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A Extended Sample Details

Table A1: Additional EDD countries and years in the extended sample (only EDD statistics available)

ISO3 Country name 1st year Last year

BRA Brazil 2003 2013

DNK Denmark 2003 2012

ESP Spain 2005 2013

EST Estonia 2003 2011

KWT Kuwait 2009 2010

LKA Sri Lanka 2013 2013

NOR Norway 2003 2013

PRT Portugal 2003 2012

SWZ Swaziland 2012 2012

TUR Turkey 2003 2013
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B Intensive Margin: Robustness Checks

Intensive Margin Elasticity

Here we present details of various alternative approaches to estimating the IME discussed in Section 2..

In Table B1 we reproduce the regressions in Table 2 but for the extended sample of countries. In

the preferred specification with origin-year and destination-year fixed effects, the IME is 0.38 for origin-

destination pairs with at least 100 exporting firms and 0.52 for all origin-destination pairs. Tables B2 and

B3 show the results of estimating the IME after excluding firms whose annual exports fell below $1,000 in

any year, for the core and extended samples, respectively. The IME estimates change only slightly. Figure

B1 shows IME estimates obtained separately for each year which range from 0.55 to 0.6.

When we allow the IME to differ across origin countries depending on their GDP per capita or on

continents, we find that IME estimates are close to or larger than 0.4 for any group of countries, as shown

in Table B4.

In Figure B2 we plot the (demeaned) intensive and extensive margins against total exports at the

origin-industry-destination-year level using HS 2-digit industries. The pattern here is similar to that in

Figure 1. Table B5 shows that the IME actually increases when moving to industry-level data. At the

lowest level of aggregation available (HS 6-digit), for the core sample of countries the IME is 0.51 with

origin-year-industry and destination-year-industry fixed effects. The results also hold in the extended

sample, for which we calculated IME disaggregated at HS2 product level. As reported in Table B6, this

IME is also close to 0.52. Estimates of the IME based on a sample including only HS 2-digit industries

with low shares of firms exporting via intermediaries, as defined in Chan (2019), are shown in Table B7.

The results show an almost unchanged IME at 0.53.

If measurement error in exports per firm and thus in total exports is serially uncorrelated, then in-

strumenting total exports with its leads and/or lags should yield an unbiased estimate of the IME. Table

B8 shows that instrumented IMEs are very close to the OLS IME, both economically and statistically.

As an alternative to the use of cross-sectional variation in bilateral trade flows to estimate the IME, we

exploit only time-series variation in bilateral export flows in Table B9. The results from regressions that

include origin-destination fixed effects or regressions in first-differences (where the IME is identified

only off the panel dimension) for the core and the extended sample show significant and larger IMEs

in magnitude than those obtained exploiting cross-sectional variation in Table 2. The results for the

extended sample (available upon request) are quantitatively almost identical. The evidence shows very

clearly that the intensive margin is an important determinant of changes in bilateral export flows.
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Table B1: IME regressions, extended sample

Coefficient from ln xi j on ln Xi j

Panel a: country pairs with Ni j ≥ 100

IM elasticity 0.437*** 0.450*** 0.381***

Standard error [0.0037] [0.0028] [0.0039]

R2 0.55 0.75 0.83

Variation in ln Xi j explained by FE,% 0.01 0.14 0.55

Observations 14,318 14,300 13,964

Panel b: all country pairs

IM elasticity 0.434*** 0.477*** 0.516***

Standard error [0.0016] [0.0016] [0.0023]

R2 0.69 0.77 0.80

Variation in ln Xi j explained by FE, % 0.00 0.22 0.56

Observations 52,775 52,775 52,658

Year FE Yes

Origin × year FE Yes Yes

Destination × year FE Yes

Note: the table presents the estimated coefficients of the regression of log
average exports per firm on log total exports. The data are aggregated at
the origin-destination-year level for a set of origin-years listed in Table 1
and Table A1 in the Online Appendix. Panel a) presents the regression on
the sample of country-pairs with at least 100 exporters. Panel b) presents
the regression on the full sample. Robust standard errors are reported in
brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1% significance levels
respectively.



