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A Proofs

A.1 Proof of Proposition 1

In the absence of credit frictions, the government’s optimisation problem reduces to

V(b, s) = max
cT ,cN ,`,b′,pN ,πN

u
[
c
(

cT, cN
)

, `
]
+ βEs′|sV(b′, s′)

subject to

cN = α(pN)cT (A.1)

cN =
[
1− ϕ

2
(πN)2

]
A` (A.2)

cT = yT + b− b′

R
(A.3)

0 = uT(cT, cN)− βREs′|suT

(
CT(b′, s′), CN(b′, s′)

)
(A.4)

0 = ϕπN(1 + πN) + (ε− 1)
[
1− z−1(1−ω)

]
− ϕ`−1Es′|sΛ

[
L(b′, s′)M(b′, s′)

]
(A.5)

Let ι∗ ≥ 0 denote the non-negative Lagrange multiplier on the resource constraint for non-
tradable goods (A.2), λ∗ ≥ 0 the multiplier on the resource constraint for tradable goods
(A.3). δ∗, υ∗, ξ∗ are respectively the Lagrange multipliers on the static implementability
constraint (A.1) and the dynamic implementability constraints (A.4) and (A.5). We define:

ψ ≡ (ε− 1)
[
1− z−1(1−ω)

]
− ϕ`−1Es′|sΛ

[
L(b′, s′)M(b′, s′)

]
. (A.6)

The proof proceeds by analyzing a relaxed problem where the government is not subject
to (A.4). Then, we show that a price stability policy solves the relaxed problem of the
government, and the omitted implementability condition (A.4) is always satisfied under
this policy. Abstracting from (A.4), the first order conditions of the relaxed problem are:

pN :: δ∗ = 0

cT :: λ∗ = uT(cT, cN) + ξ∗ψT (A.7)

b′ :: λ∗ = βREs′|sλ
∗′ + ξ∗ψb′ (A.8)

` :: u`(`) + ι∗
[
1− ϕ

2
(πN)2

]
A + ξ∗ψ` = 0 (A.9)

cN :: ι∗ = uN(cT, cN) + ξ∗ψN (A.10)

πN :: ξ∗ =
ϕι∗yN

1 + 2πN πN (A.11)
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where ψT, ψN and ψ` represent the derivative of ψ with respect to cT, cN and `, respectively.
We combine (A.10) and (A.9) to obtain[

ω− ϕ

2
(πN)2

]
yNuN(cT, cN) = −

(
cNψN + `ψ`

)
ξ∗ (A.12)

We now show that a price stability policy is the solution to the relaxed problem of the
government. Consider a price stability policy, that is πN = πN′ = 0. The optimality
condition (A.11) implies that ξ∗ = 0. Substituting into ξ∗ = 0 and πN = 0 into (A.12)
yields ω = 0. Finally, plugging ξ∗ = 0 into (A.7) and (A.8), and combining both optimality
conditions lead to

uT(cT, cN) = βREs′|suT

(
cT′, cN′

)
. (A.13)

Thus, πN = πN′ = 0 is a solution to the relaxed problem of the government, and the
omitted constraint (A.4) is always satisfied. It follows that a price stability policy is the
optimal monetary policy in the absence of credit constraints. In addition, this policy
perfectly stabilizes the economy (ω = 0).

A.2 Proof of Proposition 2

To characterize the optimal time-consistent monetary policy, we solve for the government’s
optimization problem (A.14) taking as given policies {CT(b, s), CN(b, s),L(b, s),V(b, s)}
andM(b, s). The problem of the government is given by

V(b, s) = max
cT ,cN ,`,b′,pN ,πN ,µ

u
[
c
(

cT, cN
)

, `
]
+ βEs′|sV(b′, s′) (A.14)

subject to

cN = α(pN)cT (A.15)

cN =
[
1− ϕ

2
(πN)2

]
A` (A.16)

cT = yT + b− b′

R
(A.17)

b′

R
≥ −κ

(
yT + pNcN

)
(A.18)

µ = uT(cT, cN)− βREs′|suT

(
CT(b′, s′), CN(b′, s′)

)
(A.19)

µ×
[

b′

R
+ κ

(
yT + pNcN

)]
= 0 (A.20)

0 = ϕπN(1 + πN) + (ε− 1)
[
1− z−1(1−ω)

]
− ϕ`−1Es′|sΛ

[
L(b′, s′)M(b′, s′)

]
(A.21)
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Let ι∗ ≥ 0 denotes the non-negative Lagrange multiplier on the resource constraint for
non-tradable goods (A.16), λ∗ ≥ 0 the non-negative multiplier on the resource constraint
for tradable goods (A.17), and µ∗ ≥ 0 is the non-negative multiplier on the credit constraint
(A.18). δ∗, υ∗, ν∗, ξ∗ are respectively the multiplier on the static implementability constraint
(A.15) and the dynamic implementability constraints (A.19), (A.20) and (A.21). ψ is defined
as in (A.6).

