is finite (|α| < ∞),

as required under the conditions of Theorem 1, and imposing market clearing in the primal

representation implies that Ēh
t [rt] is strictly increasing in rt.

Intuitively, for Ēh
t [rt] to be strictly increasing in r in the underlying incomplete information

economy, households must observe some (possibly noisy) signal about rt. To demonstrate

this, suppose that each household forms their expectation about rt based on a single signal,

si,t = rt + ui,t,

with ui,t ∼ N (0, σ2
u). For simplicity, further suppose that in equilibrium rt ∼ N (0, σ2

r) for

some endogenously determined σ2
r . Then

E[rt|Iit] = γ (rt + ui,t) , Ēh
t [rt] = γ (rt + ūt) , (A.4)

for γ ≡ σ2
r

σ2
r+σ2

u
∈ [0, 1] and ūt ≡

∫
uit di. Here, γ parametrizes the informativeness of the

signal, and the stochastic term ūt captures the possibility that {ui,t} are correlated in the

cross-section. Substituting Ēh
t [rt] into (A.1), we obtain the market-clearing interest rate,

rt = −yt/γ − ūt.

Clearly, for a market-clearing rate to exists, it must be that the price signal is informative;

i.e., γ > 0 (or, equivalently, σu < ∞). This corresponds precisely to the case where the

average expectation Ēh
t [rt] is strictly increasing in rt.

A.2 Proof of Lemma 1

The characterization for ŷt is immediate. To solve for πt, let πt = π(L)ut, define

Ã(L)ut ≡
[
−1 ξ

]
A(L)ut = ξτxt − τ ct ,
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and substitute in (36) to obtain

π(L)ut = ϕ−1
[
(L−1 − 1)Ã(L) + L−1π(L)

]
+
ut

where [·]+ sends negative powers of L to zero. Applying the z-transform, we obtain the

following functional equation

(z−1 − ϕ)π(z) = (1− z−1)Ã(z) + z−1Ã0 + z−1π0. (A.5)

Stationarity requires π to be analytic on the unit disk (Whiteman, 1983). Evaluating (A.5)

at z = ϕ−1 ∈ (−1, 1), therefore, pins down

π0 = (1− ϕ−1)Ã(ϕ−1)− Ã0,

so that

π(z) =
(1− z)Ã(z)− (1− ϕ−1)Ã(ϕ−1)

ϕz − 1
.

A.3 Proof of Proposition 6

To begin, combine Proposition 5 with equation (39) to obtain the following lemma.

Lemma 2. Fix a (zero mean) MA(h̄) process τ for (τ ct , τ
p
t ) and set Θsym

i,t as in (22). Then

there exists an information structure consistent with Assumptions 1–3 that implements τ in

the incomplete-information economy, if and only if there exists a (zero mean) MA(h̄) process

∆τ such that

Γs(τ, ϵ) = −Λs(∆τ,∆f) for all s ≥ 0, (A.6)

where

Γs(τ, ϵ) ≡ Cov[τt, (dyt−s, dyt−s, ϵt−s)]

Λs(∆τ,∆f) ≡ Cov[∆τi,t, (∆dci,t−s,∆dyi,t−s,∆dai,t−s)].

Equipped with Lemma 2, our proof proceeds in two steps. First, we derive the mappings

(τ, ϵ) 7→ Γs and (∆τ,∆f) 7→ Λs in closed form. Second, with this explicit characterization

at hand, we complete the proof by constructing processes for ∆τ and ∆f that for any given

(τ, ϵ) satisfy the conditions of Lemma 2.
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Characterization of Γs The mapping Γs is immediate from (37),

Γs(τ, ϵ) = ξCov[τt, dτ
x
t−s]× [1, 1, 0] + Cov[τt, ϵt−s]× [1, 1, 1]. (A.7)

Characterization of Λs We now solve the “Delta-economy” for the endogenous law of

motions for ∆dci,t and ∆dyi,t. The equilibrium of the Delta-economy is defined by (27), (28),

(40), (41), which can be written as follows:

