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A Proofs

Proof of Lemma 1: First, to prove necessity, we have to show that Parts (i.) and (ii.) follow

from incentive compatibility. To prove Part (i.), let Φ (γ, θ) = u (c1 (γ, θ)) + βδ2u (c2 (γ, θ)) .

For a fixed γ and productivities θ and θ′ with θ > θ′, incentive compatibility requires

Φ (γ, θ)− h
(
y (γ, θ)

θ

)
≥ Φ (γ, θ′)− h

(
y (γ, θ′)

θ

)
and

Φ (γ, θ′)− h
(
y (γ, θ′)

θ′

)
≥ Φ (γ, θ)− h

(
y (γ, θ)

θ′

)
.

Adding these two inequalities yields

h

(
y (γ, θ)

θ′

)
− h

(
y (γ, θ)

θ

)
≥ h

(
y (γ, θ′)

θ′

)
− h

(
y (γ, θ′)

θ

)
. (14)

Since h is strictly increasing and strictly convex, for (14) to hold, it must be the case that

y (γ, θ) ≥ y (γ, θ′) .

Next, we will prove Part (ii.). For a fixed γ and θ, the incentive constraint is

U1 (γ, θ) = max
θ′∈Θ

u (c1 (γ, θ′))− h
(
y (γ, θ′)

θ

)
+ βδ2u (c2 (γ, θ′)) .

Theorem 2 of Milgrom and Segal (2002) applies, so U1 (γ, θ) is absolutely continuous in θ.

Finally, since U1 (γ, θ) is absolutely continuous in θ, it is differentiable in θ almost everywhere.
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Hence, we have ∂U1(γ,θ)
∂θ

= y(γ,θ)
θ2

h′
(
y(γ,θ)
θ

)
.

Finally, to prove sufficiency, we have to show that, for a given γ, none of the agents would

want to misreport θ when Parts (i.) and (ii.) hold. Consider any productivities θ and θ′

with θ > θ′, then∫ θ

θ′

y (γ, x)

x2
h′
(
y (γ, x)

x

)
dx ≥

∫ θ

θ′

y (γ, θ′)

x2
h′
(
y (γ, θ′)

x

)
dx

⇐⇒ U1 (γ, θ)− U1 (γ, θ′) ≥ −h
(
y (γ, θ′)

θ

)
+ h

(
y (γ, θ′)

θ′

)
⇐⇒ U1 (γ, θ) ≥ Φ (γ, θ′)− h

(
y (γ, θ′)

θ

)
.

The first inequality comes from Part (i.), y (γ, θ) is non-decreasing in θ, and h is strictly

convex. The left-hand side of the second inequality comes from Part (ii.). Rearranging the

terms in the second inequality yields the third inequality, which implies incentive compati-

bility.

Proof of Proposition 1: Conditions (6) and (7) and µ follow from the first order conditions.

The inverse Euler equations (4) and (5) are derived using the perturbation argument.

Let P =
{
c0 (γ) , [ct (γ, θ) , y (γ, θ)]t>0,θ∈Θ

}
γ

be the allocation that solves the constrained

efficient planning problem. We first derive (5) by considering a small increase in c2 (γ, θ)

across θ for a fixed γ. That is, for all θ, define u (c̃2 (γ, θ)) = u (c2 (γ, θ)) + ∆ for some small

∆. We simultaneously decrease c1 (γ, θ) for all θ such that u (c̃1 (γ, θ)) = u (c1 (γ, θ))− δ2∆.

Such perturbations do not affect the objective function, the ex-ante incentive compatibility,

and the ex-post incentive compatibility. It only affects the resource constraint. Note that the

perturbation must be the same for all θ or else it may violate ex-post incentive compatibility,

which is not the case if β = 1. If P is optimal, then it must be that ∆ = 0 minimizes the

resource used, i.e.,

0 = arg min
∆

∫
Θ

[
−u−1 [u (c1 (γ, θ))− δ2∆]− 1

R2

u−1 [u (c2 (γ, θ)) + ∆]

]
f (θ|κγ) dθ.

Evaluating the first order condition of this problem at ∆ = 0 yields (5).

Similarly, to derive (4), we consider a small decrease in c1 (γ, θ) for all θ and γ such that

u (c̃1 (γ, θ)) = u (c1 (γ, θ))− 1
δ1(eγ)

∆ for some small ∆. We simultaneously increase c0 (γ) for

all γ such that u (c̃0 (γ)) = u (c0 (γ)) + 1
δ0(eγ)

∆. Since it is perturbed for all θ, the ex-post

incentive compatibility constraint is not affected. Also, notice that the ex-ante incentive

compatibility constraint and objective function are not affected, but the resource constraint
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changes. Crucially, the perturbation must be the same for all γ or it may violate ex-ante

incentive compatibility, which is not the case if β = 1. If P is optimal, then ∆ = 0 solves,

min
∆

∑
γ

πγ

{−u−1
[
u (c0 (γ)) + ∆

δ0(eγ)

]
R0 (eγ)

− 1

R1 (eγ)

∫
Θ

u−1

[
u (c1 (γ, θ))− ∆

δ1 (eγ)

]
f (θ|κγ) dθ

}
.

Evaluating the first order condition of this problem at ∆ = 0 yields (4).

Proof of Proposition 2: From the first order conditions, we have

ξH (θ) =

∫ θ

θ

[λH (x)− (πH + βµ) δ1 (eH) f (x|κH)] dx,

ξL (θ) =

∫ θ

θ

[λL (x)− [πLf (x|κL)− βµf (x|κL,H)] δ1 (eL)] dx.

First, we derive (9). Since λγ (θ) = φπγδ1(eγ)f(θ|κγ)

u′(c1(γ,θ))
, we rewrite the first order condition on

y (H, θ) as

φπHδ1 (eH) f (θ|κH)

1−
1
θ
h′
(
y(H,θ)
θ

)
u′ (c1 (H, θ))


=

[
1

θ2
h′
(
y (H, θ)

θ

)
+
y (H, θ)

θ3
h′′
(
y (H, θ)

θ

)]∫ θ

θ

[λH (x)− (πH + βµ) δ1 (eH) f (x|κH)] dx.

Let Aγ(θ) = 1−F (θ|κγ)

θf(θ|κγ)
and Bγ(θ) = 1 +

y(γ,θ)
θ

h′′( y(γ,θ)θ )
h′( y(γ,θ)θ )

, then dividing both sides by

1
θ
h′
(
y(H,θ)
θ

)
φπHδ1 (eH) f (θ|κH) yields

1

1
θ
h′
(
y(H,θ)
θ

) − 1

u′ (c1 (H, θ))

= AH (θ)BH (θ)

∫ θ

θ

[
λH (x)

φπHδ1 (eH) f (x|κH)
− πH + βµ

φπH

]
f (x|κH)

1− F (θ|κH)
dx.

By definition 1
θ
h′
(
y(γ,θ)
θ

)
= (1− τw(γ, θ))u′ (c1 (γ, θ)) and from the first order condition,

λγ(x)

φπγδ1(eγ)f(x|κγ)
= 1

u′(c1(γ,x))
, so we have

1

u′ (c1 (H, θ))

(
τw (H, θ)

1− τw (H, θ)

)
= AH (θ)BH (θ)

[∫ θ

θ

1

u′ (c1 (H, x))

f (x|κH)

1− F (θ|κH)
dx− πH + βµ

φπH

]
.
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Observe that βµ
φπH

= µ
φπH
− (1−β)µ

φπH
, then by the first order conditions, we can substitute

in µ
φπH

= 1
u′(c0(H))

− 1
φ
. Define Cγ(θ) =

∫ θ
θ
u′(c1(γ,θ))
u′(c1(γ,x))

[
1− u′(c1(γ,x))

φ

]
f(x|κγ)

1−F (θ|κγ)
dx, Dγ (θ) =

u′ (c1 (γ, θ))
[

1
u′(c0(γ))

− 1
φ

]
, and Eγ(θ) = (1− β)Dγ (θ) , then multiply both sides by u′ (c1 (H, θ))

to yield (9).

Using a similar process as above, we have the following expression for γ = L

τw (L, θ)

1− τw (L, θ)
= AL (θ)BL (θ)

[
CL (θ) +

∫ θ

θ

βµf (x|κL,H)

φπL

u′ (c1 (L, θ))

1− F (θ|κL)
dx

]
.

Since βµ
φπL

= µ
φπL
− (1−β)µ

φπL
and from the first order conditions, we get (10). Furthermore, from

the first order condition for c0, we have φ =
[

πH
u′(c0(H))

+ πL
u′(c0(L))

]−1

, combining it with (4)

yields φ =

{
Eγ
[
Eθ
(

1
u′(c1(γ,θ))

∣∣∣∣γ)]}−1

.

Proof of Lemma 2: For a fixed γ, suppose there exists θ̃ and θ̂ such that y
(
γ, θ̃
)

=

y
(
γ, θ̂
)
. Let Φ (γ, θ) = u (c1 (γ, θ)) +βδ2u (c2 (γ, θ)) . There are two cases to consider. First,

suppose Φ
(
γ, θ̃
)
6= Φ

(
γ, θ̂
)
, then clearly the allocations are not incentive compatible.

Next, suppose Φ
(
γ, θ̃
)

= Φ
(
γ, θ̂
)
, and without loss of generality c1

(
γ, θ̃
)
> c1

(
γ, θ̂
)

and

c2

(
γ, θ̃
)
< c2

(
γ, θ̂
)
. Let π̃ and π̂ denote the measure of

(
γ, θ̃
)

and
(
γ, θ̂
)

agents. Let

ūt = 1
π̃+π̂

[
π̃u
(
ct

(
γ, θ̃
))

+ π̂u
(
ct

(
γ, θ̂
))]

. By assigning these agents the average utility,

the total welfare is unchanged and incentive compatibility is preserved (because Φ
(
γ, θ̃
)

=

Φ
(
γ, θ̂
)

). However, since u is strictly concave, the consumption level that gives ū1 and ū2

relaxes the resource constraint. This means that it is not optimal for c1

(
γ, θ̃
)
> c1

(
γ, θ̂
)

and c2

(
γ, θ̃
)
< c2

(
γ, θ̂
)

with Φ
(
γ, θ̃
)

= Φ
(
γ, θ̂
)
. In other words, the consumption paths

are equivalent for agents of the same level of income.

Proof of Proposition 3: By Lemma 2, we can define the optimal consumption derived

from the direct mechanism as (c0 (e) , c1 (e, y) , c2 (e, y)) . Next, following Werning (2011), we

construct bond savings tax T k (b) such that agents do not double deviate—misreport and buy

too much bonds. To see how, consider the government assigning the optimal allocation from

the direct revelation mechanism given past and current reports, while agents are allowed to

purchase any desired amount of bonds. Define a fictitious tax T k1 (b2, r̃, θ) paid in t = 1 for

each productivity realization θ, current bond level b1, past report r̃γ, current report r̃θ, and

5



bond savings b2, where r̃ = (r̃γ, r̃θ) . The tax T k1 (b2, r̃, θ) is set such that

u
(
c1 (r̃) + R̃1 (e (r̃γ)) b1 − b2 − T k1 (b2, r̃, θ)

)
− h

(
y (r̃)

θ

)
+ βδ2u (c2 (r̃) +R2b2)

= u (c1 (γ, θ))− h
(
y (γ, θ)

θ

)
+ βδ2u (c2 (γ, θ)) .

Next, by taking the supremum over all θ ∈ Θ, we obtain a bond savings tax T k1 (b2, r̃) =

supθ∈Θ T
k
1 (b2, r̃, θ) that is independent of productivity. Before we derive the bond savings

tax in t = 0, let

V (b1, r̃γ, θ) = u
(
c1 (r̃γ, r̂θ) + R̃1 (e (r̃γ)) b1 − b̂2 − T k1

(
b̂2, r̃γ, r̂θ

))
− h

(
y (r̃γ, r̂θ)

θ

)
+ δ2u

(
c2 (r̃γ, r̂θ) +R2b̂2

)
,

where

(
r̂θ, b̂2

)
∈ arg max

r̃θ,b2

{
u
(
c1 (r̃) + R̃1 (e (r̃γ)) b1 − b2 − T k1 (b2, r̃)

)
− h

(
y (r̃)

θ

)
+ βδ2u (c2 (r̃) +R2b2)

}
.

Next, define T k0 (b1, r̃γ) = supγ∈{H,L} T
k
0 (b1, r̃γ, γ) with T k0 (b1, r̃γ, γ) chosen such that

δ0 (eγ)u
(
c0 (r̃γ)− b1 − T k0 (b2, r̃γ, γ)

)
+ βδ1 (e (r̃γ))E [V (b1, r̃γ, θ) |γ] = δ0 (eγ)u (c0 (γ))

+ βδ1 (eγ)

∫ θ

θ

[
u (c1 (γ, θ))− h

(
y (γ, θ)

θ

)
+ δ2u (c2 (γ, θ))

]
dF (θ|κ (eγ, γ)) .