6 FERNANDES-KLENOW-MELESHCHUK-PIEROLA-RODRíGUEZ-CLARE

Table B2: IME regressions, small firms excluded, core sample

Coefficient from ln xi j on ln Xi j

Panel a: country pairs with Ni j ≥ 100

IM elasticity 0.437*** 0.459*** 0.398***

Standard error [0.0058] [0.0042] [0.0055]

R2 0.54 0.74 0.85

Variation in ln Xi j explained by FE,% 0.01 0.19 0.59

Observations 7,698 7,684 7,234

Panel b: all country pairs

IM elasticity 0.497*** 0.525*** 0.573***

Standard error [0.0018] [0.0017] [0.0022]

R2 0.77 0.81 0.84

Variation in ln Xi j explained by FE, % 0.00 0.19 0.50

Observations 46,925 46,925 46,832

Year FE Yes

Origin × year FE Yes Yes

Destination × year FE Yes

Note: the table presents the estimated coefficients of the regression of log
average exports on log total exports per firm. The data are aggregated at
the origin-destination-year level for a set of origin-years listed in Table 1.
Average and total exports per destination are calculated using the sales of
firms with at least $1000 to that destination. Panel a) represents the regres-
sion on the sample of country-pairs with at least 100 exporters. Panel b)
represents the regression on the full sample. Robust standard errors are
reported in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1% signifi-
cance levels respectively.
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Table B3: IME regressions, small firms excluded, extended sample

Coefficient from ln xi j on ln Xi j

Panel a: country pairs with Ni j ≥ 100

IM elasticity 0.437*** 0.450*** 0.379***

Standard error [0.0037] [0.0027] [0.0039]

R2 0.55 0.75 0.83

Variation in ln Xi j explained by FE,% 0.01 0.13 0.55

Observations 14,216 14,196 13,858

Panel b: all country pairs

IM elasticity 0.431*** 0.475*** 0.512***

Standard error [0.0015] [0.0015] [0.0021]

R2 0.69 0.77 0.80

Variation in ln Xi j explained by FE, % 0.00 0.21 0.56

Observations 52,593 52,593 52,447

Year FE Yes

Origin × year FE Yes Yes

Destination × year FE Yes

Note: the table presents the estimated coefficients of the regression of log
average exports per firm on log total exports. The data are aggregated at the
origin-destination-year level for a set of origin-years listed in Table 1 and
Table A1. Average and total exports per destination are calculated using
the sales of firms with at least $1000 to that destination. Panel a) presents
the regression on the sample of country-pairs with at least 100 exporters.
Panel b) presents the regression on the full sample. Robust standard errors
are reported in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1%
significance levels respectively.
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Table B4: IME regressions and distance elasticity by income group and continent, core sample

Coefficient from ln xi j on ln Xi j or ln distance

Panel a: interactions with origin income group

ln Xi j × richer 0.438*** 0.444*** 0.380***

[0.00576] [0.00471] [0.00587]

ln Xi j × poorer 0.438*** 0.527*** 0.477***

[0.00584] [0.00747] [0.00914]

ln distance × richer 0.0839*** 0.136*** -0.263***

[0.0109] [0.0174] [0.0167]

ln distance × poorer 0.0401*** 0.0638* -0.344***

[0.0114] [0.0320] [0.0328]

Observations 7,736 7,723 7,310 7,736 7,723 7,310

R2 0.543 0.744 0.851 0.076 0.307 0.691

Panel b: interactions with origin continent

ln Xi j × Europe 0.467*** 0.507*** 0.450***

[0.00458] [0.00861] [0.00967]

ln Xi j × America 0.476*** 0.555*** 0.470***

[0.0046] [0.00861] [0.00847]

ln Xi j × Africa 0.461*** 0.490*** 0.422***

[0.00473] [0.0131] [0.0133]

ln Xi j × Asia 0.431*** 0.381*** 0.319***

[0.00458] [0.00557] [0.00790]

ln distance × Europe 0.157*** -0.0845*** -0.527***

[0.0140] [0.0253] [0.0261]

ln distance × America 0.199*** 0.373*** -0.273***

[0.0123] [0.0265] [0.0318]

Distance × Africa 0.137*** 0.529*** -0.0387

[0.0123] [0.0305] [0.0374]