∆pi,t = −η−1∆yi,t + zi,t

βbi,t = bi,t−1 +∆yi,t −∆ci,t +∆pi,t

∆ci,t = Et[∆ci,t+1 −∆τ ci,t+1] + ∆τ ci,t

∆yi,t = ξ(∆yi,t −∆ci,t +∆pi,t +∆τ pi,t) + ∆ai,t

The system can be written more compactly as

Et[d∆yi,t+1] = δEt[ξ
−1d∆ai,t+1 + dzi,t+1 + d∆dτ pi,t+1 − d∆τ ci,t+1] (A.8)

βbi,t = bi,t−1 + ξ−1(∆yi,t −∆ai,t)−∆τ pi,t (A.9)

where δ ≡ (η−1 + ξ−1 − 1)−1, and consumption is determined by

∆ci,t = −δ−1∆yi,t + zi,t +∆τ pi,t + ξ−1∆ai,t. (A.10)

Fix some process (∆τ ci,t,∆τ pi,t,∆ai,t, zi,t)
′ = B(L)υi,t, where B(L) is a square-summable

matrix-polynomial in non-negative powers of the lag operator L and the vector υi,t are white

noise shocks. Conjecture

∆yi,t = ξ(β − 1)bi,t−1 + Φ(L)υi,t. (A.11)

Substituting (A.11) in (A.9), it must be that

Φ(L)υi,t = ξβdbi,t + ξ∆τxi,t +∆ai,t. (A.12)

Using (A.11) to eliminate ∆dyi,t+1 in (A.8), we have

(β − 1)ξdbi,t +
[
(L−1 − 1)Φ(L)

]
+
υi,t =

[
−δ δ δξ−1 δ

] [
(L−1 − 1)B(L)

]
+
υi,t (A.13)

where [·]+ sends the negative powers of L to zero. Further using (A.13) to eliminate dbi,t in
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(A.12) and applying the z-transform, we obtain the following functional equation

(1− β−1z)Φ(z) =[
−δ δ δξ−1 δ

]
[(1− z)B(z)−B0] + Φ0 + (1− β−1)

[
0 ξ 1 0

]
B(z)z. (A.14)

Evaluating (A.14) at z = β ∈ (−1, 1), pins down Φ0 and Φ(z), from which we obtain the

following equilibrium process for d∆yi,t ≡ dy(L)υi,t and d∆ci,t ≡ dc(L)υi,t:

dy(z) =
[
−δ δ δξ−1 δ

]
(1− z)B(z) +

[
δ ξ − δ 1− δξ−1 −δ

]
(1− β)B(β) (A.15)

and

dci,t =
[
1 0 0 0

]
(1− z)B(z) +

[
−1 1− δ−1ξ ξ−1 − δ−1 1

]
(1− β)B(β). (A.16)

Collecting equations, we obtain

Λs(∆τ, f) = Cov

∆τi,t,

 1 0 0 0

−δ δ δξ−1 δ

0 0 1 0

 (1− L)B(L)υi,t−s



+ Cov

∆τi,t,

−1 1− δ−1ξ ξ−1 − δ−1 1

δ ξ − δ 1− δξ−1 −δ

0 0 0 0

 (1− β)B(β)υi,t−s

 (A.17)

for

∆τi,t =

[
1 0 0 0

0 1 0 0

]
B(L)υi,t.

Construction of process ∆τ and ∆f that implement (τ, ϵ) We complete the proof by

construction. In particular, we provide an algorithm that for arbitrary {Γs}h̄s=0 constructs

processes ∆τ and ∆f that satisfy (A.6).

To begin, substitute (A.17) to (A.6), post-multiply both sides by

M ≡

1 1 0

0 δ−1 0

0 −ξ−1 1

 ,
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and apply the z-transform, to obtain the equivalent functional equation

Γ̃(z) =

[
1 0 0 0

0 1 0 0

]
[
B(z)(1− z−1)B(z−1)′

]
+

1 0 0 0

0 1 0 1

0 0 1 0


′

+

+ B(z)(1− β)B(β)′

−1 1− δ−1ξ ξ−1 − δ−1 1

0 0 0 0

0 0 0 0


′ (A.18)

where Γ̃(z) ≡ Z{−ΓsM}s≥0 is the (one-sided) z-transform of {−ΓsM}, and whereB parametrizes

the joint process (∆τi,t,∆fi,t) as in the characterization of Γ above. In particular, let