Finally, by taking the supremum over all reports, we obtain a bond savings tax T k (b) =

supr̃t T
k
t (b, r̃t) , where r̃1 = r̃ and r̃0 = r̃γ, that only depends on bond purchases. With

T k (b) , agents do not purchase bonds while misreporting in equilibrium.

For the other policy instruments, we focus on an implementation where none of the

agents save in the retirement savings account, so s2 = 0. Agents with education eL rely on

social security for retirement consumption while agents with education eH depend on social

security benefits plus student loan repayment contributions in the retirement account. Let

y (γ, θ) be the optimal output of type (γ, θ) agents in a direct revelation mechanism and

define Y = {y|y = y (γ, θ) with γ ∈ {L,H} and θ ∈ Θ} to be the set of admissible income.
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First, we construct the matching rate α to be

1 + α = inf
y∈Y,e∈{eL,eH}

u′ (c1 (e, y))

βu′ (c2 (e, y))
.

Next, we construct the social security benefit a (y) = c2 (eL, y) . We set the income tax to be

T (y − s2) = y − s2 − c1 (eL, y) , and the tax deduction from student loan repayment is

g (r (eH , y)) = r (eH , y)− [c1 (eL, y)− c1 (eH , y)] and g (0) = 0.

Finally, we construct the student loans and its income-contingent repayment schedule along

with the tax on retirement savings account. Let the loan amount be defined as

L (e) =

c0 (e) + e if e ∈ {eL, eH}

0 otherwise
,

and the income-contingent repayment schedule is r (eL, y) = 0 and

r (eH , y) =
1

αR2

[c2 (eH , y)− c2 (eL, y) + T ra] .

We choose T ra such that r (eH , y) and g (R1r) are weakly positive. Let T ra (y) be a fictitious

tax schedule defined as

T ra (y) = max {0, c2 (eL, y)− c2 (eH , y) , c2 (eL, y)− c2 (eH , y) + αR2 [c1 (eL, y)− c1 (eH , y)]} .

Observe that given T ra (y) , both the repayment schedule and the tax deduction are weakly

positive for any income. Lastly, by taking the supremum over all income, we obtain an

income-independent lump-sum tax:

T ra = sup
y∈Y

T ra (y) .

For our last step, we check that the policy instruments implement the optimum. First,

notice that all agents would choose e ∈ {eL, eH} , otherwise c0 = 0. Next, due to the

low matching rate, all agents choose s2 = 0. As a result, given the taxes and social se-

curity benefit, agents who invested eL consume c1 = c1 (eL, y) and c2 = c2 (eL, y) . Next,

for agents who invested eH , given the taxes, c1 = y − T (y) + g (r (eH , y)) − r (eH , y) and

c2 = a (y) + αR2r (eH , y)− T ra, so they optimally choose c1 = c1 (eH , y) and c2 = c2 (eH , y) .

Also, by the taxation principle, agents with productivity θ choose y = y (e, θ) . Finally, notice
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that given L (e) , agents with innate ability γ optimally choose education level eγ.

Proof of Proposition 4: With heterogeneous β, the government’s problem remains the

same except (12) is now

U1 (γ, θ) = u (c1 (γ, θ))− h
(
y (γ, θ)

θ

)
+ βγδ2u (c2 (γ, θ))

for all γ, and the ex-ante incentive constraint is

δ0 (eH)u (c0 (H)) + βHδ1 (eH)

∫ θ

θ

[U1 (H, θ) + (1− βH) δ2u (c2 (H, θ))] f (θ|κH) dθ

≥ δ0 (eL)u (c0 (L)) + βHδ1 (eL)

∫ θ

θ

[U1 (L, θ) + (1− βL) δ2u (c2 (L, θ))] f (θ|κL,H) dθ.

The results follow from the procedures outlined in the proofs for Proposition 1 and Propo-

sition 2.

B Approximating Current Policies

To approximate current income taxes in the United States, we follow Heathcote et al.

(2017) and assume an income tax function T (y) = y − λy1−τ . College students have access

to low-interest federal loans. We introduce such loans by assuming that agents may borrow

L in period t = 0 to finance consumption and tuition. Then, agents start repaying these

loans at the beginning of working period t = 1, and we assume they repay them in ten years.

Loans up to a limit L̄ carry the government-subsidized interest rate rg; any amount above

L̄ carry a market interest rate rm > rg. Similarly as in the main calibration in Section 4,

we assume that the education, work, and retirement periods last for 5.12, 43, and 20 years,

respectively (in the case of high school graduates, the education period lasts for zero years).

Upon retirement, agents receive social security benefits, which are income-dependent.

The regulation below has been translated to fit the context of our model. To derive an

agent’s social security benefits, first calculate the agent’s average indexed monthly earnings

(AIME) which is defined as AIME = y
12

for annual income y. In practice, the social security

administration takes 35 of the highest annual incomes from the 45 years of the agent’s work

life and calculate the average monthly earnings. Next, based on 2015 social security regu-

lations, the agent’s monthly benefit a(AIME) is determined by the following replacement
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rates and bend points:

a(AIME) =



0.9× AIME if AIME ≤ 826

743.4 + 0.32× (AIME − 826) if 826 < AIME ≤ 4, 980

2, 072.68 + 0.15× (AIME − 4, 980) if 4, 980 < AIME ≤ 9, 875

2, 806.93 if AIME > 9, 875

.

This immediately implies that the agent receives A(y) = 12×a (AIME) every year in social

security benefits.

Using the 2015 regulations, agents are subject to a flat social security tax Ts (y) , which

is defined as

Ts (y) =

0.124× y if y ≤ 118, 500

14, 694 if y > 118, 500
.

The tax is capped at an annual income of 118, 500. Furthermore, the social security benefits

are distributed from the social security tax.

We assume that agents accumulate retirement savings in a 401(k) account and a regular

savings account which pays a gross interest of R2. Let s2 denote savings in a 401(k) account

and b2 in the regular savings account. Contributions to the 401(k) account are capped at an

annual amount of 18, 000. We also assume an employer matching rate of 50%. Contributions

to defined contribution plans, such as 401(k), are pre-tax. This means that income tax

payments are deferred upon withdrawal when retiring. However, social security tax is not

deferred. Since contributions to 401(k) are matched, agents would first save in their 401(k)

accounts until the cap binds, before saving in their regular accounts.

B.1 Deriving Allocations for Current Policies

To determine the allocation of present-biased agents under the current policy, we adopt

subgame perfect Nash equilibrium as our solution concept.

B.1.1 The Working Period Problem

By backward induction, agents with productivity θ who took out a total loan of L in

t = 0 and invested e in education solve the following problem:

maxu (c1)− h (l) + βδ2u (c2)

9



subject to

c1 + b2 + s2 = θl − T (θl − s2)− Ts (θl)− i,

c2 = 1.5R2s2 +R2b2 + A (θl)− T (1.5R2s2) ,

s2 ≤ c,

where c is the upper-bound on contributions to the 401(k) account and i is an installment

of the student loan defined as follows:

i =
1− δ10

a

1− δ43
a

[
rg(1 + rg)

10

(1 + rg)10 − 1
min

{
L, L̄

}
+

rm(1 + rm)10

(1 + rm)10 − 1

(
max

{
L, L̄

}
− L̄

)]
Agents start repaying their students loans at the beginning of work period and take ten

years to pay them down. Loans up to the upper bound of L̄ carry a government-subsidized

interest rate rg, while loan amounts above it carry a market interest rate of rm > rg. The

effective installment i is spread out over the entire working-age period using the baseline

annual discount factor of δa.

To analyze the solution of this model, let χt (θ) denote the multiplier on the period t

budget constraint for agents who invested eH , and χ
t
(θ) be the multiplier for low-educated

agents.

Using Only 401(k): When agents only use 401(k), then it means that agents choose to

save s2 < c.

We first look at agents who invested eH . The first order conditions for consumption and

savings s2 are

u′ (c1) = χ1 (θ) , βδ2u
′ (c2) = χ2 (θ) and χ1 (θ) = χ2 (θ) 1.5R2

(
θl − s2

1.5R2s2

)τ
.

This provides us with the following Euler equation:

u′ (c1) = 1.5β

(
θl − s2

1.5R2s2

)τ
u′ (c2) .
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For labor supply, we have four different income regions to consider:

h′ (l) =



χ2 (θ)
{

1.5R2

(
θl−s2

1.5R2s2

)τ
B (θ, y, s2) + 0.9θ

}
if y ≤ 9, 912

χ2 (θ)
{

1.5R2

(
θl−s2

1.5R2s2

)τ
B (θ, y, s2) + 0.32θ

}
if 9, 912 < y ≤ 59, 760

χ2 (θ)
{

1.5R2

(
θl−s2

1.5R2s2

)τ
B (θ, y, s2) + 0.15θ

}
if 59, 760 < y ≤ 118, 500

χ2 (θ) 1.5R2

(
1

1.5R2s2

)τ
θλ (1− τ) if y > 118, 500

,

where B (θ, y, s2) = θλ (1− τ) (y − s2)−τ − 0.124θ As for agents who invested eL, the first

order conditions are the same except for replacing χt (θ) with χ
t
(θ) .

Using Both 401(k) and Savings: When agents start saving in the regular savings

account—b2 > 0, then it means that s2 = c.

We first analyze the case where agents invested eH in t = 0. Suppose the agent has saved

s2 = c, then the agent can only continue to save with the standard savings account. We can

rewrite the sequential budget constraint into its present value terms:

c1 +
c2 − λ (1.5R2c)

1−τ − A (θl)

R2

= λ (θl − c)1−τ − Ts (θl)− i.

Let χ (θ) denote the multiplier on the present-valued budget constraint. The first order

conditions on consumption are

u′ (c1) = χ (θ) and βu′ (c2) = χ (θ) .

The first order condition for labor is

h′ (l) =



χ (θ)
[
θλ (1− τ) (θl − c)−τ − 0.124θ + 0.9

R2
θ
]

if y ≤ 9, 912

χ (θ)
[
θλ (1− τ) (θl − c)−τ − 0.124θ + 0.32

R2
θ
]

if 9, 912 < y ≤ 59, 760

χ (θ)
[
θλ (1− τ) (θl − c)−τ − 0.124θ + 0.15

R2
θ
]

if 59, 760 < y ≤ 118, 500

χ (θ) θλ (1− τ) (θl − c)−τ if y > 118, 500

,

We can derive a similar set of first order conditions for agents who obtained education

level eL.
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B.1.2 The Schooling Period Problem

Let (č1 (e, θ) , y̌ (e, θ) , č2 (e, θ)) denote the solution to the problem in Section B.1.1, which

is the optimal consumption path and output agents choose in t = 1 given education e and

productivity θ. Agents with innate ability γ solve the following problem:

max
c0,e,b1

δ0 (e)u (c0) + βδ1 (e)

∫ θ

θ

[
u (č1 (e, θ))− h

(
y̌ (e, θ)

θ

)
+ δ2u (č2 (e, θ))

]
f (θ|κ (e, γ)) dθ

subject to

c0 + e = b1 and e ∈ {eL, eH} .

In essence, agents take out a yearly loan of b1 to pay for their schooling and consumption in

t = 0. The total amount of student loans L that carries into the working-age period t = 1 is

defined as

L =

(
1

δa

)5.12

b1
1− δ5.12

a

1− δa

B.2 Deriving Allocations for Proposed Reform

Following Section B.1, we derive the allocations from the proposed policy reform that

treats student loan repayments as contributions to retirement savings in this section.

In the proposed reform, student loan repayments may qualify as a contribution, even

without agents making a direct contribution to their own accounts. Let m denote the match

received from student loan repayments. Assuming a 50% matching rate, these agents receive

a contribution of m = 0.5 min {i, c− s2} . In essence, student loan repayment i is treated as a

contribution, but only to the extent that it does not put the total contribution over the limit

c of what is qualified for matching. Agents can also elect to forgo this option. This happens

if agents save s2 = c. By contrast, for any s2 < c, agents will benefit, at least partially, from

receiving a match on their student loan repayments.

During the working period, agents with productivity θ who took out a total loan of L

in t = 0, resulting in an annual loan installment of i (as defined in subsection B.1.1), and

invested e in education solve the following problem:

maxu (c1)− h (l) + βδ2u (c2)

subject to

c1 + b2 + s2 = θl − T (θl − s2)− Ts (θl)− i,

c2 = 1.5R2s2 +R2m+R2b2 + A (θl)− T (1.5R2s2 +R2m) ,

12



s2 ≤ c.