Distance × Asia 0.0978*** -0.280*** -0.0648

[0.0114] [0.0333] [0.0431]

Observations 7,746 7,733 7,320 7,746 7,733 7,320

R2 0.639 0.753 0.855 0.147 0.352 0.702

Year FE Yes Yes

Origin-year FE Yes Yes Yes Yes

Destination-year FE Yes Yes

Note: the table presents the estimated coefficients of the regression of log average exports per
firm on log ln Xi j or on log distance interacted with origin income level group or continent. The
data are aggregated at the origin-destination-year level for a set of origin-years listed in Table 1.
Robust standard errors are reported in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1%
significance levels respectively.
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Table B5: IME regressions, disaggregated within manufacturing, core sample

Coefficient from ln xi j on ln Xi j

Panel a: HS 2-digit

IM elasticity 0.569*** 0.510*** 0.467***

Standard error [0.0022] [0.0019] [0.0060]

Observations 37,269 35,621 10,732

Panel b: HS 4-digit

IM elasticity 0.651*** 0.569*** 0.515***

Standard error [0.0018] [0.0017] [0.0085]

Observations 61,740 58,516 4,640

Panel c: HS 6-digit

IM elasticity 0.664*** 0.593*** 0.508***

Standard error [0.0019] [0.0018] [0.0013]

Observations 65,096 61,501 2,972

Year × HS FE Yes

Origin × Year × HS FE Yes Yes

Destination × Year × HS FE Yes

Note: the table presents the estimated coefficients of the regres-
sion of log average exports per firm on log total exports. The data
are aggregated at the origin-destination-year-HS industry level
for a set of origin-years listed in Table 1. Panels a), b), and c)
represent the regressions for industries defined at the HS 2-digit,
4-digit, and 6-digit levels respectively. The sample is restricted to
the origin-destination-product cells with at least 100 exporters.
Robust standard errors are reported in brackets. ∗, ∗∗, and ∗∗∗

represent the 5%, 1%, and 0.1% significance levels, respectively.
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Table B6: IME regressions, disaggregated by HS2 product, extended sample

Coefficient from ln xi j on ln Xi j

IM elasticity 0.646*** 0.598*** 0.518***

Standard error [0.0020] [0.0019] [0.0034]

Observations 58,609 56,560 29,906

Year × HS FE Yes

Origin × Year × HS FE Yes Yes

Destination × Year × HS FE Yes

Note: the table presents the estimated coefficients of the regres-
sion of log average exports per firm on log total exports. The data
are aggregated at the origin-destination-year-HS2 industry level
for a set of origin-years listed in Table 1 and Table A1. The sam-
ple is restricted to country pairs with Ni j ≥ 100. Robust standard
errors are reported in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%,
1%, and 0.1% significance levels respectively.

Table B7: IME regression for HS2 industries with low share of exporting via intermediaries, core sample

Coefficient from ln xi j on ln Xi j

IM elasticity 0.579*** 0.509*** 0.471***

Standard error [0.0032] [0.0028] [0.0083]

Observations 14,984 14,413 4,198

Year × HS FE Yes

Origin × year × HS FE Yes Yes

Destination × year × HS FE Yes

Note: the table presents the estimated coefficients of the regres-
sion of log average exports per firm on log total exports dropping
HS2 industries with a large share of intermediaries as defined in
Chan (2019). The data are aggregated at the origin-destination-
year-HS2 industry level for a set of origin-years listed in Table
1. The sample is restricted to country pairs with at least 100 ex-
porters. Robust standard errors are reported in brackets. ∗, ∗∗,
and ∗∗∗ represent the 5%, 1%, and 0.1% significance levels re-
spectively.
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Table B8: IME instrumental variables regressions, core sample

Coefficient from ln xi j on ln Xi j

IV lag IV lead IV lag and lead

Panel a: country pairs with Ni j ≥ 100

IM elasticity 0.392*** 0.392*** 0.399***

Standard error [0.0061] [0.0063] [0.0068]

Observations 6,372 6,181 5,224

Panel b: all country pairs

IM elasticity 0.476*** 0.479*** 0.468***

Standard error [0.0028] [0.0028] [0.0030]