B(L) =

Bτ (L)

Ba(L)

Bz(L)


where Bτ (z) is a lag-polynomial of size 2 × n, Ba(z) and Bz(z) are each lag-polynomials of

size 1×n, and n is an arbitrary number of innovations. Then (A.18) can be further rewritten

as

Γ̃1(z) + Ω(z) =
{
(1− z−1)Bτ (z)Bτ (z

−1)′
}
+
+Ψ(z) +Bτ (z)Bτ (β)

′Λ (A.19)

and

Γ̃2(z) =
{
(1− z−1)Bτ (z)Ba(z

−1)′
}
+
, (A.20)

where Γ̃1 and Γ̃2 correspond to the first two and third column of Γ̃, respectively, and where

Ψ(z) ≡
{
Bτ (z)

[
(1− β)Bz(β)

′ (1− z−1)Bz(z
−1)′
]}

+

and

Ω(z) ≡ −(1− β)(ξ−1 − δ−1)
[
Bτ (z)Ba(β)

′ 0
]

and

Λ ≡

[
−(1− β) 0

(1− β)(1− δ−1ξ) 0

]
.

Fix N ≤ h̄ as the largest non-zero power of z in Γ̃. Consider the following parametric
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structure for Bτ , Ba, and Bz:Bτ (z)

Ba(z)

Bz(z)

 =

λτ (z) I

λa(z) (1− z)−1λa,0

0 λz,0 + λz,1z


with

λτ (z) =
[
λτ,1 + ρz · · · λτ,N + ρNzN

]
and

λa(z) =
[
(1− z)−1λa,1 · · · (1− z)−1λa,N

]
,

and where {λa,j, λz,j} are of size 1 × 2 and {λτ,j} are of size 2 × 2. Observe that Bτ is at

most of order h̄ in line with the requirements of Lemma 2.

Condition (A.20) then simplifies to

Γ̃2(z) = λτ (z)λ
′
a + λ′

a,0.

So for any λτ , it suffices to set

λa,s = ρ−sΓ̃′
2,s ∀s ≥ 1, and

λa,0 = Γ̃′
2,0 −

N∑
j=1

λ′
τ,jλa,j

in order to satisfy orthogonality with respect to ai,t.

Regarding condition (A.19), we have that

Π(z) ≡ Γ̃1(z) + Ω(z)− Λ− I =
{
(1− z−1)ττ (z)ττ (z

−1)′
}
+
+Ψ0 + λτ (z)λτ (β)

′Λ

where

Ω(z) = −Γ̃2(z)
[
(ξ−1 − δ−1) 0

]
and

Ψ0 ≡ Ψ(z) =
[
(1− β)

(
λ′
z,0 + βλ′

z,1

)
λ′
z,0

]
.

Notice that (i) the left-hand side, Π(z), is exogenously determined by the aggregate economy

that we are trying to implement, and (ii) we have Ψ0 as a degree of freedom to induce an
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arbitrary unconditional covariance on the right-hand side. Writing out the right-hand side

in the time-domain, we have

Π0 = Ψ0 − ρλ′
τ,1 +

ρ2

1− ρ2
+

N∑
j=1

λτ,jλ
′
τ,j(I + Λ) +

N∑
j=1

ρjβjλτ,jΛ (A.21)

Πs = ρsλ′
τ,s(I + Λ)− ρs+1λ′

τ,s+1 + ρ2sβsΛ. (A.22)

Initialized at λN+1 = 0, (A.22) can be solved recursively backwards for a sequence {λτ,s} that

ensures orthogonality with respect to (ci,t−s, yi,t−s)s≥1. Finally, orthogonality with respect to

(ci,t, yi,t) is achieved by setting Ψ0 to satisfy (A.21), completing the proof.