There are three cases to consider. In the first case, agents do not benefit from the new

policy proposal because they choose to save in the retirement account up to the limit: s2 = c

and b2 ≥ 0. For the last two cases, s2 < c and student loan repayments act as contributions

to their retirement savings. Notice that if agents elect to receive a match on their student

loans, they would not save in their regular savings account, so b2 = 0.1 In the second case, the

agents receive a match on the full student loan repayment amount with total contributions

below the limit: i + s2 ≤ c and b2 = 0. In the last case, agents choose to primarily save on

their own and only receive a match on a fraction of the student loan repayment: i + s2 = c

and b2 ≥ 0.

For the schooling period, by backward induction, agents solve the same problem as the

one presented in Section B.1.2.

For our quantitative implementation of this model, we assume that the new policy is

introduced in a revenue-neutral way. This means that the additional matching provided to

employees based on their repayment of student loans is financed by a simultaneous increase

in income taxes on everyone. We find that the reform is fully financed by reducing the λ

parameter of the tax function from the baseline value of 0.839 to 0.826.

B.3 Calibration

In this section we calibrate the model to resemble the “real world” as closely as possible.

The goal is to back out the distribution of productivities across different education groups.

To this extent, we first pick a number of parameters externally and summarize them in Table

5. Then, we calibrate the distributions of skills internally to match the evidence on lifetime

earning provided by Cunha and Heckman (2007).

The values of risk aversion and Frisch elasticity of labor are standard and set to 2 and

0.5, respectively. Next, we discuss the calibration of the current tax system. The parameters

of the income tax function τ and λ are borrowed from Heathcote and Tsujiyama (2021) and

apply to income level normalized by average income in the economy.2 The upper bound for

401(k) contributions c is set to $18,000 based on the limit in 2015. As for the financing

of student loans, we assume for simplicity that the annual interest rates an agent may

obtain through private market and through a government-subsidized scheme are 10% and 5%,

1It is always optimal to move some of the savings from the regular account into the 401(k) and receive
a tax deferral, even when this shift causes a decrease in the match from student loans.

2We calculate average income directly using the factual distributions of lifetime income from Cunha
and Heckman (2007) and the shares of high school and college graduates (and beyond) of 0.68 and 0.32,
respectively, from the CPS.
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Table 5: Parameter values in the model

Symbol Meaning Value Source

σ Risk aversion 2
}

Standard valuesη Frisch elasticity 0.5

τ Tax progressivity 0.161
}

Heathcote and
Tsujiyama (2021)λ Taxation level 0.839

c 401(k) contribution limit 1.80


Approximated
from data

eH Cost of college 1.57
rm Commercial interest on student loans 0.1
rg Government interest on student loans 0.05
L̄ Cap on government-subsidized student loans 8.75

β Short-term discount factor 0.7


Based on
Nakajima (2012)

δ0(eL) High school period 0 long-term discount factor 0.00
δ1(eL) High school period 1 long-term discount factor 1.00
δ0(eH) College period 0 long-term discount factor 0.16
δ1(eH) College period 1 long-term discount factor 0.93
δ2 Retirement discount factor 0.29

Time-consistent benchmark (β = 1)


Based on
Nakajima (2012)

δ0(eL) High school period 0 long-term discount factor 0.00
δ1(eL) High school period 1 long-term discount factor 1.00
δ0(eH) College period 0 long-term discount factor 0.20
δ1(eH) College period 1 long-term discount factor 0.85
δ2 Retirement discount factor 0.17

Note: All monetary parameters are denominated in 10,000 of 2015 US dollars.

respectively. The amount of subsidized loan is capped at $87,500, in line with the regulations

for Stafford loans in the US (weighted by the shares of undergraduate and professional degrees

from Table 6). We further assume that an agent takes ten years to repay the student loans.

The annual cost of higher education eH is assumed to be $15,700, which is calculated

for 2015 based on average tuition costs of private and public colleges plus different types

of graduate degrees3 as well as relative enrollment data for both types of college.4 Table 6

presents a breakdown of different higher education outcomes, along with average costs and

durations, which we use to calculate this parameter.

In calibrating the short- and long-term discount factors we primarily follow Nakajima

(2012) who uses a general equilibrium model with present-biased agents and targets a capital-

3Source: College Board, Annual Survey of Colleges and NCES, Digest of Education Statistics
4Source: NCES, Digest of Education Statistics, and Current Population Survey 2015
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Table 6: Breakdown of higher education outcomes

Degree type % of population Duration Annual cost

Associate’s and less 67.7 0 0
Bachelor’s only 20.3 4 15, 396
Master’s 8.0 6 16, 140
Professional 1.9 8 27, 210
Doctoral 2.1 10 6, 158

Total 100 5.12 15, 695

Note: distribution of educational attainment is from CPS 2015. The durations and

annual costs are cumulative. The data on costs of various higher degrees are taken

from NCES, Digest of Education Statistics and expressed in 2015 dollars. We ignore

the cost and duration of Associate’s degrees as those are often combined with jobs.

output ratio of 3. We adopt his assumed value of the short-term discount factor of 0.7

which places in the midrange of estimates found by Laibson et al. (2017). The annual

long-run discount factor is δa = 0.9852 following Nakajima (2012) which we in turn use to

calculate effective discount factors across the three periods in our model. These effective

discount factors also reflect the relative lengths of the periods, which may differ across

agents of different education groups. Because high school graduates start working right

away, they never actually experience the education period 0; hence their parameter δ0(eL)

is zero and δ1(eL) is one. On the other hand, college graduates spend 5.12 years in period

0, which reflects the average duration of undergraduate and graduate studies in the US

(Table 6 presents a detailed breakdown), and then another 43 years in period 1. This yields

δ0(eH) = 1−δ5.12a

1−δ43a
= 0.16 and δ1(eH) = δ5.12a −δ48.12a

1−δ43a
= 0.93. We assume that both education

types spend 43 years working and 20 years in retirement. This yields a common retirement

period discount factor of δ2 = δ43a −δ63a
1−δ43a

= 0.29.5

For our analysis in the main body of the paper we also use the benchmark of time-

consistent agents, i.e. the world where β = 1. For reference, we present here the analogous

derivations of the effective long-run discount factors for that case. Once again following

Nakajima (2012) we assume an annual discount factor δa = 0.9698. Then, with the same

reasoning we assume δ0(eL) = 0 and δ1(eL) = 1 for high school graduates, compared to

δ0(eH) = 0.20 and δ1(eH) = 0.85 for college graduates. The discount factor for retirement

amounts to δ2 = 0.17.

Having established the external parameters, we turn to the parameters governing the

5Because the college type first spends around five years on education before they start to work, we assume
that they also retire later and live longer for the same number of years. This is consistent with a significant
body of research which shows college graduates live longer than non-college graduates (Meara et al., 2008).
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distribution of skills which are set through solving and simulating the model. For each of

the four groups of agents: (i.) factual high school graduates, (ii.) high school graduates had

they gone to college, (iii.) factual college graduates, and (iv.) college graduates had they not

gone to college, we observe the empirical distributions of lifetime earnings reported by Cunha

and Heckman (2007). Roughly speaking, these distributions are obtained by estimating a

Roy-type model on combined NLSY and PSID data and generating counterfactuals for both

education groups. As it is commonly known, panel surveys such as these tend to under-

represent the upper tail of the earnings distribution. For this reason, similar to Findeisen

and Sachs (2016), we add an upper Pareto-tail with the shape parameter of 1.5 (Saez, 2001).

For each distribution, we select an income threshold at which we attach the Pareto tail such

that the upper 10% of the mass is distributed according to it. We pick the scale parameter

such that the (smoothed out) PDF of the empirical distribution of earnings from Cunha and

Heckman (2007) intersects at the threshold with the Pareto PDF. Table 7 summarizes the

parameters of the Pareto tail added to each of the empirical distribution of lifetime earnings.

Table 7: Adding a Pareto tail to lifetime income distributions

HS fact. HS counter. COL fact. COL counter.

Threshold 205.5 269.2 315.4 223.2
Scale parameter 63.4 86.0 104.5 69.5

Note: The thresholds refer to present value of lifetime earnings and are expressed in

$10,000s of 2015 dollars. Thresholds are selected in each case such that 10% of total

mass is distributed according to Pareto distribution with the shape parameter of 1.5.

To capture the earnings distribution with a fat upper tail in our model, we assume

that agents’ skills θ follow a mixture of two distributions, a normal distribution and a two-

piece distribution (lognormal-Pareto) as described in Nigai (2017). The probability density

function of our mixture is then given by

f(θ) =p×
[

1

2πψ1

exp

{
(θ − µ1)2

2ψ2
1

}]
(15)

+(1− p)×


ρ

Φ
(
αs(α,ρ)

) 1√
2πs(α,ρ)θ

exp
{
−1

2

(
αs(α, ρ)− log(θT )−log(θ)

s(α,ρ)

)}
, if θ ∈ (0, θT )

(1− ρ)α(θT )α

θα+1 , if θ ∈ [θT ,∞)

In equation (15), µ and ψ are the mean and standard deviation of the normal distribu-

tion, and p is the probability of drawing it. The two-piece lognormal-Pareto distribution

comes with a shape parameter α, which we fix at 1.5, and two scale parameters, ρ and θT .
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Intuitively, θT is the threshold value at which the standard lognormal distribution turns into

Pareto, while ρ ∈ (0, 1) represents the fraction of total mass that is distributed according to

lognormal. We have hence 5 parameters to pin down for each of the four groups of agents,

(µ, ψ, ρ, θT , p), in order to replicate the empirical distributions of earning provided by Cunha

and Heckman (2007) and augmented with the Pareto tail. To do so, we solve for the optimal

policy functions in each of the four cases and simulate random draws for 100,000 agents. We

use a global optimization algorithm to minimize the distance between the simulated CDF of

lifetime earnings and the targeted one. Table 8 shows all components of our mixture density

defined in (15) matter quantitatively and altogether result in a good fit for model-derived

distributions of earnings in each group. Figures 10-11 depict the PDFs of lifetime earnings

in the model and their empirical targets across the four groups of agents. Notice that all

estimations result in an excellent fit to the data, with perhaps a slight exception for High

School counterfactual. However, this distribution does not affect the model solution in any

way and it is only necessary to verify that the low type indeed prefers to report truthfully.

Table 8: Parameters of productivity distributions

Symbol Meaning
Value

HS fact. HS counter. COL fact. COL counter.

µ Mean of normal 8.05 9.74 11.33 8.81
ψ St. dev. of normal 2.19 2.74 3.66 2.29
θT Threshold for Pareto 7.79 9.97 14.70 8.60
ρ Fraction of lognormal 0.35 0.61 0.63 0.43
p Probability of normal 0.62 0.39 0.53 0.56

Note: Productivities drawn from these distributions are in annual terms.

C Sensitivity Analyses for Efficiency Wedges

In this section, we conduct various sensitivity checks. We show how the efficiency wedge,

varies with respect to the two main preference parameters, namely the short-term discount

factor and the risk aversion. Figures 12(a) and 12(b) present the efficiency wedges (analogous

to Figure 2(a)) when β = 0.5 and β = 0.9, respectively. To make the comparison easier,

we keep the scale of the y-axes unchanged. The results are quite intuitive in that the two

wedges become much steeper (and separated from each other) as β decreases. On the other

hand, for a small degree of present bias, the two wedges flatten out and converge to zero.

Figures 13(a) and 13(b) show a similar sensitivity analysis for the efficiency wedges with

respect to risk aversion. Intuitively, as σ moves towards risk neutrality the wedges become

flatter, while higher risk aversion makes them steeper.
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Figure 10: Distributions of lifetime income - factual
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Figure 11: Distributions of lifetime income - counterfactual

Finally, it should be emphasized that the labor wedge remains virtually unaffected by

varying the degree of present bias, which is reminiscent of the result in Figure 3. By contrast,

the labor wedge is impacted by the degree of risk aversion, but this issue has been studied

extensively by the previous literature and is not the main topic of interest in this paper.

D Decomposition of the Labor Wedge

In this section, we quantify the decomposition of the labor wedge introduced in Section

3.2. Figure 14 presents the numerical approximation of the labor wedge components A,C,D
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Figure 12: Efficiency wedges for alternative values of short-term discount factor
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Figure 13: Efficiency wedges for alternative values of relative risk aversion

and E as function of income for the high innate ability type.6 The A component depends on

the inverse hazard rate of the distribution of θ and declines at first, before increasing and

converging to a constant due to the presence of a Pareto tail. By contrast, the intratemporal

component C increases and then converges, resulting in the overall convergence of the labor

wedge at the top of the distribution. The offsetting role that comes from the intertemporal

component D is much smaller in size and decreases monotonically.

The novel aspect of our paper is the introduction of E, the present bias component. Since

6We ignore the B components because, given the functional forms we impose, it reduces to a constant. We
also omit the decomposition for the low innate ability type because in our calibrated model the period-zero
consumption of L-agents is not pinned down. As a result, the intertemporal component is not well-defined.