Observations 36,065 36,065 28,672

Origin × year FE Yes Yes Yes

Destination × year FE Yes Yes Yes

Note: the table presents the estimated coefficients of the re-
gression of log average exports per firm on log total exports
using lags and/or leads of the independent variable as instru-
ments. The data are aggregated at the origin-destination-year
level for a set of origin-years listed in Table 1. Panel a) presents
the regression on the sample of country-pairs with at least 100
exporters. Panel b) presents the regression on the full sample.
Robust standard errors are reported in brackets. ∗, ∗∗, and ∗∗∗

represent the 5%, 1%, and 0.1% significance levels respectively.
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Table B9: IME regressions, exploiting time-series variation

Core sample Extended sample

Panel a: country pairs with Ni j ≥ 100

IM elasticity (levels) 0.715*** 0.734***

Standard error [0.0095] [0.0071]

IM elasticity (first differences) 0.848*** 0.865***

Standard error [0.0079] [0.0056]

R2 0.98 0.82 0.98 0.85

Observations 7,701 6,373 14,176 12,069

Panel b: all country pairs

IM elasticity (levels) 0.861*** 0.846***

Standard error [0.0022] [0.0025]

IM elasticity (first differences) 0.871*** 0.876***

Standard error [0.0025] [0.0028]

R2 0.97 0.91 0.97 0.89

Observations 45,972 36,213 51,661 42,236

Year FE Yes Yes

Origin × destination FE Yes Yes

First differences Yes Yes

Note: columns 1 and 3 of the table presents the estimated coefficients of the
regression of log average exports on log total exports with year and origin-
destination fixed effects. Columns 2 and 4 report the results of the same
regression in first differences with no fixed effects. The data are aggregated
at the year-origin-destination level for a set of origin-years listed in Table 1
and Table A1 . Panel a) represents the regression on the sample of country-
pairs with at least 100 exporters. Panel b) represents the regression on the
full sample. Robust standard errors are reported in brackets. ∗, ∗∗, and ∗∗∗

represent the 5%, 1%, and 0.1% significance levels respectively.
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Figure B1: IME by year, data
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Source: Exporter Dynamics Database. The bars are intensive margin elasticities from yearly re-
gressions that include origin and destination fixed effects. The core sample of countries, i.e., the
set of origin-years listed in Table 1 is used.
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Figure B2: Intensive and extensive margins of exporting, by industry

Panel a: Average size of exporters (intensive margin) and total exports

Panel b: Number of exporters (extensive margin) and total exports

Source: Exporter Dynamics Database, extended sample of countries. The x-axis represents log to-
tal exports at the origin-HS 2-digit-destination-year level demeaned by origin-HS 2-digit-year and
destination-HS 2-digit-year fixed effects. Only origin-HS 2-digit-destination triplets with more
than 100 exporting firms are considered. The line is the slope predicted by the Melitz-Pareto
model.

Intensive Margin Elasticity by Percentile

Figure B3 presents the estimated intensive margin across size percentiles disaggregated by industry rely-

ing on data at the origin-destination-year-HS 2-digit industry level. The IME by percentile within indus-
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tries is qualitatively consistent with the original IME by percentile in Figure 2 (which was aggregated at

the origin-destination-year level).

Figure B3: IME for each percentile, disaggregated by industry

Source: Exporter Dynamics Database, core sample of countries. The x-axis represents percentiles
of the average exporter size distribution. Each plus represents the coefficient from the regression
of log average exports per firm in an exporter size percentile on log total exports. The data used
is at the is origin-destination-year-HS 2-digit industry level and it demeaned by origin-year-HS
2-digit industry and destination-year-HS 2-digit industry fixed effects.
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Product Intensive Margin Elasticity

The product intensive margin regressions for the core sample in Table B10 show an estimate of about

0.29 when origin-year and destination-year fixed effects are controlled for.