We denote by µ̃∗ ≡ µ∗ + µν∗ the government’s effective shadow value on the credit
constraint. The optimality conditions of the government problem, after eliminating the
multiplier δ∗, are:

cT :: λ∗ = uT(cT, cN) + µ̃∗γ−1κ
pNcN

cT − υ∗uTT(cT, cN) + ξ∗ψT (A.22)

b′ :: λ∗ = βREs′|sλ
∗′ + µ̃∗ + υ∗βREs′|s

∂uT
(
CT(b′, s′), CN(b′, s′)

)
∂b′

+ ξ∗ψb′ (A.23)

µ :: υ∗ + ν∗
[

b′

R
+ κ

(
yT + pNcN

)]
+ ξ∗ψµ = 0 (A.24)

` :: u`(`) + ι∗
[
1− ϕ

2
(πN)2

]
A + ξ∗ψ` = 0 (A.25)

cN :: ι∗ = uN(cT, cN) + µ̃∗(1− γ−1)κpN − υ∗uTN(cT, cN) + ξ∗ψN (A.26)

πN :: ξ∗ =
ϕι∗yN

1 + 2πN πN (A.27)

Combining (A.26) and (A.25), we obtain

[
ωt −

ϕ

2
(πN)2

]
uN(cT, cN)yN − uTN(cT, cN)cNυ∗+(

1− γ−1
)

κpNcNµ̃∗ = −ξ∗
(

cNψN + `ψ`

)
(A.28)

Substituting (A.27) into (A.28) and letting ι̃∗ ≡ ι∗

(1+2πN)uN
, we get

ϕ

[
−(cNψN + `ψ`)ι̃

∗ +
πN

2

]
uN(cT, cN)yNπN = uN(cT, cN)yNω

+
(

σ− γ−1
) cT(cT, cN)

c
uN(cT, cN)cNυ∗ +

(
1− γ−1

)
κpNcNµ̃∗ (A.29)

where cT(cT, cN) is the derivative of the consumption function c(cT, cN) with respect to cT.
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To calculate (cNψN + `ψ`) in (A.29), note that

1− z−1(1−ω) = 1 +

[
uN(cT, cN) + κµ

(
1− a

a

)(
cT

cN

)1/γ
]−1

u`(`)

A
(A.30)

Plugging (A.30) into the expression of the auxiliary variable ψt and taking the derivative
of ψt with respect to cN

t and `t, we get

cN
t ψN,t + `tψ`,t = −(ε− 1)z−1

t

[
−cN

t uNN(t) + γ−1κµt pN
t

ztuN(t)
+

`tu``(t)
u`(t)

]
−u`(t)
AuN(t)

+

[
cN

t uNN(t)
uN(t)

+ 1
]

ϕ

`t
Et [Λt,t+1L(t + 1)M(t + 1)] (A.31)

Finally, substituting (A.31) into (A.29) yields (in sequential form)

ϕ

[
∆0 + Et(∆1πN

t+1) +
πN

t
2

]
yN

t πN
t = yN

t ωt + (σ− γ−1)
cT(t)

ct
cN

t υ∗t + (1− γ−1)
κpN

t cN
t

uN(t)
µ̃∗t

(A.32)

where ∆0 and ∆1 are given by

∆0 ≡ (ε− 1)z−1
t

[
−cN

t uNN(t) + γ−1κpN
t µt

ztuN(t)
+ `t

u``(t)
u`(t)

]
ι̃∗t
−u`(t)
AuN(t)

> 0, (A.33)

∆1 ≡
[
−cN

t uNN(t)
uN(t)

− 1
]

ι̃∗t
`t

Λt,t+1`t+1(1 + πN
t+1). (A.34)

We now describe the optimal policy in deviation from the efficient allocation described in
proposition 1 using the first order Taylor series expansions. Recall that for some arbitrary
function f (x), where x ≡ {xi}i, the first order Taylor series expansions evaluated at the
point x̄ = {x̄i}i is given by

f (x) ≈ f (x̄) + ∑
i

f ′xi
(x̄)(xi − x̄i)

f ′xi
denotes the partial derivative of the function with respect to xi. We apply the Taylor

expansion to (A.32) evaluated at the efficient allocation (described in proposition ??).
Letting x̂ ≡ x − x̄ indicate the deviation of a variable x from its value in the efficient
allocation (described in proposition 1), it is straightforward to see that π̂N = πN, ω̂ = ω,
µ̂∗ = µ∗, µ̂ = µ and υ̂∗ = υ∗. Recall that µ̃∗ ≡ µ∗ + µν∗. Thus, to a first order, ˆ̃µ = µ̂∗ = µ.
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Letting φ ≡ `tu``(t)
u`(t)

denotes the inverse of the Frisch elasticity of labor supply, the first
order approximation of (A.32) yields

ϕ(ε− 1)
[
−c̄N

t ūNN(t)
ūN(t)

+ φ

]
πN

t = ωt + (σ− γ−1)
c̄T(t)

c̄t
υ∗t + (1− γ−1)

κ

ūT(t)
µ∗t (A.35)

where (A.26) is used to obtain ῑ∗ = ūN which implies that ¯̃ι∗ = 1 (at the efficient allocation).
Finally, denoting by at ≡ cT

cT+pNcN the share of expenditures in tradables, we have

−cN
t uNN(t)
uN(t)

= (1− at)σ + atγ
−1 and

1
ct

cT(t) =
1
cT

t
at

This completes the proof of proposition 2.