19



Decomposition of the labor wedge

 0

 5

 10

 15

 20

 25

 30  60  90  120  150

A

 0

 0.5

 1

 1.5

 2

 2.5

 30  60  90  120  150

C

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 30  60  90  120  150

average annual income (in thousands of 2015 USD)

D

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 30  60  90  120  150

average annual income (in thousands of 2015 USD)

E

Figure 14: Labor wedge components for the high innate ability type

E = (1− β)D, this component declines monotonically but its magnitude is also very small

compared to components D, or especially C. Consequently, the labor wedge is generally not

much affected by the present bias, and any difference shows up most prominently at the

lowest levels of income, as evident in Figure 3.

E Time-Consistent Benchmarks

In this section, we present details of the implementation of the time-consistent optimal

policies, which we use as benchmark for welfare calculations in Section 4.3. We consider two

ways to implement the optimal allocation for time-consistent agents: mandatory retirement

savings and laissez faire retirement savings. The two different implementations lead to

different measures of welfare improvement.

First, we characterize the optimal allocations for time-consistent agents in a direct mech-

anism. Let
{
c̃0 (γ) , [c̃t (γ, θ) , ỹ (γ, θ)]t>0,θ∈Θ

}
be the optimal allocation for time-consistent

agents. The optimal allocation for time-consistent agents satisfies the following:

u′ (c̃1 (γ, θ)) = u′ (c̃2 (γ, θ)) .
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This implies that c̃1 (γ, θ) = c̃2 (γ, θ) = c̃ (γ, θ) . For t = 0, the government implements c̃0 (γ)

by providing agents a student loan of

L (eH) = c̃0 (H) + eH and L (eL) = c̃0 (L) + eL.

Next, we proceed to consider two different methods to decentralize the optimal allocations

in t = 1 and t = 2.

E.1 Mandatory Savings

Consider a mandatory minimum savings rule that forces agents to smooth consump-

tion: c̃1 (γ, θ) = c̃2 (γ, θ) . For time-consistent agents, the policy implements the optimum.

However, for present-biased agents, the minimum savings rule is not incentive compatible.

To see how the minimum savings rule changes the behavior of present-biased agents, we

first analyze how agents would change their reports of θ. Since for our quantitative exercise,

u (c) = c1−σ

1−σ and h
(
y
θ

)
= 1

1+ 1
η

(
y
θ

)1+ 1
η . Then, for a given report of innate ability γ̂ and the

time-consistent allocations, present-biased agents choose a report θ̂ to maximize the utility

at t = 1. In essence, a θ-agent solves

max
θ̂
u
(
c̃1

(
γ̂, θ̂
))
− h

 ỹ
(
γ̂, θ̂
)

θ

+ βδ2u
(
c̃2

(
γ̂, θ̂
))

.

From the argument above and the assumptions on the utility function, the problem can be

rewritten as

max
θ̂
u
(
c̃
(
γ̂, θ̂
))
− 1

1 + 1
η

 ỹ
(
γ̂, θ̂
)

(1 + βδ2)
1

1+ 1
η θ

1+ 1
η

.

We know that when β = 1, the solution to the problem above is θ̂ = θ, because the mechanism

satisfies incentive compatibility for time-consistent agents by assumption. Thus, we can

transform the problem into the following alternative problem:

max
θ̂
u
(
c̃
(
γ̂, θ̂
))
− 1

1 + 1
η

 ỹ
(
γ̂, θ̂
)

α (1 + δ2)
1

1+ 1
η θ

1+ 1
η

,

where α =
(

1+βδ2
1+δ2

) 1

1+ 1
η . Immediately, we can see that agents optimally report θ̂ = αθ,

because the problem is similar to a time-consistent agent with productivity αθ. As a result,
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the present-biased agents with productivity θ do not report truthfully and instead report

(
1 + βδ2

1 + δ2

) 1

1+ 1
η
θ.

This result is intuitive, because the reward for working is spread evenly between the two

periods with mandatory savings. Since present-biased agents put less weight on retirement

consumption, the mandatory savings policy provides less incentives for them to work. Their

optimal strategy is to under-report their productivity to work less.

Finally, in t = 0, agents know that they will report
(

1+βδ2
1+δ2

) 1

1+ 1
η θ in t = 1. As a result,

given the optimal time-consistent allocation, H-agents solve the following:

max

{
u (c̃0 (H))+β

δ1 (eH)

δ0 (eH)

∫ θ

θ

u(c̃1

(
H, θ̂

))
− h

 ỹ
(
H, θ̂

)
θ

+ δ2u
(
c̃2

(
H, θ̂

)) dF (θ|κH) ,

δ0 (eL)

δ0 (eH)
u (c̃0 (L))+β

δ1 (eL)

δ0 (eH)

∫ θ

θ

u(c̃1

(
L, θ̂

))
− h

 ỹ
(
L, θ̂

)
θ

+ δ2u
(
c̃2

(
L, θ̂

)) dF (θ|κL,H)

}
,

where θ̂ =
(

1+βδ2
1+δ2

) 1

1+ 1
η θ.

E.2 Laissez Faire Savings

Another way to implement the optimum is for the government to allow agents to save

freely for retirement. This is because with time-consistent agents, it is not necessary for

the government to introduce any additional incentives for retirement savings. Hence, to

implement the optimal allocation for time-consistent agents, the government only needs to

introduce appropriate income taxes at t = 1 and student loans in t = 0. However, under

laissez faire savings, present-biased agents do not smooth consumption and it is also not

incentive compatible.

To find out how present-biased agents behave, we first derive the income tax T̃ (y) that

implements the optimum for time-consistent agents. At t = 1, time-consistent agents solves

the following:

max
c1,c2,y

u (c1)− h
(y
θ

)
+ δ2u (c2)

subject to

c1 + s2 = y − T̃ (y) and c2 = R2s2.
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Let Ỹ be the set of optimal income for time-consistent agents:

Ỹ = {y|y = ỹ (γ, θ) ,∀γ ∈ {L,H} , θ ∈ Θ} .

By Lemma 2, we can rewrite the allocations in terms of income: c̃t (ỹ (γ, θ)) = c̃ (γ, θ) .

As a result, we can define the following income tax, which implements the optimum for

time-consistent agents:

T̃ (y) =

y if y /∈ Ỹ

y − c̃1 (y)− 1
R2
c̃2 (y) if y ∈ Ỹ .

.

For simplicity, we assume that if the government observes an off-path income level that it

did not expect, it usurps all of the output and leaves the agent without any consumption.

Next, we outline how present-biased agents behave under laissez faire savings. Given

laissez faire savings and the income tax above, present-biased agents solve the following at

t = 1,

max
c1,c2,y

u (c1)− h
(y
θ

)
+ βδ2u (c2)

subject to

c1 + s2 = y − T̃ (y) and c2 = R2s2.

We can rewrite the problem as

max
c1,c2,y

u (c1)− h
(y
θ

)
+ βδ2u (c2)

subject to

c1 +
1

R2

c2 =

(
1 +

1

R2

)
c̃ (y) and y ∈ Ỹ .

It is clear that agents never choose y /∈ Ỹ , because all of the output would be confiscated.

As a result, for any given y ∈ Ỹ , present-biased agents choose consumption (ĉ1 (y) , ĉ2 (y))

to satisfy

u′ (ĉ1 (y)) = βu′ (ĉ2 (y))

and

ĉ1 (y) +
1

R2

ĉ2 (y) = c̃ (y) +
1

R2

c̃ (y) .

It is obvious that there will be intertemporal inefficiencies. Specifically, given u(c) = c1−σ

1−σ ,
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we have

ĉ1 (y) = β−
1
σ

(
1 + δ2

β−
1
σ + δ2

)
c̃ (y) and ĉ2 (y) =

(
1 + δ2

β−
1
σ + δ2

)
c̃ (y) .

In addition to the intertemporal inefficiencies, the agents might also choose suboptimal

output. The choice in output y is equivalent to a choice in the report θ̂ in a direct mechanism.

Given the savings decision derived above, the agent would solve the following problem

max
θ̂

[
β−

1
σ

(
1+δ2

β−
1
σ +δ2

)
c̃
(
γ̂, θ̂
)]1−σ

1− σ
− 1

1 + 1
η

 ỹ
(
γ̂, θ̂
)

θ

1+ 1
η

+ βδ2

[(
1+δ2

β−
1
σ +δ2

)
c̃
(
γ̂, θ̂
)]1−σ

1− σ
,

which can be rewritten as

max
θ̂
u
(
c̃
(
γ̂, θ̂
))
− 1

1 + 1
η

 ỹ
(
γ̂, θ̂
)

[
β (1 + δ2)1−σ

(
β−

1
σ + δ2

)σ] 1

1+ 1
η θ


1+ 1

η

.

We can compare this problem to the time-consistent agent’s problem:

max
θ̂
u
(
c̃
(
γ̂, θ̂
))
− 1

1 + 1
η

 ỹ
(
γ̂, θ̂
)

(1 + δ2)
1

1+ 1
η θ

1+ 1
η

.

Since the allocations are incentive compatible for time-consistent agents, the time-consistent

agents choose θ̂ = θ. This implies that we can rewrite the problem for the present-biased

agent as follows:

max
θ̂
u
(
c̃
(
γ̂, θ̂
))
− 1

1 + 1
η

 ỹ
(
γ̂, θ̂
)

(1 + δ2)
1

1+ 1
η Tθ

1+ 1
η

,

where

T =

[
β

(
β−

1
σ + δ2

1 + δ2

)σ] 1

1+ 1
η

.

This implies that present-biased agents with productivity θ would misreport as

Tθ =

[
β

(
β−

1
σ + δ2

1 + δ2

)σ] 1

1+ 1
η

θ.

After solving for the optimal allocations for t = 1, 2, we can solve for the agent’s education

choices in t = 0. The process is the same as the one for mandatory savings.
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E.3 Welfare Comparisons

To evaluate the welfare improvement of the paper’s proposed policies, we measure the

change of moving from mandatory savings or laissez faire savings to the policies introduced

in Section 5.

However, this welfare evaluation is not straightforward. We need to guarantee the al-

locations chosen by present-biased agents under mandatory savings or laissez faire savings

are feasible. This is because, from the analysis above, output of present-biased agents is

further distorted under policies designed for TC agents. Therefore, the government budget

constraint does not hold with present-biased agents under mandatory savings or laissez faire

savings.

To facilitate the welfare comparison, we introduce an external government expenditure

G > 0 in the time-consistent setup, so that the resource constraint becomes

∑
γ

πγ

{
− c̃0 (γ)

R0 (eγ)
− eγ +

1

R1 (eγ)

∫
Θ

[
ỹ (γ, θ)− c̃1 (γ, θ)− 1

R2

c̃2 (γ, θ)

]
f (θ|κγ) dθ

}
≥ G.

We interpret G as an emergency fund the government uses to supplement the agents’ con-

sumption when total output is lower than expected. Hence, we require G to be sufficiently

large so that the allocations chosen by the present-biased agents,
{
ĉ0 (γ) , [ĉt (γ, θ) , ŷ (γ, θ)]t>0,θ∈Θ

}
,

are feasible:

∑
γ

πγ

{
− ĉ0 (γ)

R0 (eγ)
−eγ+

1

R1 (eγ)

∫
Θ

[
ŷ (γ, θ)− ĉ1 (γ, θ)− 1

R2

ĉ2 (γ, θ)

]
f (θ|κγ) dθ

}
≥ 0. (16)

E.4 Quantitative Implementation

In our quantitative exercise, we design a fixed-point algorithm to find the value of G such

that the resource constraint in (16) binds. The algorithm can be summarized as follows:

1. Start with an initial value for government spending G0.

2. Solve for the optimal allocations with time-consistent agents.

3. Use the allocations, implemented either through mandatory savings or laissez-faire

arrangement, to solve for the best response of present-biased agents. Calculate the

resulting gap in the resource constraint which stems from present-biased agents under-

reporting their productivity type. Denote the gap G1.

4. Check if |G0 −G1| < ε, where ε is a tolerance criterion. If yes, we have found a fixed

point. If not, update G0 and go back to step 1.
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Table 9 summarizes the fixed-point amount of government spending G which balances

the resource constraint under present-biased agents, under both implementations and for all

parameter combinations considered in Table 3.