Table B10: Product-level IME regressions, core sample

Coefficient from ln xp
i j on ln Xi j

IM elasticity 0.375*** 0.393*** 0.287***

Standard error [0.0069] [0.0055] [0.0076]

R2 0.36 0.59 0.77

Variation in ln Xi j explained by FE,% 0.01 0.20 0.59

Observations 7,485 7,472 7,023

Year FE Yes

Origin × year FE Yes Yes

Destination × year FE Yes

Note: the table presents the estimated coefficients of the regression of
log average exports per product (total exports divided by the number of
HS6 products exported by all firms from origin i to destination j in a
given year) on log total exports. The data are aggregated at the origin-
destination-year level for a set of origin-years listed in Table 1. Robust
standard errors are reported in brackets. Egypt is not included in the sam-
ple since its data does not include HS 6-digit product level disaggregation.
∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1% significance levels, respec-
tively.

Intensive Margin and Distance

The elasticity of average exports per firm with respect to distance remains negative when disaggregated

at the industry level, as reported in Table B11. In addition, the distance elasticity remains positive even

when controlling for the destination country GDP as seen in Table B12.
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Table B11: Intensive margin and distance, disaggregated within manufacturing, core sample

Elasticity with respect to distance

HS 2-digit HS 4-digit HS 6-digit

xi j 0.0125 -0.561*** 0.065 -0.701*** 0.152*** -0.600***

Standard error [0.0085] [0.0244] [0.0063] [0.0415] [0.0056] [0.056]

Observations 35,505 10,615 58,470 4,586 61,501 2,972

Origin × year × HS FE Yes Yes Yes Yes Yes Yes

Destination × year × HS FE Yes Yes Yes

Note: the table presents the estimated coefficients of the regression of log average exports per firm on log distance
between origins and destinations. The data are aggregated at the origin-destination-year-HS industry level for a
set of origin-years listed in Table 1. Population-weighted distance between origins and destinations is taken from
Mayer and Zignago (2011). The sample is restricted to the origin-destination pairs with at least 100 exporters.
Egypt is not included in the sample since its data does not include HS 6-digit product level disaggregation. Ro-
bust standard errors are reported in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1% significance levels,
respectively.
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Table B12: Distance elasticity, controlling for destination GDP, core sample

ln xi j ln xp
i j

ln distance 0.128*** -0.239*** 0.302*** -0.0825***

Standard error [0.0158] [0.0151] [0.0165] [0.0152]

R2 0.31 0.53 0.34 0.55

Observations 7,437 7,101 7,450 7,114

ln destination GDP Yes Yes

Origin × year FE Yes Yes Yes Yes

Note: the table presents the estimated coefficients of the regression
of log average exports and log average exports per product (total ex-
ports divided by the number of HS6 products exported by all firms
from origin i to destination j in a given year) on log distance be-
tween origins and destinations and log destination GDP (in columns
2 and 4). The data are aggregated at the origin-destination-year level
for a set of origin-years listed in Table 1. Population-weighted dis-
tance between origins and destinations is taken from Mayer and Zig-
nago (2011). The sample is restricted to the origin-destination pairs
with at least 100 exporters. Egypt is not included in the sample since
its data does not include HS 6-digit product level disaggregation. Ro-
bust standard errors are reported in brackets. ∗, ∗∗, and ∗∗∗ repre-
sent the 5%, 1%, and 0.1% significance levels, respectively.

C The Intensive Margin in the Melitz Model: Additional Results

To show that a positive IME requires cov(ln τ̃i j , ln F̃i j ) < 0 under Pareto-distributed productivity, note

that ifΩ (n) is a constant then equations (6) and (8) combined with Gi (ϕ) = 1− (
ϕ/b0

)−θ imply

ln xi j =µx,o
i +µx,d

j + ln F̃i j (OA.1)

and

ln Ni j =µN ,o
i +µN ,d

j −θ ln τ̃i j − θ̄ ln F̃i j (OA.2)

where µx,o
i , µx,d

i , µN ,o
i and µN ,d

j are functions of parameters as well as origin and destination variables.

Combining the definition of the intensive margin elasticity given in the previous section (i.e., IME =
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cov(ln x̃i j ,ln X̃i j )

var(ln X̃i j )
) with equations (OA.1) and (OA.2), the model implies that

IME = −(
θ̄−1

)
var(ln F̃i j )−θcov(ln τ̃i j , ln F̃i j )

var
(−θ ln τ̃i j −

(
θ̄−1

)
ln F̃i j

) . (OA.3)

Combined with the assumption that θ̄ > 1, this result implies that IME> 0 if and only if cov(ln τ̃i j , ln F̃i j ) <
0.