A.4 Cyclicality of Inflation in the Quantitative Model

Here we prove a variant of Proposition 2 in the context of our quantitative model, showing

that if firms know the location of their demand curve (i.e., Θf
i,t contains both pi,t and yi,t),

then inflation must be procyclical for any expectation-driven business cycles. This holds

regardless of whether firms are price or quantity setters.2

The result is derived for the more general case where households and firms do not neces-

sarily share the same information. The case of symmetric information follows as corollary.

Proposition 7. Suppose {Wi,t−s}s≥0 ⊆ Θh
i,t and {Yi,t−s, Pi,t−s,Wi,t−s}s≥0 ⊆ Θf

i,t. Then infla-

tion must be weakly procyclical. Specifically, the correlation with the output gap is bounded

below as follows: √
Var[ŷt] ≤ ξ

Corr[ŷt, πt]

1− Corr[ŷt, ŷt−1]

√
Var[πt].

Proof. The proof proceeds in analog to the one of Proposition 2. Substituting for wi,t using

the household’s labor supply and taking first differences, orthogonality of the household

wedge with respect to dwi,t requires

Cov[τ p,hi,t , ζdni,t + dci,t + πt + dτhi,t] = Cov[τ p,hi,t , πt + dτhi,t] = 0, (A.23)

where the first equality exploits that by Theorem 1 τ p,hi,t ⊥ µh
i,t−s and thus τ p,hi,t ⊥ (ni,t−s, ci,t−s)

for all s ≥ 0.

Similarly, substituting for wi,t using the firm’s labor demand and taking first differences,

2Absent nominal rigidity, and given that both pi,t and yi,t are in firms’ information sets, there is no
difference between price and quantity setting.
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orthogonality of the firm wedge with respect to dwi,t requires

Cov[τ p,fi,t , dai,t + dpi,t + dτ p,fi,t ] = Cov[τ p,hi,t , dτ
p,f
i,t ] = 0. (A.24)

Here the first equality follows as τ p,fi,t ⊥ µf
i,t−0 implies τ p,fi,t ⊥ ni,t−0 for all s ≥ 0 and, hence,

τ p,fi,t ⊥ (dyi,t − dni,t + dpi,t) under the conditions of the proposition.

Subtracting (A.23) from (A.24), we have

Cov[τ pi,t, dτ
p
i,t − πt] = 0

or

(1− Corr[ŷt, ŷt−1]) ξ
−1Var[ŷt]− Cov[ŷt, πt] = −

(
1− Corr[∆τ pi,t,∆τ pi,t−1]

)
Var[∆τ pi,t] ≤ 0,

which implies the bound given in the statement of the proposition.

B Estimation of Unrestricted Wedge Process

Here we describe the methodology for estimating the unrestricted wedges τ̂t used in Section 4.

B.1 Description of Methodology

We model the unrestricted wedges as a MA(14) process, which loads on two intrinsic inno-

vations, represented by the 2× 1 vector ut, in addition to the productivity shock ϵt,

τt = Φϵ(L)ϵt + Φu(L)ut,

where Φϵ(L) and Φu(L) are square-summable lag polynomials in non-negative powers of L,

and ϵt and ut are orthogonal white noise. W.l.o.g., we normalize Var[ut] = I2, leaving us to

estimate γma ≡ (Φϵ,Φu, σϵ). For this purpose, we use the generalized method of moments

(GMM) to minimize the distance between the model’s covariance structure and U.S. data on
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real per-capita output, inflation, nominal interest rates, and per-capita hours.3 Let

Ω̃T = vech{Var[(q̃datat , . . . , q̃datat−k )]},

denote the empirical auto-covariance matrix of frequency-filtered quarterly US data for q ≡
(yt, πt, it, nt). We target auto-covariances between zero and k = 8 quarters. For the filtering,

we use the Baxter and King (1999) approximate high-pass filter with a truncation horizon of

32 quarters, which we denote by q̃t ≡ BK 32(qt).
4

To conserve on the 91 parameters that characterize γma, we make two observations, doc-

umented in Figure 4 below. First, Ω̃T is well-described by a VAR(1) process for τt. Second, a

MA(14) truncation of the VAR(1) process that best replicates Ω̃T is almost indistinguishable