To understand why υ∗t > 0 implies a non-binding credit constraint under a price
stability policy, we start by first showing that υ∗t > 0. To see this, combine (A.22) and (A.23)
to obtain[
−uTT(t)− βRtEt

∂uT(t + 1)
∂bt+1

]
υ∗t

= βRtEt

[
γ−1κ

pN
t+1cN

t+1

cT
t+1

µ∗t+1

]
+ βRtEt

[
−υ∗t+1uTT(t + 1)

]
(A.36)

Then, we iterate (A.36) forward and use the transversality condition to get

υ∗t =
∞

∑
j=1

βjEt

[(
j−1

∏
k=0

Rt+k
Qt+k

)
Θt+jµ

∗
t+j

]
> 0

where Θt ≡ γ−1κpN
t cN

t /cT
t > 0 and Qt = 1 + βRt∂uT(t+1)/∂bt+1

uTT(t)
> 1. The optimality

condition with respect to µt (A.24) can be rewritten as

υ∗t = −ν∗t

[
bt+1

Rt
+ κ

(
yT

t + pN
t cN

t

)]
(A.37)

Therefore, υ∗t > 0 implies that bt+1
Rt

> −κ
[
yT

t + pN
t cN

t
]
, that is the credit constraint

does not bind or equivalently µ∗t = 0. Conversely, a binding credit constraint bt+1
Rt

=

−κ
[
yT

t + pN
t cN

t
]

(or equivalently µ∗t > 0) implies that υ∗t = 0.

5



A.3 Proof of Proposition 3

Taking as given policies {CT(b, s), CN(b, s),L(b, s),V(b, s)} andM(b, s), the optimization
problem of the government when capital controls are available is given by

V(b, s) = max
τ,cT ,cN ,`,b′,pN ,πN ,µ

u
[
c
(

cT, cN
)

, `
]
+ βEs′|sV(b′, s′) (A.38)

subject to

cN = α(pN)cT (A.39)

cN =
[
1− ϕ

2
(πN)2

]
A` (A.40)

cT = yT + b− b′

R
(A.41)

b′

R
≥ −κ

(
yT + pNcN

)
(A.42)

µ = uT(cT, cN)− βR(1 + τ)Es′|suT

(
CT(b′, s′), CN(b′, s′)

)
(A.43)

µ×
[

b′

R
+ κ

(
yT + pNcN

)]
= 0 (A.44)

0 = ϕπN(1 + πN) + (ε− 1)
[
1− z−1(1−ω)

]
− ϕ`−1Es′|sΛ

[
L(b′, s′)M(b′, s′)

]
(A.45)

Once again, let δ∗t , ι∗t , λ∗t , µ∗t , υ∗t , ν∗t and ξ∗t be the Lagrange multipliers on constraints
(A.39)-(A.45). Notice how τ only appears in (A.43). The first-order condition with respect
to τ yields, υ∗ = 0. In other words, τ can be dropped from the government’s problem
along with the implementability constraint (A.43). Defining ψ as in (A.6), the optimality
conditions of the problem of the government are given by:

cT :: λ∗ = uT(cT, cN) + µ∗γ−1κ
pNcN

cT + ξ∗t ψT (A.46)

b′ :: λ∗ = βREs′|sλ
∗′ + µ∗ + ξ∗ψb′ (A.47)

` :: u`(`) + ι∗
[
1− ϕ

2
(πN)2

]
A + ξ∗ψ` = 0 (A.48)

cN :: ι∗ = uN(cT, cN) + µ̃∗(1− γ−1)κpN + ξ∗ψN (A.49)

πN :: ξ∗ =
ϕι∗yN

1 + 2πN πN (A.50)

We combine (A.49) and (A.48) to obtain[
ωt −

ϕ

2
(πN)2

]
uN(cT, cN)yN +

(
1− γ−1

)
κpNcNµ∗ = −ξ∗

(
cNψN + `ψ`

)
(A.51)
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Then, substituting (A.50) into (A.51), we get

ϕ

[
−(cNψN + `ψ`)ι̃

∗ +
πN

2

]
uN(cT, cN)yNπN = uN(cT, cN)yNω +

(
1− γ−1

)
κpNcNµ∗

(A.52)
where the expression for (cN

t ψN,t + `tψ`,t) is given by (A.31), which evaluated at the
efficient allocation is given by ϕ ¯̀tūN(t)(ε− 1)

[
(1− āt)σ + ātγ

−1 + φ
]
. Thus, taking the

first order approximation of (A.52) around the efficient allocation, we arrive to

ϕ(ε− 1)
[
(1− āt)σ + ātγ

−1 + φ
]

πN
t = ωt + (1− γ−1)

κ

ūT(t)
µ∗t (A.53)

This completes the proof of Proposition 3.
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B Crises Dynamics: Model and Data

Figure 1 shows that the model predictions for the aggregate dynamics of key macroeco-
nomics variables (GDP, consumption, real exchange rate, and current-account to GDP ratio)
are aligned with the dynamics of these variables during sudden-stop episodes observed in
Argentina data. In the model, GDP, consumption, and real exchange rate are expressed
in percentage deviations from averages in the ergodic distribution. In the data, GDP,
consumption, and the real exchange rate are expressed in log deviations from a log-linear
trend.
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Note: Data corresponds to the average of two sudden stop episodes, in which t = 0 is set to 1990 and 2002.