Figure C1 shows the plots between distance and either model-implied fixed trade costs or model-

implied variable trade costs that correspond to the elasticities shown in Table 4. Model-implied fixed

trade costs are decreasing with distance, while model-implied variable trade costs are increasing with

distance.
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Figure C1: Model-implied fixed and variable trade costs and distance

Panel a: fixed trade costs and distance

Panel b: variable trade costs and distance

Source: Exporter Dynamics Database. The x-axis represents log distance demeaned by origin and
destination fixed effects taken from Mayer and Zignago (2011). The y-axis represents the fixed
or variable trade costs implied by the basic Melitz-Pareto model demeaned by origin-year and
destination-year fixed effects. To calculate the model-implied fixed and variable trade costs we
use θ = 5 from Head and Mayer (2014) and σ= 5 from Bas et al. (2017)

.
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D Multi-Product Extension of Melitz-Pareto model

Here we study how allowing for multi-product firms affects the implications of the Melitz-Pareto model

for the IME. As in Bernard et al. (2011), each firm can produce a differentiated variety of each of a con-

tinuum of products in the interval [0,1] with productivity ϕλ, where ϕ is common across products and

λ is product-specific. The firm component ϕ is drawn from a Pareto distribution G f (ϕ) with shape pa-

rameter θ f , while the firm-product component λ is drawn from a Pareto distribution Gp (λ) with shape

parameter θp . To have well-defined terms given a continuum of firms, we impose θ f > θp >σ−1. To sell

any products in market j , firms from country i have to pay a fixed cost Fi j , and to sell each individual

product requires an additional fixed cost of fi j . Variable trade costs are still τi j .

The cutoff λ for a firm from country i with productivity ϕ that wants to export to market j , λ∗
i j (ϕ), is

given implicitly by

A j

(
wiτi j

ϕλ∗
i j (ϕ)

)1−σ
=σ fi j . (OA.4)

We can then write the profits in market j for a firm from country i with productivity ϕ as

πi j (ϕ) ≡
∫ ∞

λ∗
i j (ϕ)

[(
λ

λ∗
i j (ϕ)

)σ−1

−1

]
fi j dG p (λ). (OA.5)

The cutoff productivity for firms from i to sell in j is implicitly πi j (ϕ∗
i j ) = Fi j . As in the canonical model,

the number of firms from country i that export to market j is Ni j =
[

1−G f (ϕ∗
i j )

]
Ni , while the number

of products sold by firms from i in j is Mi j = Ni
∫ ∞
ϕ∗

i j

[
1−Gp

(
λ∗

i j (ϕ)
)]

dG f (ϕ). Combining the previous

expressions, using the fact that Gp (λ) and G f (ϕ) are Pareto, writing fi j = f o
i f d

j f̃i j , Fi j = F o
i F d

j F̃i j , and

τi j = τo
i τ

d
j τ̃i j , and defining variables appropriately we get

ln Xi j =µX ,o
i +µX ,d

j −θ f ln τ̃i j −
(
θ f

σ−1
− θ f

θp

)
ln f̃i j −

(
θ f

θp −1

)
ln F̃i j , (OA.6)

ln xp
i j ≡ ln Xi j − ln Mi j =µxp ,o

i +µxp ,d
j + ln f̃i j , (OA.7)

ln xi j ≡ ln Xi j − ln Ni j =µx f ,d
i +µx f ,d

j + ln F̃i j . (OA.8)

It is easy to verify that if fi j = 0 for all i , j then this model collapses to the canonical model with single-

product firms.

Recalling our definition of the intensive margin elasticity at the firm and product level introduced in

Section 2 and letting θ̄ ≡ θ f /(σ−1) and χ≡ θ f /θp , then from equations (OA.6) to (OA.8) we have

IME =−
(
χ−1

)
var

(
ln F̃i j

)+ (
θ̄−χ)

cov(ln f̃i j , ln F̃i j )+θ f cov(ln F̃i j , ln τ̃i j )

var(ln X̃i j )
(OA.9)
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and

IMEp =−
(
θ̄−χ)

var
(
ln f̃i j

)+ (
χ−1

)
cov(ln f̃i j , ln F̃i j )+θ f +cov(ln f̃i j , ln τ̃i j )

var(ln X̃i j )
. (OA.10)

As in the single-product firm model, if var
(
ln F̃i j

)= 0 then IME = 0, so this basic implication is not af-

fected. We now have an analogous observation for the product-level intensive margin elasticity, namely

that if var
(
ln f̃i j

)= 0 then IMEp = 0.