Table 9: Fixed-point amount of government spending that balances the resource constraint

Mandatory savings

σ = 1.5 σ = 2 σ = 2.5
β = 0.5 27.05 21.14 17.52
β = 0.7 13.16 10.15 8.31
β = 0.9 3.60 2.74 2.23

Laissez-faire

σ = 1.5 σ = 2 σ = 2.5
β = 0.5 27.29 21.46 17.86
β = 0.7 13.23 10.23 8.40
β = 0.9 3.61 2.75 2.23

To gain a better understanding of where the difference in welfare gains between the two

implementations comes from, Table 10 calculates the welfare gains relative to the laissez-

faire allocations, where we assume that agents are able to smooth consumption over the life

cycle. In other words, the government spending amount G is the same as in the right panel of

Table 9 (because agents report their productivity as in the laissez-faire implementation), but

consumption is smoothed over time as in the mandatory savings world. Comparing Table

10 to Table 3, we learn that while the laissez-faire allocations lead to a minor efficiency loss,

most of the additional welfare loss in this scenario is due to the agents’ inability to smooth

consumption over time.

Table 10: Welfare gains relative to time-consistent laissez-faire allocations with perfect con-
sumption smoothing

Laissez-faire with smoothing

σ = 1.5 σ = 2 σ = 2.5
β = 0.5 2.51 3.41 3.26
β = 0.7 1.04 1.43 1.40
β = 0.9 0.27 0.37 0.38

F Solving for Optimal Education-Independent Policies

In this section, we describe the computational algorithm used to solve for the bench-

mark case of optimal allocations conditional on the intertemporal wedge being education-

independent. The challenge lies in the fact that while the allocations that we solve for are a

function of productivity θ, the education-independence constraint on the wedge is imposed

for each observable income y(γ, θ) which itself is an allocation.
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To overcome this challenge we adopt the following approach:

1. Consider a generic set of allocations {c1(γ, θ), c2(γ, θ), y(γ, θ)}γ∈{H,L}. For each type

γ ∈ {H,L}, and for each productivity θ, find θ̂γ such that:

y(γ, θ) = y(γ̂, θ̂γ)

Here, γ̂ is the innate ability type other than γ. In essence, for each type and produc-

tivity level we find an off-grid productivity level that yields the same output for the

other innate ability type. We use linear interpolation to evaluate income at off-grid

productivity values.

2. Solve for the optimal allocations under an additional set of 2N constraints, one for

each pair of innate ability and productivity, such that for each γ and θ

u′
(
c1(γ, θ)

)
u′
(
c2(γ, θ)

) =
u′
(
c1(γ̂, θ̂γ)

)
u′
(
c2(γ̂, θ̂γ)

)
Once again, γ̂ is the innate ability type other than γ and we use linear interpolation

to evaluate consumption in both periods at off-grid values of productivity. In essence,

for each productivity level we require that the efficiency wedge be equalized with the

efficiency wedge of the other innate ability type, at the productivity level which yields

the same output.

G Education-Contingent Retirement Savings Subsidy

In this section, we consider an alternative implementation with income and education

contingent retirement savings subsidies. Agents are offered a student loan L (e) in t = 0.

They are required to make income contingent repayments of [1− τ e (e, y)]L (e) in t = 1,

where the subsidy τ e (e, y) is a function of education expenses and income. In t = 1, agents

also face an income tax T (y) independent of education. Importantly, agents can save s2 in

a retirement account at t = 1, where the savings are subsidized at a rate τ s (e, y) which is

a function of income and education investment. Furthermore, retirement savings s2 come

from after-tax funds, so the income and education dependent retirement savings account is

similar to a Roth 401(k). Finally, in each period, agents can save via the risk-free bond b,

which are taxed with a history-independent bond savings tax T k (b) .

Given the proposed policies, at t = 1, agents with education level e and productivity θ
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solve the following:

max
c1,y,c2,s2,b2

u (c1)− h
(y
θ

)
+ βδ2u (c2)

subject to

c1 + s2 + b2 + R̃1 (e) (1− τ e (e, y))L (e) = y − T (y) + R̃1 (e) b1 − T k (b2) ,

c2 = R2 (1 + τ s (e, y)) s2 +R2b2,

where R̃1 (e) = R1(e)
R0(e)

is the gross interest rate normalized by the difference between the

period lengths of t = 0 and t = 1. Let {c∗1 (e, θ) , y∗ (e, θ) , c∗2 (e, θ)} denote the solution to the

agents’ problem at t = 1 for any θ ∈ Θ and e ∈ {eL, eH} . Also, let U1 (e, θ) denote the value

function for the agents’ problem at t = 1. The agents’ problem with innate ability γ at t = 0

is

max
c0,e,b1

δ0 (e)u (c0) + βδ1 (e)

∫ θ

θ

[U1 (e, θ) + (1− β) δ2u (c∗2 (e, θ))] f (θ|κ (e, γ)) dθ

subject to

c0 + e+ b1 = L (e)− T k (b1) and e ∈ {eL, eH} .

Let P ss =
{

[L (e) , τ e (e, y)] , τ s (e, y) ,
[
T (y) , T k (b)

]}
. The following proposition states that

the optimum can be decentralized with an income-contingent student loans policy (L (e) , τ e (e, y))

combined with an income and education dependent retirement subsidy τ s (e, y) and tax pol-

icy
(
T (y) , T k (b)

)
.

Proposition 5 The optimum can be implemented with P ss.

Proof Similar to Section 5.1, we focus on an implementation where agents do not dou-

ble deviate (misreport and purchase bonds) due to the bond savings tax T k (b) , which is

constructed in the proof of Proposition 3.

Next, we construct the other policy instruments. By Lemma 2, we can define the opti-

mal consumption derived from the direct mechanism as (c0 (e) , c1 (e, y) , c2 (e, y)) . First, we

construct the student loans and its income-contingent repayment schedule along with the

income tax. Let the loan amount be defined as

L (e) =

c0 (e) + e if e ∈ {eL, eH}

0 otherwise
,
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and the income-contingent repayment subsidy is τ e (eL, y) = 1 and

τ e (eH , y) = 1+
1

R̃1 (eH)L (eH)

[
c1 (eH , y)−c1 (eL, y)+

c2 (eH , y)

R2 (1 + τ s (eH , y))
− c2 (eL, y)

R2 (1 + τ s (eL, y))

]
.

Let y (γ, θ) be the optimal output of type (γ, θ) agents in a direct revelation mechanism

and define Y = {y|y = y (γ, θ) with γ ∈ {L,H} and θ ∈ Θ} to be the admissible set of

income. The income tax is

T (y) =

y − c1 (eL, y)− c2(eL,y)
R2(1+τs(eL,y))

if y ∈ Y

y if y /∈ Y
.

Next, we define the income and education contingent retirement savings subsidy as

1 + τ s (e, y) =


u′(c1(e,y))
βu′(c2(e,y))

if e ∈ {eL, eH}

0 otherwise
.

Finally, we check that the policy instruments implement the optimum. First, notice that

all agents choose e ∈ {eL, eH} , otherwise they will not have any retirement consumption.

Similarly, due to the income tax, all agents produce output y ∈ Y. Next, for any e ∈ {eL, eH}
and y ∈ Y, agents at t = 1 choose consumption to satisfy

u′ (c1)

βu′ (c2)
= 1 + τ s (e, y) and c1 +

c2

R2 (1 + τ s (e, y))
= c1 (e, y) +

c2 (e, y)

R2 (1 + τ s (e, y))
.

Clearly, agents optimally choose c1 = c1 (e, y) and c2 = c2 (e, y) . Also, by the taxation prin-

ciple, agents with productivity θ choose y = y (e, θ) . For the final step, notice that given

L (e) , agents with innate ability γ optimally choose education level eγ.

Figure 15 presents the optimal student loan repayment and retirement savings subsidies

for the two education groups as function of income. Panel 15(a) shows that for the H-agents

with income below 60,000 in present value, the repayment subsidy starts at over 60% and

decreases with income. Once the Pareto tail kicks in, the trend reverts and the optimal

subsidy increases and then drops again before settling at around 80%. Panel 15(b) shows

the savings subsidy schedules. The optimal savings subsidies are chosen such that they are

the negative of the corresponding decision wedges τ̂ k1 , which is why its shape is similar to the

efficiency wedges τ k1 depicted in Figure 2, where lower income levels receive more subsidies

and the subsidy for college graduates is higher for virtually all income levels.

It is worth pointing out that the optimal student loans subsidy is determined by the labor

29



−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 30  60  90  120  150

average annual income (in thousands of 2015 USD)

Student loan repayment subsidy in period 1

high school
college

(a) Optimal student loan subsidy τe(e, y)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 30  60  90  120  150

average annual income (in thousands of 2015 USD)

Optimal savings subsidy in period 1

high school
college

(b) Optimal savings subsidy τs(e, y)

Figure 15: Optimal education-contingent subsidies

wedges. We set the income tax to match the labor wedge for L-agents, while the income

contingent student loans subsidies coupled with the marginal income tax rate replicate the

optimal labor wedge for H-agents. Since the optimal labor wedge for H-agents is larger with

the difference growing until income 60, 000, the student loans subsidy is decreasing up to

that amount. Beyond 60, 000, the difference in the labor wedges decreases initially and with

the optimal labor wedge for L-agents eventually rising above the labor wedge of H-agents,

which causes the student loans subsidy to increase. Also, since we appended the Pareto-tail

to the top 10% of the productivity distribution for each education group, the U -shaped dip

in the labor wedge for H-agents is much higher than the one for L-agents. As a result, the

labor wedge for L-agents is much larger than the labor wedge for H-agents with incomes

between 70, 000 and 90, 000. This drives the significant increase in student loans subsidy

beyond 60, 000.

H Off-Path Mechanisms

In this section, we show how mechanisms with off-path options can relax the ex-ante in-

centive constraint. First, we discuss how threats can be constructed off the equilibrium path

when agents are sophisticated and the government can perfectly identify some of the agents

who misreported in the previous period. Then, we illustrate the off-path mechanism for

non-sophisticated agents. Finally, we characterize the optimum when the ex-ante incentive

constraint is fully relaxed.
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H.1 Off-Path Mechanism for Sophisticated Agents

Our paper focuses on a setting where all productivity distributions span the whole range

of Θ regardless of agents’ human capital κ. Here, we will show how off-path threats can fully

relax the ex-ante incentive constraint when there exists a positive measure of productivities

that only H-agents can have. Though off-path threats can also be introduced in a setting

where all the productivity distributions span the whole range of Θ, it is not apparent why

only the dishonest agents choose the off-path threats while the honest agents choose the

on-path allocations. This is because, for the off-path threats to work, both H-agents with

productivity θ who misreported as low innate ability and actual L-agents with productivity θ

would have to be indifferent between the off-path threat and the on-path allocation (Amador

et al., 2003; Halac and Yared, 2014). Finally, for off-path threats to be effective, agents have

to be aware of their present bias, which is the case with sophisticated agents.

We will assume that only H-agents can have productivities greater than θH where θ <

θH < θ, so f (θ|κH) , f (θ|κL,H) > 0 and f (θ|κL) = 0 for any θ ∈
(
θH , θ

]
. In other words, only

agents with high innate ability can achieve the productivity levels above θH . To illustrate

how the off-path threats weaken the ex-ante incentive constraint, we also assume that u is

unbounded below and above (u (R+) = R). When u is unbounded below and above, the

ex-ante incentive constraint can be fully relaxed by the off-path threats. In general, off-path

threats can weaken the ex-ante incentive constraint—though perhaps not fully—as long as

there is a set of productivities with positive measure that only H-agents can achieve.

Following Yu (2021), the government can introduce a conditional commitment mechanism

(CCM). CCM features off-path allocations used to exploit the sophisticated present-biased

agents’ demand for commitment, which are referred to as threat allocations. For L-agents,

the government designs the menu

P̃L =
{
c0 (L) , [c1 (L, θ) , y (L, θ) , c2 (L, θ)]θ∈(θH ,θ] , [c1 (L, θ) , y (L, θ) , c2 (L, θ)]θ∈[θ,θH ]

}
.

Since none of the L-agents would end up with a productivity greater than θH , the set of

allocations [c1 (L, θ) , y (L, θ) , c2 (L, θ)]θ∈(θH ,θ] only punishes H-agents who misreported in

t = 0, so it is the set of threat allocations. The threat allocations are located in the

menu for L-agents to deter H-agents from misreporting. Without loss of generality, it

is sufficient to assume the government designs a single threat allocation: ct (L, θ) = cTt

and y (L, θ) = yT for any θ ∈
(
θH , θ

]
. In contrast, we assumed that L-agents do not

have an incentive to misreport upwards, so the menu for H-agents stays the same: P̃H ={
c0 (H) , [c1 (H, θ) , y (H, θ) , c2 (H, θ)]θ∈Θ

}
.