Figure 1: Comparison of crises dynamics.
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C Robustness and Extensions

C.1 Downward Wage Rigidity

This section discusses the qualitative insights of the model in the presence of nominal
wage rigidities. Specifically, we assume there exists a minimum wage in nominal terms,
W̄, such that

Wt ≥ W̄

In Schmitt-Grohé and Uribe (2016), this minimum wage corresponds a fraction γ of the
previous period wage, γWt−1. The estimated value of the parameter γ, governing the
degree of downward nominal wage rigidity, is found to be close to unity in emerging
market economies (γ = 0.99). The next figure presents the quantitative implications of the
model for W̄ = W̃t−1 where W̃t−1 corresponds to the previous period’s full-employment
nominal wage, that is the nominal wage that would prevail under flexible price allocation
at period t− 1.1
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Note: Wages are nominal wages expressed in units of nontradables. GDP and real exchange
rate are expressed in percentage deviations from averages in the ergodic distribution.

Figure 2: Comparison of crisis dynamics.

1The use of the previous period full-employment nominal wage W̃t−1 has the advantage of not introducing
an additional endogenous state variable in the model and makes the quantitative results easy to compare
with the quantitative findings in the absence of downward nominal wage rigidity.
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Figure 2 shows that financial crises are more severe in an economy in which nominal
wages are downwardly rigidity relative to an economy with flexible wages considered.
The blue dashed line represents the crisis dynamics in the former economy, while the black
solid line represents the crisis dynamics in the absence of wage rigidity. When wages are
downwardly rigid, firms face a higher marginal cost in midst of a financial crisis (top-left
panel) leading to a larger decline in production (total output drops by 30% vs 21.9% when
wages are flexible). The sharp decline in total output reduces significantly the value of the
collateral which in turn induces more capital outflows (bottom-right panel) and larger real
exchange depreciation (-25% vs -5% when wages are flexible). The CPI inflation turns out
to be more important in this economy during sudden stops as the stickiness of nominal
wages (downward rigidity) prevents firms from reducing the prices of non-tradable goods.

C.2 Discretionary Monetary Policy with GHH Preferences

This section derives the discretionary monetary policy in an environment in which house-
holds’ preferences are specified following Greenwood et al. (1988), where utility is defined
in terms of the excess of consumption over the disutility of labor u(c, `) = u (c− g(`)),
with g′ > 0 and g′′ > 0. With these preferences, the marginal utility of tradables depends
also on leisure and we have for the Euler equation

uT(cT, cN, `)− βREs′|suT

(
CT(b′, s′), CN(b′, s′),L(b′, s′)

)
= µt (A.54)

The proof follows the same steps as in Appendix A.2. We focus here only on the key
equations. The government’s problem is similar to the government’s problem in appendix
A.2 with the The discretionary monetary policy solves (A.14) subject to (A.15), (A.16),
(A.17), (A.18), (A.54), (A.20) and (A.21).

Let δ∗t , ι∗t , λ∗t , µ∗t , υ∗t , ν∗t and ξ∗t be the Lagrange multipliers on implementability con-
straints (A.15)-(A.18), (A.54), (A.20) and (A.21) respectively. We follow the same steps as
in appendix A.2 and focus here on the key equations. Combining the first order conditions
with respect to labor and non-tradable consumption, we obtain

[
ωt −

ϕ

2
(πN)2

]
uN(cT, cN)yN +

[(
σq− γ−1

)
+ σq

`g′(`)
cNcN(·)

]
cT(cT, cN)

c
uN(cT, cN)cNυ∗

+
(

1− γ−1
)

κpNcNµ̃∗ = −ξ∗
(

cNψN + `ψ`

)
(A.55)

with qt ≡ ct
ct−g(`t)

> 1 and σ is the relative rsik-aversion coefficient σ ≡ −cu′′(c−g(`))
u′(c−g(`)) . The
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expression for (cN
t ψN,t + `tψ`,t) is given by (A.31). We then use the first order condition

with respect to πN
t

ξ∗t =
ϕι∗t yN

t
1 + 2πN

t
πN

t

to substitute for ξ∗t in (A.55) and after some algebraic manipulation – see appendix A.2 for
more details – we arrive to

ϕ

[
∆0 + Et

(
∆1πN

t+1

)
+

πN
t

2

]
yN

t πN
t = yN

t ωt

+

[(
σqt − γ−1

)
+ σqt

`tg′(`t)

cN
t cN(t)

]
cT(t)

ct
υ∗t + (1− γ−1)

pN
t cN

t
uN(t)

κµ̃∗t (A.56)

where ∆0 and ∆1 are defined in (A.33) and (A.34). Using a first order Taylor series expan-
sions, the optimal discretionary monetary policy (A.56) becomes

ωt = ϕ(ε− 1)
[
(1− āt)σ + ātγ

−1 + φ
]

πN
t

−
[
(σq̄t − γ−1)āt + σφq̄t

g′′( ¯̀t)

c̄t

]
1
c̄T

t
υ∗t + (γ−1 − 1)

κ

ūT(t)
µ∗t

where φ is the inverse of the Frisch elasticity of labor supply. Because for 1/σ < γ < 1, we
have

[
(σq̄t − γ−1)āt + σφq̄t

g′′( ¯̀t)
c̄t

]
> 0, we have, as discussed in Proposition 2, that when

1/σ < γ < 1 the discretionary monetary policy is procyclical.