The assumption θ f > θp >σ−1 implies that χ> 1 and θ̄ > χ> 1 and in turn implies that for IME > 0

then either cov(ln f̃i j , ln F̃i j ) < 0 or cov(ln F̃i j , ln τ̃i j ) < 0 (or both). In addition, if IMEp > 0 then either

cov(ln f̃i j , ln F̃i j ) < 0 or cov(ln f̃i j , ln τ̃i j ) < 0 (or both).

The result in the single-product model that, to match the data, we would need firm-level fixed trade

costs to fall with distance remains valid in the multi-product firm extension. This comes directly from

equation (OA.8) combined with the fact that cov(ln x̃i j , ln �di st i j )) < 0, which imply that cov(ln F̃i j , ln �di st i j ))

must be negative in the model. We now have an analogous observation for product-level fixed trade

costs: equation (OA.7) combined with the fact that cov(ln x̃p
i j , ln �di st i j )) < 0 (see Table 3) implies that

cov(ln f̃i j , ln �di st i j )) < 0, so product-level fixed trade costs must also fall with distance. The results of the

IME regression were reported above in Table B10.

E Granularity

Theory

With a discrete and finite number of firms it is possible to generate a positive covariance between the

intensive margin and total exports even with cov(F̃i j ) = 0. To state this formally, we rely on the extension

of the Melitz-Pareto model to allow for granularity in Eaton et al. (2012). Equations (OA.1) and (OA.2)

now become

ln xi j =µx,o
i +µx,d

j + ln F̃i j +εi j , (OA.11)

and

ln Ni j =µN ,o
i +µN ,d

j −θ ln τ̃i j − θ̄ ln F̃i j +ξi j (OA.12)

where ξi j and εi j are error terms arising from the fact that now the number of firms is discrete and

random. The equation analogous to (OA.3) now becomes

IME = −(
θ̄−1

)
var(ln F̃i j )−θcov

(
ln τ̃i j , ln F̃i j

)+var(εi j )+COV

var
(−θ ln τ̃i j −

(
θ̄−1

)
ln F̃i j +εi j +ξi j

) , (OA.13)

where COV ≡ cov(ln F̃i j +εi j ,ξi j )−cov(θ̄ ln F̃i j +θ ln τ̃i j ,εi j ). If var(εi j ) is large relative to the other terms

in the numerator then this could explain IME > 0 even with cov
(
ln F̃i j , ln τ̃i j

)> 0. Thus, in theory, gran-

ularity could explain the positive intensive margin elasticity that we find in the data without relying on
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implausible patterns for fixed trade costs.

To check whether granularity is a plausible explanation for the positive IME in the data we will con-

duct two tests. First, we will estimate the fixed trade cost elasticity with respect to distance taking into

account granularity and the possible biases it may induce. Second, we will simulate firm-level exports

under granularity and the assumption of fixed trade costs that vary by origin and destination only and

estimate the implied IME. We describe each of these tests in turn.

Fixed Trade Costs and Distance with Granularity

In the Melitz-Pareto model with a continuum of firms, average exports per firm can be expressed as

xi j = κFi j , where κ ≡ σθ̄
θ̄−1

. If we relax the continuum assumption to allow for granularity, then average

exports per firm can be expressed as xi j = κFi j +εi j , where εi j is an error term that arises from random

realizations of productivity draws, the first moment of which is independent of any variables that deter-

mine bilateral fixed trade costs. If we further assume that Fi j = F o
i F d

j eζ lndi sti j +vi j /κ, where vi j satisfies

E(υi j |di sti j ) = 0, we can then write

xi j = κF o
i F d

j eζ lndi sti j +ui j , (OA.14)

where ui j ≡ vi j +εi j is an error term that captures both the deviation of Fi j from its mean as well as the

granularity error term εi j . Since both E(υi j | lndi sti j ) and E(εi j | lndi sti j ) are equal to zero, it follows that

E(ui j |di sti j ) = 0. The challenge in estimating the fixed trade costs elasticity with respect to distance, ζ,

from this equation is that we cannot simply take logs to obtain a log-linear equation to be estimated by

OLS, because the error term that comes from granularity is not log-additive.