The consumption path of the threat allocations are frontloaded to exacerbate the agents’
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present bias: cT1 > cT2 . Since present-biased agents at t = 0 hope to prevent their future selves

from saving too little for retirement, the frontloaded threat consumption path can help deter

H-agents from misreporting downwards. Furthermore, to prevent the actual L-agents from

selecting the threat allocations, the threat output yT is increased. Formally, the threat

allocations are disciplined by the threat constraints: for any θ ∈
(
θH , θ

]
and θ′ ∈ [θ, θH ] ,

u
(
cT1
)
− h

(
yT

θ

)
+ βδ2u

(
cT2
)
≥ u (c1 (L, θ′))− h

(
y (L, θ′)

θ

)
+ βδ2u (c2 (L, θ′)) ,

and the executability constraints: for any θ ∈ [θ, θH ] ,

U1 (L, θ) ≥ u
(
cT1
)
− h

(
yT

θ

)
+ βδ2u

(
cT2
)
.

The threat constraints guarantee that H-agents who misreported downwards in t = 0 would

end up consuming the threat allocation if their productivity is greater than θH . The exe-

cutability constraints ensure that none of the L-agents would consume the threat allocation.

Therefore, the ex-ante incentive constraint is

U0 (H) ≥ δ0 (eL)u (c0 (L)) + βδ1 (eL)

[∫ θH

θ

[U1 (L, θ) + (1− β) δ2u (c2 (L, θ))] f (θ|κL,H) dθ

+

∫ θ

θH

[
u
(
cT1
)
− h

(
yT

θ

)
+ δ2u

(
cT2
)]
f (θ|κL,H) dθ

]
.

Finally, the on-path allocations need to be incentive compatible.

Lemma 3 When f (θ|κH) , f (θ|κL,H) > 0 and f (θ|κL) = 0 for any θ ∈
(
θH , θ

]
and u is

unbounded above and below, the ex-ante incentive compatibility constraint is non-binding at

the optimum.

Proof First, for any on-path allocations, let

θ̂ = arg max
θ′∈[θ,θH ]

{
u (c1 (L, θ′))− h

(
y (L, θ′)

θ

)
+ βδ2u (c2 (L, θ′))

}
.

In other words, an agent with the highest productivity θ would misreport as θ̂ ∈ [θ, θH ] if

it were restricted to choosing the on-path allocations. This implies that U1

(
θ̂;L, θ

)
is the

highest attainable utility for the right-hand side of the threat constraint for any agent who
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reported γ = L in t = 0. As a result, the threat constraint can be rewritten as

u
(
cT1
)

+ βδ2u
(
cT2
)
≥ U1

(
θ̂;L, θ

)
+ sup

θ∈(θH ,θ]
h

(
yT

θ

)
.

This construction would imply that all of the agents with θ ∈
(
θH , θ

]
prefer the threat

allocation. We can set cT1 such that

u
(
cT1
)

= U1

(
θ̂;L, θ

)
+ sup

θ∈(θH ,θ]
h

(
yT

θ

)
− βδ2u

(
cT2
)
. (17)

Next, let

U0 (L;H, θ ≤ θH)

= δ0 (eL)u (c0 (L)) + βδ1 (eL)

∫ θH

θ

[U1 (L, θ) + (1− β) δ2u (c2 (L, θ))] f (θ|κL,H) dθ,

then the ex-ante incentive constraint can be rewritten as

u
(
cT1
)

+ δ2u
(
cT2
)
≤

1
βδ1(eL)

[U0 (H)− U0 (L;H, θ ≤ θH)] +
∫ θ
θH
h
(
yT

θ

)
f (θ|κL,H) dθ

1− F (θ|κL,H)
.

By (17), the ex-ante incentive constraint is

u
(
cT2
)
≤

1
βδ1(eL)

[U0 (H)− U0 (L;H, θ ≤ θH)] +
∫ θ
θH
h
(
yT

θ

)
f (θ|κL,H) dθ

(1− β) δ2 [1− F (θ|κL,H)]

−
U1

(
θ̂;L, θ

)
+ supθH

(
yT

θ

)
(1− β) δ2

.

Since u is unbounded below and above, we can decrease cT2 such that the ex-ante incentive

constraint always holds for any on-path allocation and increase cT1 such that (17) is satisfied.

Finally, to satisfy the executability constraints, notice that for any on-path and threat

allocations, we can increase yT such that the executability constraints hold.

Lemma 3 shows how the off-path threat can help relax the ex-ante incentive compatibility

constraint. With a positive probability, H-agents who misreported downwards in t = 0 are

caught lying. Those who are caught are punished with less retirement savings. As a result,

H-agents voluntarily report truthfully and surrender their information rent in exchange for
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commitment. A special case of Lemma 3 is when the innate ability and productivity are the

same or when private information is not dynamic. In this case, the government learns the

agents’ productivity when they report their innate ability truthfully in t = 0. As a result, the

full information efficient optimum is implementable when the off-path threat fully relaxes

the ex-ante incentive constraint on innate ability (Yu, 2021).

H.2 Off-Path Mechanism for Non-Sophisticated Agents

The paper has focused on sophisticated present-biased agents. Sophisticated agents fully

anticipate the behavior of their future selves, so they have a demand for commitment. On

the other hand, non-sophisticated agents underestimate the severity of their bias and tend

to demand too little commitment. We explore the implications of non-sophistication on the

design of optimal policy in this section.

To model non-sophistication, we follow O’Donoghue and Rabin (2001). Agents at t = 0

perceive their present bias in t = 1 to be β̂ ∈ [β, 1]. Let W1

(
c1, c2, y; θ, β̂

)
denote the

non-sophisticated agents’ perceived utility in t = 1:

W1

(
c1, c2, y; θ, β̂

)
= u (c1)− h

(y
θ

)
+ β̂δ2u (c2) .

If β̂ = β, agents are sophisticated and fully aware of the bias. If β̂ = 1, agent are fully

näıve and believe their future selves to be time-consistent. Partially näıve agents know

they are present-biased, β̂ < 1, but they underestimate its severity, β̂ > β. For this exten-

sion, we assume all agents are non-sophisticated and have heterogeneous and unobservable

sophistication distributed within support
[
β̂, 1
]
, where β̂ ∈ (β, 1] .

Yu (2021) showed that it is optimal for the government to take advantage of the misspec-

ified beliefs of present-biased agents through the preference arbitrage mechanism (PAM).

PAM features off-path allocation used to exploit the incorrect beliefs, which are referred

to as the imaginary allocations and denoted as (cI , yI). The allocation that is implemented

on-path is called the real allocations denoted as (c, y) . To illustrate how PAM works, we

assume that u is unbounded below and above (u (R+) = R). We will show how the ex-ante

incentive constraint can be fully relaxed in this setting. In general, PAM weakens the ex-ante

incentive constraint, though perhaps not fully, whenever agents are non-sophisticated.

For H-agents, the government designs the menu

P̂H =
{
c0 (H) ,

[
cI1, y

I , cI2
]
, [c1 (H, θ) , y (H, θ) , c2 (H, θ)]θ∈Θ

}
.

At t = 1, H-agents choose between imaginary and real allocations. The consumption path
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of the imaginary allocation is backloaded (cI2 > cI1), while the consumption path of the

real allocation is relatively less back-loaded. It is designed this way so that at t = 0, the

agents mistakenly believe their future selves will choose the imaginary allocation. However,

they end-up selecting the real allocation instead. Since we assumed the ex-ante incentive

constraints are non-binding for L-agents, the government does not need to design imaginary

allocations for them, so P̂L =
{
c0 (L) , [c1 (L, θ) , y (L, θ) , c2 (L, θ)]θ∈Θ

}
. Similar to Yu (2021),

it is not necessary to design imaginary allocations tailored for each level of sophistication.

It is possible to find a single set of imaginary allocations such that it implements the same

real allocations for agents of any sophistication.

Lemma 4 For non-sophisticated present-biased agents, when u is unbounded above and be-

low, the ex-ante incentive compatibility constraint is non-binding at the optimum.

Proof From Yu (2021), we first choose the imaginary allocation for a fixed β̂ such that it

satisfies the preference arbitrage constraint: for any θ,

u
(
cI1
)
−h

(
yI

θ

)
+ β̂δ2u

(
cI2
)
≥ max

θ̂

u(c1

(
H, θ̂

))
− h

y
(
H, θ̂

)
θ

+ β̂δ2u
(
c2

(
H, θ̂

)) .

In essence, in t = 0, agents believe their future selves would choose the imaginary allocation

over the real allocation. Notice that the real allocations may not be incentive compatible

under the erroneous belief. Next, the imaginary allocation has to satisfy the executability

constraints to make sure that agents actually choose the real allocation at t = 1 : for any θ,

U1 (H, θ) = u (c1 (H, θ))− h
(
y (H, θ)

θ

)
+ βδ2u (c2 (H, θ)) ≥ u

(
cI1
)
− h

(
yI

θ

)
+ βδ2u

(
cI2
)
.

Thus, the ex-ante incentive compatibility constraint is

δ0 (eH)u (c0 (H)) + βδ1 (eH)

∫ θ

θ

[
u
(
cI1
)
− h

(
yI

θ

)
+ δ2u

(
cI2
)
.

]
f (θ|κH) dθ ≥ U0 (L;H) .

Next, we show how the imaginary allocation can be designed such that the ex-ante

incentive constraint is non-binding for all sophistication levels. Without loss of generality,

set yI = 0. Choose the imaginary allocation such that u
(
cI1
)

+ βδ2u
(
cI2
)

= minθ̃ U1

(
H, θ̃

)
,

so the executability constraints are non-binding except for H-agents with the lowest utility
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U1. Hence, the preference arbitrage constraints can be expressed as

u
(
cI2
)
≥ J

(
β̂
)
≡

maxθ̂

{
u
(
c1

(
H, θ̂

))
− h

(
y(H,θ̂)

θ

)
+ β̂δ2u

(
c2

(
H, θ̂

))}
−minθ̃ U1

(
H, θ̃

)
(
β̂ − β

)
δ2

.

Since the preference arbitrage constraints need to hold for all productivity realizations and

sophistication, it is clear that cI2 is chosen to satisfy

u
(
cI2
)
≥ max

β̂
J
(
β̂
)
.

Similarly, the ex-ante incentive constraint can be rewritten as

u
(
cI2
)
≥ K ≡ 1

(1− β) δ2

{
U0 (L;H)− δ0 (eH)u (c0 (H))

βδ1 (eH)
−min

θ̃
U1

(
H, θ̃

)}
.

Since u is unbounded above, for any real allocation, the imaginary retirement consumption

cI2 can be chosen to satisfy

u
(
cI2
)
≥ max

{
max
β̂

J
(
β̂
)
, K

}
.

Also, since u is unbounded below, it is possible to adjust cI1 so that u
(
cI1
)

= minθ̃ U1

(
H, θ̃

)
−

βδ2u
(
cI2
)
. As a result, it is always possible to find a single set of imaginary allocation for all

levels of sophistication such that the ex-ante incentive constraints are non-binding for any

allocation implemented on the equilibrium path.

To understand Lemma 4, note that non-sophisticated agents at t = 0 overestimate the

value of retirement consumption to their future selves. PAM takes advantage of incorrect

beliefs by encouraging education investment through an increased imaginary retirement con-

sumption cI2, which H-agents believe they will choose in t = 1. However, their future selves

forsake it for more immediate gratification—the relatively less back-loaded real allocations.

H.3 Optimum when Ex-Ante Incentive Constraint is Non-Binding

Lemmas 3 and 4 showed how the government can relax the ex-ante incentive constraint

with off-path mechanisms when agents are non-sophisticated or when there are productivities

that only H-agents can have. The following proposition describes the optimal wedges when

the ex-ante incentive constraint is non-binding.
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Proposition 6 When the ex-ante incentive constraint does not bind, the constrained effi-

cient allocation satisfies

i. full insurance in t = 0 : c0 (H) = c0 (L) ,

ii. the inverse Euler equations: for any γ, 1
u′(c0(γ))

= Eθ
(

1
u′(c1(γ,θ))

)
= Eθ

(
1

u′(c2(γ,θ))

)
, and

for any θ, 1
βu′(c2(γ,θ))

= 1
u′(c1(γ,θ))

+
(

1−β
β

)
1

u′(c0(γ))
,

iii. the labor wedge for any γ and θ satisfies τw(γ,θ)
1−τw(γ,θ)

= Aγ (θ)Bγ (θ)Cγ (θ) .

Proof When the ex-ante incentive constraint is non-binding, the optimization problem is

the same as the original problem except that µ = 0. As a result, the first order conditions

are

u′ (c0 (H)) = u′ (c0 (L)) = φ,

and for all γ,

πγδ1 (eγ) f (θ|κγ)− ξ′γ (θ) = λγ (θ) ,

(1− β) πγδ1 (eγ) f (θ|κγ) + βλγ (θ) =
φπγδ1 (eγ) f (θ|κγ)

u′ (c2 (γ, θ))
,

λγ (θ)u′ (c1 (γ, θ)) = φπγδ1 (eγ) f (θ|κγ) ,

ξγ (θ) = ξγ
(
θ
)

= 0,

λγ (θ)
1

θ
h′
(
y (γ, θ)

θ

)
+ξγ (θ)

[
1

θ2
h′
(
y (γ, θ)

θ

)
+
y (γ, θ)

θ3
h′′
(
y (γ, θ)

θ

)]
= φπγδ1 (eγ) f (θ|κγ) .