C.3 Commitment

The focus throughout has been on the government’s optimal time-consistent plans, and we
thus studied the discretionary monetary policy (when the government lacks commitment).
We show here how the ability to commit to future policies affects qualitatively the design
of the optimal monetary policy. Under commitment, policy rules are chosen by the
government at date 0 in a once-and-for-all fashion. The next proposition characterizes the
optimal monetary policy when the government can commit to future policies (see proof
below).

Proposition 1 (Optimal Monetary Policy without Capital Flow Taxes). Under commitment,
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to a first-order the optimal monetary policy targets

ωt = ϕ(ε− 1)
[
(1− āt)σ + ātγ

−1 + φ
]

p̂N
t − (σ−γ−1)

āt

c̄T
t
(υ∗t −Rt−1υ∗t−1)+ (γ−1− 1)

κ

ūT(t)
µ∗t

(A.57)
where p̂N

t = log(PN
t /PN

−1) is the log deviation between the price level and an “implicit target”
given by the price level prevailing one period before the government chooses its optimal plan.

Equation (A.57) can be viewed as the targeting rule that the government must follow
period-by-period to implement the optimal policy under commitment. There are two
key differences between (A.57) and the corresponding targeting rule for the discretionary
monetary policy (28) that are worth pointing out. First, given the financial conditions, the
discretionary monetary policy (28) requires that the government keep the labor wedge
positive (negative), or equivalently that it implement a contractionary (expansionary)
policy as long as inflation is positive (negative). By way of contrast, under the optimal
policy with commitment (A.57), the government sets the sign and size of the labor wedge in
proportion to the deviations of the price level from its implicit target. Second, the presence
of the lagged multipliers in the third term, υ∗t−1, results from the time-inconsistency of
the government’s problem under commitment. According to (A.57), the government
internalizes how a more contractionary monetary policy when the credit constraint binds
at time t helps relax the borrowing constraint at time t and also encourages borrowing at
time t− 1.

Note that with capital controls, from the first order condition with respect to τt the
Lagrange multiplier on households’ Euler equation for bonds is zero at all times t. The
proposition below describes the optimal monetary policy with capital controls.

Proposition 2 (Optimal Monetary Policy with Capital Flow Taxes). Under commitment, to a
first-order, the optimal monetary policy targets

ωt = ϕ(ε− 1)
[
(1− āt)σ + ātγ

−1 + φ
]

p̂N
t + (γ−1 − 1)

κ

ūT(t)
µ∗t

where p̂N
t = log(PN

t /PN
−1) is the log deviation between the price level and an “implicit target”

given by the price level prevailing one period before the government chooses its optimal plan.
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Proof of Proposition 1 and 2 The problem of the government under commitment consists
in choosing {cT

t , cN
t , `t, bt+1, pN

t , πN
t , µt}t≥0 at date 0 to solve

max Et ∑
t=0

βtu
[
c
(

cT
t , cN

t

)
, `t

]
subject to

cN
t = α(pN

t )c
T
t (A.58)

cN
t =

[
1− ϕ

2
(πN

t )2
]

A`t (A.59)

cT
t = yT

t + bt −
bt+1

Rt
(A.60)

bt+1

Rt
≥ −κ

(
yT

t + pN
t cN

t

)
(A.61)

µt = uT(cT
t , cN

t )− βRt(1 + τt)EtuT

(
cT

t+1, cN
t+1

)
(A.62)

µt ×
[

bt+1

Rt
+ κ

(
yT

t + pN
t cN

t

)]
= 0 (A.63)

0 = ϕ(1 + πN
t )πN

t `tuN(t) + ψo − ϕβEt

[
uN(t + 1)`t+1(1 + πN

t+1)π
N
t+1

]
(A.64)

where ψo is defined as ψo ≡ (ε− 1)
[
1− z−1

t (1−ωt)
]
`tuN(t). Let ι∗t ≥ 0, λ∗t ≥ 0, µ∗t ≥ 0,

δ∗t , υ∗t , ν∗t and ξ∗t denote the non-negative Lagrange multiplier on (A.59), (A.60), (A.61),
(A.58), (A.62), (A.63) and (A.64). The proof proceeds by deriving the optimal monetary
policy under commitment when capital controls are not used and then deriving the optimal
monetary policy with capital controls under commitment. The optimality conditions, after
eliminating the multiplier δ∗t , are:

πN
t :: − ι∗t yN

t ϕπN
t + ϕ(ξ∗t − ξ∗t−1)(1 + 2πN

t )uN(t)`t = 0 (A.65)

µ :: υ∗t + ν∗t ×
[
bt+1 + κ(pN

t cN
t + yT

t )
]
+ ξ∗t ψo

µ(t) = 0 (A.66)

`t :: u`(t) + ι∗t A
[
1− ϕ

2
(πN

t )2
]
+ ϕ(ξ∗t − ξ∗t−1)uN(t)(1 + πN

t )πN
t + ξ∗t ψo

`(t) = 0

(A.67)

cN
t :: ι∗t = uN(t) + µ̃∗t (1− γ−1)κpN

t −
[
υ∗t − υ∗t−1Rt−1

]
uTN(t)