(in terms of second moments) from the VAR(1) process itself. Accordingly, we construct γma

by first estimating τt as a VAR(1) that is driven by ut and ϵt, and then constructing γ̂ma as

the MA(14) truncation of the estimated process.5

Let γar denote the 10 parameters characterizing the VAR(1) and σϵ. Then the estimator

is given by

γ̂ar = argmin
γar

(Ω̃T − Ω̃(γar))
′W−1(Ω̃T − Ω̃(γar)), (B.1)

where Ω̃(γar) is the model analogue to Ω̃T and W is a diagonal matrix with the bootstrapped

variances of Ω̃T along the main diagonal. To avoid the issues detailed in Gorodnichenko and

Ng (2010), our model analogue Ω̃(γar) is computed after applying the same filtering procedure

to the model that we have applied to the data.

A final challenge for estimating the model is that filtering the model can be computational

expensive. We address this issue by proving the following equivalence results (see Online

Appendix B.3 for proof).

Lemma 3. Estimator (B.1) is equivalent to

γ̂ar = argmin
γar

(ΩT − Ω(γar))
′W̃−1(ΩT − Ω(γar)), (B.2)

3Data range from 1960Q1 to 2012Q4. Real output is given by nominal output divided by the GDP deflator.
Inflation is defined as the log-difference in the GDP deflator. Interest rates are given by the Federal Funds
Effective rate. Hours are given by hours worked in the non-farm sector. Variables are put in per-capita terms
using the non-institutional population over age 16. All data are downloaded from the “Economic Data”
archive of the Federal Reserve Bank of St. Louis (FRED).

4The Baxter and King (1999) filter requires specification of a lag-length τ̄ for the approximation. We set
τ̄ to their recommended value of 12.

5Our estimator penalizes excessively persistent dynamics beyond the usual business cycle horizon by
imposing a numerical penalty on impulse responses beyond 32 quarters.
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Figure 4: Business cycle comovements in the data and predicted by the estimated model. Note.—All
covariances are multiplied by 100 to improve readability. Dashed black lines show the empirical covariance
structure Ω̃T together with 90 percent confidence intervals depicted by the shaded areas. Solid blue lines
show the corresponding model moments for the VAR(1) case, Ω̃(γ̂ar). Red dots show the model moments for
the truncated MA(14) case, Ω̃(γ̂ma). Each row i and column j in the table shows the covariances between q̃it
and q̃jt−k with lags k ∈ {0, 1, . . . , 8} depicted on the x-axis.

where Ω ≡ vech{Var[(dst, . . . , dst−K)]} and W̃ ≡ (Ξ′W−1Ξ)
−1

for K = k + 2τ̄ . The trans-

formation matrix Ξ is defined in (B.7).

The lemma establishes an exact equivalence (as opposed to an asymptotic equivalence)

between the original GMM estimator (B.1) and an alternative estimator where the unfiltered

model is estimated (in first differences) on unfiltered data and the filtering is achieved by

replacing W with W̃ . Using (B.2) in place of (B.1), estimation becomes straightforward as

the mapping from γar to Ω(γar) is available in closed form.

B.2 Fit

Figure 4 compares the predicted model moments with the targeted data moments. The
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dashed black lines show the empirical covariance structure Ω̃T along with 90-percent con-

fidence intervals (depicted by the shaded areas). The solid blue and red lines show the

corresponding moments for the estimated model for the VAR(1) and MA(14) truncation of

the wedges, respectively. Each row i and column j in the table of plots shows the covariances

between q̃it and q̃jt−k with lags k ∈ {0, 1, . . . , 8} depicted on the horizontal axis. Despite the

parametric restriction on τt and at and the fact that we have less shocks than data series, the

unrestricted-wedge model does a very good job at capturing the auto-covariance structure

of the four time series. In addition, there is no notable difference between the VAR(1) and

MA(14) truncation of τt.