By rearranging the first order conditions, the results follow.

Proposition 6 demonstrates the government’s ability to fully insure agents against dif-

ferences in innate ability γ. This is not surprising, since the ex-ante incentive constraint is

non-binding. As a result, the only distortions in the economy stem from the unobserved

productivity θ realized in t = 1.

Since innate ability is screened for free but productivity is not, Proposition 6 shows

that the efficiency wedge τ k0 (γ) is characterized by the standard inverse Euler equation for

all innate ability types. This is because the government no longer needs the additional

intertemporal distortions illustrated in Proposition 1 on τ k0 (γ) to incentivize investment in

human capital when the ex-ante incentive constraint is slack. However, productivity remains

unobservable by the government, so savings in t = 0 is still restricted and shaped by the

inverse Euler equation to relax the ex-post incentive constraints.
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More interestingly, Proposition 6 shows that all agents are provided with a commitment

device: for any γ and θ, u
′(c1(γ,θ))
u′(c2(γ,θ))

> β. When the ex-ante incentive constraint is non-binding,

the government can focus on its paternalistic goals since it no longer needs to manipulate

retirement consumption to screen innate ability.

Finally, Proposition 6 shows that the optimal labor distortion is determined solely by

the intratemporal component. This means the economic forces that shape the labor wedge

are essentially static. Recall from Proposition 2 that both the intertemporal and present-

bias components are integral to the optimal provision of dynamic incentives through labor

distortion. Since the ex-ante incentive constraint is non-binding, the forces that determine

the provision of dynamic incentives are absent from the labor wedge. As a result, the

intertemporal and present-bias components no longer influence labor distortion.

I Model with Multiple Working Periods

In this section, we divide the working period in half and allow for stochastic changes in

productivity. In this four-period model, the agent is a student at t = 0 and then works for

two periods at t = 1 and t = 2. The agent retires at t = 3.

Similar to the three-period model, agents learn their innate ability γ ∈ {H,L} and

choose their education investment e ∈ {eL, eH} at t = 0. Human capital κ depends on

both γ and e, as before. At t = 1, agents privately learn their productivity θ1 ∈
[
θ, θ
]
.

Productivity θ1 is drawn from c.d.f. F1 (θ1|κ) with p.d.f. f1 (θ1|κ) . Also, as before, F1 is

ranked according to first order stochastic dominance and f1 is strictly positive for any θ1 and

κ. The innovation here is that agents privately draw a new productivity θ2 ∈
[
θ, θ
]

at t = 2,

from c.d.f. F2 (θ2|θ1, κ) with p.d.f. f2 (θ2|θ1, κ) . In essence, the distribution of θ2 depends

on past productivity θ1 and human capital κ. We will assume that f2 is strictly positive for

any θ2 and past history (θ1, κ) . At t = 3, agents retire and consume their savings. We will

continue to assume that agents only differ in the number of years spent as a student at t = 0,

and the length of other periods are the same for all agents.

Our findings show that, even with a finer pattern of timing, retirement savings subsidies

are education-dependent to provide present-biased agents a commitment device that encour-

ages education investment. However, the role of education investments in determining the

optimal retirement policy is weaker in a model with multiple working periods. This suggests

that the quantitative estimates in our paper are likely loose upper bounds for the impact of

education on retirement policy.
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I.1 The Mechanism and Incentive Compatibility

The government designs the following direct mechanism:

P = {c0 (γ) , [c1 (γ, θ1) , y1 (γ, θ1)] , [c2 (γ, θ1, θ2) , c3 (γ, θ1, θ2) , y2 (γ, θ1, θ2)]} .

Following the analysis for the three-period model, we require the mechanism P to be incentive

compatible for every period. Let the utility of a type (γ, θ1, θ2) agent who reports θ′2 ∈ Θ in

t = 2 be denoted as

U2 (θ′2; γ, θ1, θ2) = u (c2 (γ, θ1, θ
′
2))− h

(
y2 (γ, θ1, θ

′
2)

θ2

)
+ βδ3u (c3 (γ, θ1, θ

′
2)) .

The incentive compatibility constraints in t = 2 ensure the agents report θ2 truthfully: for

any θ2, θ
′
2 ∈ Θ,

U2 (γ, θ1, θ2) ≡ U2 (θ2; γ, θ1, θ2) ≥ U2 (θ′2; γ, θ1, θ2) .

Let the utility of a type (γ, θ1) agent who reports θ′1 ∈ Θ in t = 1 be denote as

U1 (θ′1; γ, θ1) = u (c1 (γ, θ′1))− h
(
y1 (γ, θ′1)

θ1

)
+ βδ2

∫
Θ

[U2 (γ, θ′1, θ2) + (1− β)δ3u (c3 (γ, θ′1, θ2))] dF2 (θ2|θ1, κγ) .

The incentive compatibility constraints in t = 1 ensure the agents report θ1 truthfully: for

any θ1, θ
′
1 ∈ Θ,

U1 (γ, θ1) ≡ U1 (θ1; γ, θ1) ≥ U1 (θ′1; γ, θ1) .

Finally, let the utility in t = 0 of γ-agents who reported innate ability γ′ be denoted as

U0 (γ′; γ) = δ0 (eγ′)u (c0 (γ′)) + βδ1 (eγ′)

∫
Θ

[
u (c1 (γ′, θ1))− h

(
y1 (γ′, θ1)

θ1

)
+ δ2

∫
Θ

[U2 (γ′, θ1, θ2) + (1− β) δ3u (c3 (γ′, θ, θ2))] dF2 (θ2|θ1, κγ′,γ)

]
dF1 (θ1|κγ′,γ) .

The incentive compatibility constraints at t = 0 ensure that the agents report γ truthfully:

for any innate ability γ, γ′,

U0 (γ) ≡ U0 (γ; γ) ≥ U0 (γ′; γ) .

The following lemma characterizes the set of allocations that are incentive compatible at

t = 2. Its proof is similar to the proof of Lemma 1 so it is omitted.
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Lemma 5 For any γ and θ1, P is incentive compatible at t = 2 if and only if (i.) y2 (γ, θ1, θ2)

is non-decreasing in θ2, and (ii.) U2 (γ, θ1, θ2) is absolutely continuous in θ2, so it is differ-

entiable almost everywhere with

∂U2 (γ, θ1, θ2)

∂θ2

=
y2 (γ, θ1, θ2)

θ2
2

h′
(
y2 (γ, θ1, θ2)

θ2

)
. (18)

Unfortunately, it is difficult to simplify the incentive compatibility constraints at t = 1.

With a continuum of productivities in t = 1, local incentive compatibility may not imply

global incentive compatibility when agents are time inconsistent (Halac and Yared, 2014;

Galperti, 2015; Yu, 2020). This issue and others were discussed in Section 2.2. We will not

focus on the theoretical properties that guarantee the sufficiency of local incentive compati-

bility.7 Instead, we will follow the standard procedure and replace the incentive constraints

in t = 1 with the following envelope condition:

∂U1 (γ, θ1)

∂θ1

=
y1 (γ, θ1)

θ2
1

h′
(
y1 (γ, θ1)

θ1

)
− βδ2

∫
Θ

∂F2 (θ2|θ1, κγ)

∂θ1

y2 (γ, θ1, θ2)

θ2
2

h′
(
y2 (γ, θ1, θ2)

θ2

)
dθ2

+ β (1− β) δ2δ3

∫
Θ

u (c3 (γ, θ1, θ2))
∂f2 (θ2|θ1, κγ)

∂θ1

dθ2, (19)

which is derived with the help of Lemma 5 by assuming P is incentive compatible at t = 2.

It is important to note that (19) is a necessary condition for incentive compatibility, not

sufficient.

Finally, similar to the three-period model, it is difficult to assess which of the incentive

constraints on innate ability are relevant at t = 0. Following the analysis of the three-period

model, we will focus on the case where only the H-agents go to college, so the relevant

incentive constraint at t = 0 is

U0 (H) ≥ U0 (L;H) . (20)

7See Appendix B in Yu (2020) for more information on the conditions that guarantee the sufficiency of
local incentive compatibility constraints in an environment with quasi-linear utility.
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I.2 The Planning Problem

The government maximizes the sum of long-run utilities:

∑
γ

πγ

{
δ0 (eγ)u (c0 (γ)) + δ1 (eγ)

∫
Θ

[
U1 (γ, θ)

+ (1− β)δ2

∫
Θ

[U2 (γ, θ1, θ2) + (1− β) δ3u (c3 (γ, θ, θ2))] dF2 (θ2|θ1, κγ)

]
dF1 (θ1|κγ)

}

subject to

U2 (γ, θ1, θ2) = u (c2 (γ, θ1, θ2))− h
(
y2 (γ, θ1, θ2)

θ2

)
+ βδ3u (c3 (γ, θ1, θ2)) , (21)

U1 (γ, θ1) = u (c1 (γ, θ1))− h
(
y1 (γ, θ1)

θ1

)
+ βδ2

∫
Θ

[U2 (γ, θ1, θ2) + (1− β)δ3u (c3 (γ, θ1, θ2))] dF2 (θ2|θ1, κγ) , (22)

the incentive constraints (18), (19), and (20), and the resource constraint

∑
γ

πγ

{
−c0 (γ)− eγ
R0 (eγ)

+
1

R1 (eγ)

∫
Θ

[
y1 (γ, θ1)− c1 (γ, θ1)

+
1

R2

∫
Θ

[
y2 (γ, θ1, θ2)− c2 (γ, θ1, θ2)− c3 (γ, θ1, θ2)

R3

]
dF2 (θ2|θ1, κγ)

]
dF1 (θ1|κγ)

}
≥ 0.

We will assume that δtRt = 1 for all t.

I.2.1 The Optimality Conditions

Let (λγ (θ1, θ2) , λγ (θ1) , ξγ (θ1, θ2) , ξγ (θ1) , µ, φ) be the multipliers on (21), (22), (18),

(19), (20), and the resource constraint respectively. Using standard Hamiltonian techniques,

we derive the following necessary conditions for optimality(
1 +

µ

πH

)
u′ (c0 (H)) =

(
1− µ

πL

)
u′ (c0 (L)) = φ,

λH (θ1) + βµδ1 (eH) f1 (θ1|κH) =
φπHδ1 (eH) f1 (θ1|κH)

u′ (c1 (H, θ1))
,
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λL (θ1)− βµδ1 (eL) f1 (θ1|κL,H) =
φπLδ1 (eL) f1 (θ1|κL)

u′ (c1 (L, θ1))
,

(1− β)

(
πH +

βµ

1− β

)
δ1 (eH) δ2f1 (θ1|κH) f2 (θ2|θ1, κH)

+ βλH (θ1) δ2f2 (θ2|θ1, κH)− ∂ξH (θ1, θ2)

∂θ2

= λH (θ1, θ2) ,

(1− β)

[
πL −

βµ

1− β

(
f1 (θ1|κL,H) f2 (θ2|θ1, κL,H)

f1 (θ1|κL) f2 (θ2|θ1, κL)

)]
δ1 (eL) δ2f1 (θ1|κL) f2 (θ2|θ1, κL)

+ βλL (θ1) δ2f2 (θ2|θ1, κL)− ∂ξL (θ1, θ2)

∂θ2

= λL (θ1, θ2) ,

(1− β)2

(
πH +

βµ

1− β

)
δ1 (eH) δ2f1 (θ1|κH) f2 (θ2|θ1, κH)

+ β (1− β)λH (θ1) δ2f2 (θ2|θ1, κH) + βλH (θ1, θ2)− β (1− β) ξH (θ1) δ2
∂f2 (θ2|θ1, κH)

∂θ1

=
φπHδ1 (eH) δ2f1 (θ1|κH) f2 (θ2|θ1, κH)

u′ (c3 (H, θ1, θ2))
,

(1− β)2

[
πL −

βµ

1− β

(
f1 (θ1|κL,H) f2 (θ2|θ1, κL,H)

f1 (θ1|κL) f2 (θ2|θ1, κL)

)]
δ1 (eL) δ2f1 (θ1|κL) f2 (θ2|θ1, κL)

+ β (1− β)λL (θ1) δ2f2 (θ2|θ1, κL) + βλL (θ1, θ2)− β (1− β) ξL (θ1) δ2
∂f2 (θ2|θ1, κL)

∂θ1

=
φπLδ1 (eL) δ2f1 (θ1|κL) f2 (θ2|θ1, κL)

u′ (c3 (L, θ1, θ2))
,

[λH (θ1) + βµδ1 (eH) f1 (θ1|κH)]
1

θ1

h′
(
y1 (H, θ1)