+ ϕ(ξ∗t − ξ∗t−1)uNN(t)`t(1 + πN
t )πN

t + ξ∗t ψo
N(t) (A.68)

cT
t :: λ∗t = uT(t) + µ̃∗t γ−1κ

pN
t cN

t
cT

t
− [υ∗t − υ∗t−1Rt−1]uTT(t)

+ ϕ(ξ∗t − ξ∗t−1)`t(1 + πN
t )πN

t uNT(t) + ξ∗t ψo
T(t) (A.69)

b′ :: λ∗t = βRtEtλ
∗
t+1 + µ̃∗t (A.70)
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where µ̃∗t ≡ µ∗t + µtν
∗
t . At the optimum µ̃∗t = µ∗t (the proof here follows the one in section

A.2). Combining (A.68) and (A.67), We obtain

[
ωt −

ϕ

2
(πN

t )2
]
yNuN(t) + µ∗t (1− γ−1)κpN

t cN
t −

[
υ∗t − υ∗t−1Rt−1

]
cN

t uTN(t)

= −ϕ`t[uN(t) + cNuNN(t)](1 + πN
t )(ξ∗t − ξ∗t−1)π

N
t − (cN

t ψo
N,t + `tψ

o
`,t)ξ

∗
t (A.71)

From equation (A.65), we have

ξ∗t − ξ∗t−1 = Aι̃∗t πN
t which implies that ξ∗t = A

t

∑
s=0

ι̃∗s πN
s (A.72)

Moreover, differentiating ψo
t with respect to cT

t and cN
t leads to

cN
t ψo

N,t + `tψ
o
`,t = −ϕ(ε− 1)`tuN(t)

{[
1− z−1

t (1−ωt)
] [−cN

t uNN(t)
uN(t)

− 1
]

+
−u`(t)
AuN(t)

[
−cN

t uNN(t) + κµtγ
−1pN

t
ztuN(t)

+
`tu``(t)

u`(t)

]}
(A.73)

which evaluated at the efficient allocation reduces to ϕ ¯̀tūN(t)(ε− 1)
[
(1− āt)σ + ātγ

−1 + φ
]
.

The first order Taylor series expansions of (A.71) (after substituting (A.72) and (A.73))
evaluated at the efficient allocation, yields

ϕχπN
t = −ϕχ

t−1

∑
s=1

πN
s + ωt + (σ− γ−1)

c̄T(t)
c̄t

(υ∗t − Rt−1υ∗t−1) + (1− γ−1)
κ

ūT(t)
µ∗t (A.74)

where χ = (ε− 1)
[
(1− āt)σ + ātγ

−1 + φ
]
. Noting that ∑t

s=1 πN
s = log PN

t − log PN
−1 = p̂N

t

and rearranging (A.74) we obtain the first order approximation of the optimal monetary
policy under commitment (in the absence of capital flow taxes)

ωt = ϕ(ε− 1)
[
(1− āt)σ + ātγ

−1 + φ
]

p̂N
t − (σ−γ−1)

āt

c̄T
t
(υ∗t −Rt−1υ∗t−1)+ (γ−1− 1)

κ

ūT(t)
µ∗t .

The proof of proposition 2 is then straightforward. It follows from the fact that with
capital flow taxes, the first-order condition with respect to τt is given by

υt = 0 for all t.

Thus, when capital controls are used optimally the optimal monetary policy under com-
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mitment targets

ωt = ϕ(ε− 1)
[
(1− āt)σ + ātγ

−1 + φ
]

p̂N
t + (γ−1 − 1)

κ

ūT(t)
µ∗t .

C.4 Future-Income Constraint

This section shows that a model in which future income is used as collateral cannot
rationalize the observed procyclicality of monetary policy in emerging market economies.

Consider, in the spirit of Ottonello, Perez and Varraso (2021), an alternative formulation
of the credit constraint in which future income, not current income, is used as collateral:

b∗t+1
Rt
≥ −κEt

[
yT

t+1 + wt+1`t+1 + φN
t+1

]
(A.75)

This constraint limits total debt denominated in units of tradables to a fraction of the
minimum value of the household’s future income, which is referred to as the future-
income constraint. The microfoundations of this collateral constraint can be found in
Ottonello, Perez and Varraso (2021). It is derived from an environment in which borrowers
(households) lack commitment and can default in the repayment period, and in which
foreign lenders can seize a fraction κ of the household’s income if households default.

The household’s problem in this environment can be formulated in recursive form as
follows

V(b, B, s) = max
cT ,cN ,`,b′

u
(
c(cT, cN), `

)
+ βEs′|sV(b′, B′, s′)

subject to

cT + pN(B, s)cN +
1

1 + τ

b′

R
= yT + w(B, s)`+ φ(B, s) + b + T

b′

R
≥ −κ Es′|s

[
yT′ + w(B′, s′) `(b′, B′, s′) + φ(B′, s′)

]
B′ = Γ(B, s)

The optimality conditions of the household’s problem are

−u`(t)
uN(t)

=
wt

pN
t

(A.76)

uT(t) = βRt(1 + τt)EtuT(t + 1) + µt

[
1 + κEt+1wt+1

∂`t+1

∂bt+1

]
(A.77)
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The remaining optimality conditions of the household’s problem, (6), (7), (8) and the
problem of the firms remain unchanged, while the optimality condition is given by (12).
The next proposition describes the optimal monetary and capital flow management policies
in this environment.