B.3 Proof of Lemma 3

Let

J =
(
Ω̃T − Ω̃(γ)

)′
W−1

(
Ω̃T − Ω̃(γ)

)
(B.3)

denote the penalty function in terms of BK-filtered moments, where the filter is applied

to both the data and the model. In this appendix, we demonstrate how the penalty

can be expressed in terms of the variance over unfiltered first-differenced moments, Ω ≡
vech

{
Var

(
dqtt−K

)}
, where d is the first-difference operator, and K ≡ k+2τ̄ with τ̄ denoting

the approximation horizon of the BK-filter.6 Specifically, for any positive-semidefinite W we

show that J in (B.3) is equivalent to

J = (ΩT − Ω(γ))′ W̃−1 (ΩT − Ω(γ)) , (B.4)

with W̃ ≡ (Ξ′W−1Ξ)
−1

replacing W (a closed-form expression for Ξ is given below).

The Baxter and King (1999) filtered version of st takes the form

q̃t =
τ̄∑

j=−τ̄

ajqt−j

where q̃t is stationary by construction. For the high-pass filter used in this paper, the weights

{aj} are given by

aj = ãj −
1

2τ̄ + 1

τ̄∑
j=−τ̄

ãj

6The first-difference filter is applied to the unfiltered variables to ensure stationarity for variables that
have a unit root. Our transformation includes an adjustment term that corrects for the fact that the filtered
moments in Ω̃ are about levels rather than first-differences.
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with

ã0 = 1− ω̄/π, α̃j ̸=0 = − sin(jω̄)/(jπ), ω̄ = 2π/32.

To construct the filter-matrix Ξ, rewrite q̃t in terms of growth rates to get

q̃t =
τ̄∑

j=−τ̄

∞∑
l=0

ajdqt−j−l.

Noting that
∑τ̄

j=−τ̄ aj = 0, we can simplify to get

q̃t = Bdqt+τ̄
t−τ̄−j

where

B = [b−τ̄ , . . . , bτ̄ ]⊗ In, (B.5)

n = 4 is the number of variables in q̃t, and bs =
∑s

j=−τ̄ αj.

Letting Lj define the backshift matrix

Lj =
[
0n(2τ̄+1),nj, In(2τ̄+1), 0n(2τ̄+1),n(k−j)

]
, (B.6)

we then have that

Σ̃j ≡ Cov(q̃, q̃t−j) = BL0Σ
KL′

jB
′,

or, equivalently,

vec(Σ̃j) = (BLj ⊗BL0) vec(Σ
K).

To complete the construction of Ξ, define selector-matrices P0 and P1 such that

vech(Σ̃k) = P0


vec(Σ̃0)

...

vec(Σ̃k)


and

vec(ΣK) = P1vech(Σ
K).

Stacking up vec(Σ̃j), we then get

Ω̃ = ΞΩ

13



where

Ξ = P0


BL0 ⊗BL0

...

BLk ⊗BL0

P1 (B.7)

with B and Lj as in (B.5) and (B.6). Substitution in (B.3) yields (B.4).

C Comparative Statics With Countercyclical Inflation

In analogue to Figure 2, we explore comparative statics with respect to the parametrization

of the micro-shocks, but for the case where inflation is countercyclical with γŷπ = −.3. The

results, shown in Figure 5, display the same qualitative pattern as for the procyclical case

explored in the main text. While the maximal volatility is higher, we again see a clear positive

relationship between σmax
ŷ and the volatilities of the micro shocks. As before, the impact of

idiosyncratic demands shocks is most relevant, paralleling their key role in the procyclical

case.

Here we do not include the cases without demand uncertainty (pi,t ∈ Θf
i,t), because in

line with our discussion in the main text, in these cases inflation is necessarily procyclical

(see Online Appendix A.4 for a formal proof). Intuitively, this reflects again the discrepancy

in propagation underlying the pro- and countercyclical inflation cases: While procyclical

inflation is tied to nominal misperception and expectation errors about aggregate prices,

countercylical inflation is tied to expectation errors regarding local demand, and thus is

impossible to implement when pi,t is observed by firms. (See also the explanations given in

the context of Figure 1.)
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Figure 5: Analogue to Figure 2 with countercyclical inflation. The graphs show the maximal output
volatility σmax

ŷ (denominated in percentage deviations from the balanced growth path) that can be generated
by incomplete information for the case where ρŷ = .9 and γŷπ = −.3.
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