θ1

)
+ ξH (θ1)

[
1

θ2
1

h′
(
y1 (H, θ1)

θ1

)
+
y1 (H, θ1)

θ3
1

h′′
(
y1 (H, θ1)

θ1

)]
= φπHδ1 (eH) f1 (θ1|κH) ,
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[λL (θ1)− βµδ1 (eL) f1 (θ1|κL,H)]
1

θ1

h′
(
y1 (L, θ1)

θ1

)
+ ξL (θ1)

[
1

θ2
1

h′
(
y1 (L, θ1)

θ1

)
+
y1 (L, θ1)

θ3
1

h′′
(
y1 (L, θ1)

θ1

)]
= φπLδ1 (eL) f1 (θ1|κL) ,

and for all γ,

πγδ1 (eγ) f1 (θ1|κγ)− ξ′γ (θ1) = λγ (θ1) ,

λγ (θ1, θ2)u′ (c2 (γ, θ1, θ2)) = φπγδ1 (eγ) δ2f1 (θ1|κγ) f2 (θ2|θ1, κγ) ,

λγ (θ1, θ2)
1

θ2

h′
(
y2 (γ, θ1, θ2)

θ2

)
+

[
ξγ (θ1, θ2)− βδ2ξγ (θ1)

∂F2 (θ2|θ1, κγ)

∂θ1

]
×
[

1

θ2
2

h′
(
y2 (γ, θ1, θ2)

θ2

)
+
y2 (γ, θ1, θ2)

θ3
2

h′′
(
y2 (γ, θ1, θ2)

θ2

)]
= φπγδ1 (eγ) δ2f1 (θ1|κγ) f2 (θ2|θ1, κγ) ,

and the following boundary conditions hold: for all γ,

ξγ (θ) = ξγ
(
θ
)

= 0,

and for any γ and θ1 ∈ Θ,

ξγ (θ1, θ) = ξγ
(
θ1, θ

)
= 0.

Next, using the conditions above, we present the optimal labor and intertemporal dis-

tortions in the four-period life-cycle model. We will discuss the labor wedges before the

intertemporal wedges, because, surprisingly, the intertemporal wedges depend on the distor-

tions in labor when agents are present biased.
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I.3 Labor Wedges

To separate the economic forces that determine the optimal labor distortions, we first

define the elements that influence the wedges in t = 1 :

Aγ(θ1) =
1− F1 (θ1|κγ)
θf1 (θ1|κγ)

,

Bγ(θ1) = 1 +

y1(γ,θ1)
θ1

h′′
(
y(γ,θ1)
θ1

)
h′
(
y1(γ,θ1)
θ1

) ,

Cγ(θ1) =

∫ θ

θ

u′ (c1 (γ, θ1))

u′ (c1 (γ, x))

[
1− u′ (c1 (γ, x))

φ

]
f1 (x|κγ)

1− F1 (θ1|κγ)
dx,

Dγ(θ1) = u′ (c1 (γ, θ1))

[
1

u′ (c0 (γ))
− 1

φ

]
,

Eγ(θ1) = (1− β)Dγ (θ1) .

Also, for the wedges in t = 2, we define Aγ (θ1, θ2) , Bγ (θ1, θ2) , and Cγ (θ1, θ2) analogously,

and let

Dγ(θ1, θ2) = u′ (c2 (γ, θ1, θ2))

[
1

u′ (c1 (γ, θ1))
− 1

φ

]
,

Eγ(θ1, θ2) = (1− β)Dγ (θ1, θ2) ,

Ẽγ(θ1, θ2) = β (1− β)
u′ (c2 (γ, θ1, θ2))

u′ (c1 (γ, θ1))
Dγ (θ1) .

Most of the components are the same as the three-period model and represent the same

forces, except for Ẽγ (θ1, θ2) . Similar to the present-bias component Eγ (θ1, θ2) , notice that

Ẽγ (θ1, θ2) is also zero when agents are time consistent, so it is unique to our environment

with present-biased agents.

The following proposition characterizes the optimal labor distortion in the four-period

model.

Proposition 7 The labor wedge at t = 1 for any θ1 ∈ Θ satisfies

τw (H, θ1)

1− τw (H, θ1)
= AH (θ1)BH (θ1) [CH (θ1)−DH (θ1) + EH (θ1)] ,
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τw (L, θ1)

1− τw (L, θ1)
= AL (θ1)BL (θ1)

[
CL (θ1)− 1− F1 (θ1|κL,H)

1− F1 (θ1|κL)
[DL (θ1)− EL (θ1)]

]
,

and the labor wedge at t = 2 for any θ1, θ2 ∈ Θ satisfies

τw (H, θ1, θ2)

1− τw (H, θ1, θ2)
= AH (θ1, θ2)BH (θ1, θ2)

×

{
CH (θ1, θ2)−DH (θ1, θ2) + EH (θ1, θ2)− ẼH (θ1, θ2)

− βu′ (c2 (H, θ1, θ2))

u′ (c1 (H, θ1))

∂F2(θ2|θ1,κH)
∂θ1

f2 (θ2|θ1, κH)

f2 (θ2|θ1, κH)

1− F2 (θ2|θ1, κH)

1− F1 (θ1|κH)

f1 (θ1|κH)

τw(H,θ1)
1−τw(H,θ1)

AH (θ1)BH (θ1)

}
,

τw (L, θ1, θ2)

1− τw (L, θ1, θ2)
= AL (θ1, θ2)BL (θ1, θ2)

×

{
CL (θ1, θ2)−DL (θ1, θ2) + EL (θ1, θ2)− f1 (θ1|κL,H)

f1 (θ1|κL)

 1−F1(θ1|κL,H)
1−F1(θ1|κL)

− β
1− β

 ẼL (θ1, θ2)

− βu′ (c2 (L, θ1, θ2))

u′ (c1 (L, θ1))

∂F2(θ2|θ1,κL)
∂θ1

f2 (θ2|θ1, κL)

f2 (θ2|θ1, κL)

1− F2 (θ2|θ1, κL)

1− F1 (θ1|κL)

f1 (θ1|κL)

τw(L,θ1)
1−τw(L,θ1)

AL (θ1)BL (θ1)

}
,

where 1
φ

= Eγ
[
Eθ1
(

1
u′(c1(γ,θ1))

∣∣∣∣γ)] .
Proof The results follow from the first order conditions by using the techniques shown in

the proof of Proposition 2.

Proposition 7 shows that the labor wedges at t = 1 are the same as the ones in the

three-period model. However, the labor wedges at t = 2—the period just before retirement—

contains new economic forces. First, due to dynamic productivity, the labor wedge at t = 2

depends on the previous period’s labor distortion. This dependence on past labor distortions

is closely related to the intertemporal component characterized in Golosov et al. (2016), which

serves to relax the incentive constraints in t = 1. Furthermore, this dependence is weaker

than when agents are time consistent, since present-biased agents are less sensitive to future

incentives. Finally, the labor wedge at t = 2 also directly depends on education investment

through the new present-bias component Ẽγ (θ1, θ2) , which depends on Dγ (θ1) .
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I.4 Intertemporal Wedges

Before we present the optimal intertemporal distortions, let us define the elasticity of the

density f2 with respect to θ1 as

εγ(θ1, θ2) =
∂f2 (θ2|θ1, κγ)

∂θ1

θ1

f2 (θ2|θ1, κγ)
.

The following proposition provides the inverse Euler equations for present-biased agents in

the four-period model.

Proposition 8 The constrained efficient allocation satisfies (i.) the inverse Euler equation

in aggregate: ∑
γ

πγ
u′ (c0 (γ))

=
∑
γ

πγEθ1
(

1

u′ (c1 (γ, θ1))

∣∣∣∣γ) ,
Eθ1
(

1

u′ (c1 (γ, θ1))

∣∣∣∣γ) = Eθ1,θ2
(

1

u′ (c2 (γ, θ1, θ2))

∣∣∣∣γ) = Eθ1,θ2
(

1

u′ (c3 (γ, θ1, θ2))

∣∣∣∣γ) ,
and (ii.) for any θ ∈ Θ,

1

βu′ (c3 (H, θ1, θ2))
=

1

u′ (c2 (H, θ1, θ2))
+

[
1−

εH (θ1, θ2) τw(H,θ1)
1−τw(H,θ1)

BH (θ1)

]
1− β

u′ (c1 (H, θ1))

+
(1− β)2

β

(
πH + βµ

πH + µ

)
1

u′ (c0 (H))
,

1

βu′ (c3 (L, θ1, θ2))
=

1

u′ (c2 (L, θ1, θ2))
+

[
1−

εL (θ1, θ2) τw(L,θ1)
1−τw(L,θ1)

BL (θ1)

]
1− β

u′ (c1 (L, θ1))

+
(1− β)2

β


[
πL − βµ

f1(θ1|κL,H)f2(θ2|θ1,κL,H)
f1(θ1|κL)f2(θ2|θ1,κL)

]
− β2µ

1−β
f1(θ1|κL,H)
f1(θ1|κL)

[
f2(θ2|θ1,κL,H)
f2(θ2|θ1,κL)

− 1

]
πL − µ


1

u′ (c0 (L))
,

where µ = [u′ (c0 (L))− u′ (c0 (H))]
[
u′(c0(L))

πL
+ u′(c0(H))

πH

]−1

.

Proof The results follow from the first order conditions by using the techniques shown in

the proof of Proposition 1.

Proposition 8 shows that, similar to the three-period model, the best the government can

do is to choose consumption such that the inverse marginal utility is equalized in aggregate
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when agents are present biased. Similarly, the intertemporal distortions at t = 0 are also

characterized by the inverse Euler inequalities. However, Proposition 8 also shows that there

are new economic forces that determine the intertemporal wedges at t = 1 and t = 2.

From Proposition 8, the optimal intertemporal wedges at t = 1 are characterized by

1

u′ (c1 (H, θ1))
+

1− β
β

(
πH + βµ

πH + µ

)
1

u′ (c0 (H))
= Eθ2

(
1

βu′ (c2 (H, θ1, θ2))

∣∣∣∣θ1

)
,

1

u′ (c1 (L, θ1))
+

1− β
β

πL − βµf1(θ1|κL,H)
f1(θ1|κL)

πL − µ

 1

u′ (c0 (L))
= Eθ2

(
1

βu′ (c2 (L, θ1, θ2))

∣∣∣∣θ1

)
.

Notice that these wedges look similar to the three-period model’s inverse Euler equations (6)

and (7), with a key difference—future productivity θ2 is unknown. Due to this uncertainty,

it is optimal to restrict savings at t = 1 to relax the incentive constraints at t = 2. On

the other hand, the main mechanism of this paper also exists: A commitment device that

helps agents save at t = 1. With these two opposing forces, it is unclear whether the optimal

efficiency wedge at t = 1 is smaller than 1− β.
Finally, Proposition 8 demonstrates that the retirement savings of present-biased agents

at t = 2 depends on the labor distortion at t = 1 and education investment. The government

uses reports on θ2 to detect possible prior misreports and distorts the allocations according to

that likelihood to relax past incentive constraints. Crucially, this dependence is not present

for time-consistent agents and when θ2 is independent of past productivity θ1 or human

capital κ.

To see how this mechanism works, first notice that the degree of dependence on previous

period’s labor distortion is affected by the elasticity εγ (θ1, θ2) , which measures the percentage

change of density f2 in response to a change in θ1. The consumption path is more frontloaded

when the elasticity is positive compared to when it is negative. This is because a positive

elasticity implies that the current productivity θ2 was more likely to have come from a slightly

higher past productivity θ1. Since the relevant deviation is for agents to misreport downwards,

a frontloaded consumption path for agents with εγ (θ1, θ2) > 0 exacerbates their present bias,

which helps deter them from misreporting θ1. Furthermore, the degree of frontloading or

backloading is increasing in the absolute value of εγ (θ1, θ2) , the labor wedge at t = 1, and

consumption c1 (γ, θ1) .

Most importantly, Proposition 8 shows that the retirement savings of present-biased

agents also depend directly on past investments in education through the consumption at

t = 0 and indirectly through the labor wedge and consumption at t = 1. For the four-

period model, this direct link between education investment and retirement savings works
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in a similar fashion as in the three-period model, albeit with two differences. First, the

mechanism is the same for H-agents, but for L-agents the savings commitment depends on

the whole productivity profile (θ1, θ2) . Similar to the three-period model, the commitment

is stronger for agents’ whose productivity profile is more likely to have come from genuine

L-agents. Second, this direct effect of education investment on retirement savings is weaker

in the four-period model than in the three-period model by a factor of 1 − β. However,

together with the indirect effect—through the labor wedge and consumption at t = 1, the

role of education-dependent policies on retirement savings remains important.
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