Proposition 3 (Under Discretion). With future-income constraint, a price stability policy,
πN

t = 0 for all t, is the discretionary monetary policy. Furthermore, the optimal policy under
discretion doesn’t involve capital flow taxes τt = 0 for all t.

As is well understood in the literature, there is no pecuniary externality and the value of
the collateral is not affected by current choices in an environment in which future income
is used as collateral. Thus, under discretion, the current government focuses on stabilizing
prices, πN

t = 0 for all t, and replicating the flexible price allocation. In addition, capital
flow taxes are not used, τt = 0 for all t, since private agents’ borrowing decisions coincide
with the socially desirable level of debt from the viewpoint of the current government.2

Proof. Under discretion, the government takes as given future policies and solves

V(b, s) = max
πN ,τ,cT ,cN ,`,b′,pN ,µ

u
[
c
(

cT, cN
)

, `
]
+ βEs′|sV(b′, s′)

subject to

cN = α(pN)cT (A.78)

cN =
[
1− ϕ

2
(πN)2

]
A` (A.79)

cT = yT + b− b′

R
(A.80)

b′

R
≥ −κ Es′|s

[
yT′ + PN(b′, s′)CN(b′, s′)

]
(A.81)

µ∆ = uT(cT, cN)− βR(1 + τ)Es′|suT

(
CT(b′, s′), CN(b′, s′)

)
(A.82)

µ∆×
[

b′

R
+ κ Es′|s

(
yT′ + PN(b′, s′)CN(b′, s′)

)]
= 0 (A.83)

0 = ϕπN(1 + πN) + (ε− 1)ω− ϕ`−1Es′|sΛ
[
L(b′, s′)M(b′, s′)

]
(A.84)

where ∆ ≡ 1 + ∂`(b′, s′)/∂b′. Let δ∗, ι∗, λ∗, µ∗, υ∗, ν∗ and ξ∗ be the Lagrange multipliers
on constraints (A.78)-(A.84). From the first-order condition with respect to τ, we have
υ∗ = 0 and the optimality condition for µ then yields ν∗ = 0. The remaining optimality

2Devereux et al. (2019) shows that when there is a working motive for borrowing and the future price of
capital enters the collateral, a policymaker under discretion will also tax capital inflows in a crisis. But this is
not optimal from an ex-ante social welfare perspective.
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conditions of the problem of the government are then:

cT :: λ∗ = uT(cT, cN) + ξ∗t ψT (A.85)

b′ :: λ∗ = βREs′|sλ
∗′ + µ∗

[
1 + κEs′|s

∂Y(b′, s′)
∂b′

]
+ ξ∗ψb′ (A.86)

` :: u`(`) + ι∗
[
1− ϕ

2
(πN)2

]
A + ξ∗ψ` = 0 (A.87)

cN :: ι∗ = uN(cT, cN) + ξ∗ψN (A.88)

πN :: ξ∗ =
ϕι∗yN

1 + 2πN πN (A.89)

where the function Y(b′, s′) ≡ yT′ + PN(b′, s′)CN(b′, s′) determines the income in the next
period as a function of the stock of net foreign assets in the next period b′ and the future
exogenous state variable s′.

We now show that the optimal solution features πN = 0 and τ = 0. First, note that
πN = 0 implies ξ∗ = 0 which in turn implies that ι∗ = uN(cT, cN) by equation (A.88).
Substituting both ξ∗ = 0 and ι∗ = uN(cT, cN) into (A.87) yields ω = 0. From πN = 0
and ω = 0 it follows that the implementability constraint (A.84) is satisfied. Now pick

µ∗ = µ∆
[
1 + κEs′|s

∂Y(b′,s′)
∂b′

]−1
. It is straightforward to see that µ∗ ≥ 0 and that µ∗ = 0

when the credit constraint does not bind. Then, combining (A.85) and (A.86) and using
ξ∗ = 0 we arrive to

uT(cT, cN) = βREs′|suT

(
CT(b′, s′), CN(b′, s′)

)
+ µ

and the implementability constraint (A.82) is also satisfied (with τ = 0). Therefore, πN = 0
and τ = 0 is. the solution of the government’s problem. Hence, under discretion, the
optimal monetary policy in a model in which future income is used as collateral is a price
stability policy πN = 0 and the government does not use capital controls τ = 0.
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D Numerical Solution Method (Algorithm)

D.1 For Competitive Equilibrium under a Price Stability Policy

This algorithm is build on Bianchi (2011)’s algorithm that incorporates the occasionally
binding endogenous constraint, modified to account for the nominal rigidities. Formally,
the computation of the competitive equilibrium operates directly on the first-order con-
ditions and requires solving for functions {B(b, s),L(b, s), CT(b, s),PN(b, s), µ(b, s)} such
that:

CT(b, s) +
B(b, s)

R
= yT + b (D.1)

α
(
PN(b, s)

)
CT(b, s) = AL(b, s) (D.2)

B(b, s)
R

≥ −κ
(

APN(b, s)L(b, s) + yT
)

(D.3)

uT (c(b, s)− g (L(b, s)))

= βREs′|s
{

uT
(
c(B(b, s), s′)− g (L(B(b, s), s))

)}
+ µ(b, s) (D.4)

uN (c(b, s)− g (L(b, s))) +
1
A

u` (c(b, s)− g (L(b, s))) = −κPN(b, s)µ(b, s) (D.5)

where c(b, s) ≡ c
(
CT(b, s), AL(b, s)

)
. The steps for the algorithm are the following:

1. Generate discrete grids Gb = {b1, b2, ..., bM} for the bond position and Gs = {s1, s2, ..., sN}
for the shock state space, and choose an interpolation scheme for evaluating the
functions outside the grid of bonds. The piecewise linear approximation is used to
interpolate the functions and the grid for bonds contains 200 points.

2. Conjecture Bh(b, s), Lh(b, s), CT
h (b, s), PN

h (b, s), µh(b, s) at time H, ∀b ∈ Gb and
∀s ∈ Gs.

3. Set i = 1

4. Solve for the values of Bh−i(b, s), Lh−i(b, s), CT
h−i(b, s), PN

h−i(b, s), µh−i(b, s) at time
h− i using (D.1)-(D.5) and Bh−i+1(b, s), Lh−i+1(b, s), CT

h−i+1(b, s), ∀b ∈ Gb and ∀s ∈
Gs:

(a) First, assume that the credit constraint (D.3) is not binding. Set µh−i(b, s) = 0
and using (D.4), (D.5) and a root finding algorithm solve for CT

h−i(b, s) and
Lh−i(b, s). Solve for Bh−i(b, s) and PN

h−i(b, s) using (D.1) and (D.2).
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(b) Check whether Bh−i(b,s)
R ≥ −κ

(
APN

h−i(b, s)Lh−i(b, s) + yT) holds. If the credit
constraint is satisfied, move to the next grid point.

(c) Otherwise, using (D.1), (D.3), (D.4), (D.5) and a root finding algorithm solve
for µh−i(b, s), Bh−i(b, s), CT

h−i(b, s) and Lh−i(b, s) and using (D.2) solve for
PN

h−i(b, s).

5. Convergence. The competitive equilibrium is found if
∥∥∥supB,s xh−i(b, s)− xh−i+1(b, s) < ε

∥∥∥
for x ∈ {B, ,L, CT}. Otherwise, set xh−i(b, s) = xh−i+1(b, s), i ≈ i + 1 and go to step
4.

D.2 For Optimal Time-Consistent Monetary Policy

The solution method proposed here uses a nested fixed point algorithm to solve for
optimal time-consistent monetary policy and is related to the literature using Markov
perfect equilibria (e.g. Klein et al. (2008) and Bianchi and Mendoza (2018)). In the
inner loop, using the Bellman equation and value function iteration, solve for value
function and policy functions taking as given future policies. Formally, given functions
{CT(b, s),PN(b, s),B(b, s),L(b, s),M(b, s)}, the Bellman equation is given by:

V(b, s) = max
cT ,`,b′,pN ,πN ,µ

u
[
c
(

cT, α(pN)cT
)
− g(`)

]
+ βEs′|sV(b′, s′) (D.6)

s.t. α(pN)cT =
[
1− ϕ

2
(πN)2

]
A` (D.7)

cT = yT + b− b′

R
(D.8)

b′

R
≥ −κ

(
pN A`+ yT

)
(D.9)

µ = uT(c, `)− βREs′|suT

(
c
(
CT(b′, s′),PN(b′, s′)

)
− g

(
L(b′, s′)

))
(D.10)

µ ×
[
b′ + κ

(
pN A`+ yT

)]
= 0 (D.11)

ϕπN(1 + πN)− (ε− 1)
[
z−1(1−ω)− 1

]
− ϕ`−1Es′|sΛ

[
L(b′, s′)M(b′, s′)

]
= 0
(D.12)

Given the solution to the Bellman equation, update future policies as the outer loop. The
steps for the algorithm are the following:

1. Generate discrete grids Gb = {b1, b2, ..., bM} for the bond position and Gs = {s1, s2, ..., sN}
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for the shock state space, and choose an interpolation scheme for evaluating the
functions outside the grid of bonds. The piecewise linear approximation is used to
interpolate the functions and the grid for bonds contains 200 points.

2. Guess policy functions B, CT, PN,M at time H, ∀b ∈ Gb and ∀s ∈ Gs.

3. For given L, CT, PN,M solve the recursive problem using value function iteration
to find the value function and policy functions:

(a) First, assume that the credit constraint (D.9) is not binding. Set µ = 0 – (D.11) is
thus satisfied – and solve the optimization problem (D.6) subject to (D.7), (D.8),
(D.10), (D.12) using a Newton type algorithm and check whether (D.9) holds.

(b) Second, assume that the credit constraint (D.9) is binding – (D.11) is thus satis-
fied. Solve the optimization problem (D.6) subject to (D.7)-(D.10), (D.12) using a
Newton type algorithm.

(c) Compare the solutions in (a) and (b).The optimal choices in each state is the
best solution. Denote {xi}i, with xi ∈ {b′, `, cT, pN, πN}, the associated policy
functions.

4. Evaluate convergence. Compute the sup distance between B, CT, PN,M and {xi},
with xi ∈ {b′, cT, pN, πN}. If the sup distance is not smaller enough (higher than
ε = 1e− 7), update B, CT, PN,M and solve again the recursive problem.
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