To take advantage of the time dimension of our data, we extend equation (OA.14) to allow for origin-

time and destination-time specific components in the expression of fixed trade costs,

xi j t = κF o
i t F d

j t eζ lndi sti j +ui j t , (OA.15)

where again E(ui j t |di sti j ) = 0. We estimate equation (OA.15) using Poisson pseudo-maximum likeli-

hood method as in Silva and Tenreyro (2011).

The IME under Granularity: Simulation

To assess how well granularity can explain a positive IME, we simulate exports of Ni j firms for each of

the country pairs in the sample. We add demand shocks to allow for a less than perfect correlation be-

tween exports of different firms across different destinations. In the standard Melitz model with demand

shocks, exports from i to j of a firm with productivity ϕ and destination-specific demand shock α j can
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be calculated as

xi j
(
ϕ,α j

)=σFi j

(
α jϕ

α∗
i jϕ

∗
i j

)σ−1

, (OA.16)

whereα∗
i jϕ

∗
i j is a combination of productivity and demand shocks of the smallest exporter from i selling

to j . To estimate the IME in simulations we perform the following steps:

1. Draw ϕ and α j from some distribution. The number of draws is equal to Ni j , the number of ex-

porters in the EDD dataset for each origin-destination pair in 2009. To be more precise, we draw

the product α jϕ for each firm-destination pair assuming either that, as in the standard Melitz

model, there are no demand shocks and hence the productα jϕ is perfectly correlated across desti-

nations or that, at the other extreme, there is no correlation in the productα jϕ across destinations

(pure demand shocks case). In both cases, we draw α jϕ from a Pareto distribution with a shape

parameter to be specified below.

2. Assume that var
(
F̃i j

) = 0, so that Fi j = F o
i F d

j . This will allow us to study the IME generated by

granularity by itself.

3. Use equation (OA.16) to simulate the exports for each firm and to calculate average exports per

firm (in total and in each percentile) for each origin-destination pair.

4. Run the IME regression 1 on the simulated export data, with ln xi j being either the intensive mar-

gin for all firms exporting from i to j , or for each percentile in the size distribution of exporters

from i to j .

Evidence

We now discuss the evidence obtained first for the fixed trade costs elasticity with respect to distance and

second for the IME with simulated data.

The results shown in Table E1 imply that although the distance elasticities are significantly lower than

those estimated ignoring granularity in Table 4, they remain negative, indicating that model-implied

fixed trade costs are decreasing with distance. Hence granularity does not help to eliminate one of the

puzzles emerging from the comparison between the Melitz-Pareto model and the data.
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Table E1: Fixed trade costs distance elasticity and granularity

Fixed trade costs elasticity

Firm level Product level

ζ -0.022*** -0.007**

Standard error [0.001] [0.0012]

Observations 7,320 7,320

Note: the table presents the estimated coefficients of the regression of the
implied log fixed firm-level trade costs (column 1) and log fixed product-
level trade costs (column 2) on log distance between origins and destina-
tions using Poisson pseudo maximum likelihood procedure discussed in the
Online Appendix E. Population-weighted distance between origins and des-
tinations is taken from Mayer and Zignago (2011). The sample is restricted
to the origin-destination pairs with at least 100 exporters. Robust standard
errors are reported in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1%
significance levels, respectively.

Table E2 reports the results of the simulation exercise. We simulate productivities for 3 values of

θ̄: an estimate of θ using the procedure in EKK, as outlined in Appendix F, which yields θ̄ = 2.4; the

value that can be inferred from standard estimates of θ and σ in the literature (i.e., θ = 5, the central

estimate of the trade elasticity in Head and Mayer (2014), and σ = 5 from Bas et al. (2017), so θ̄ = 1.25);

and finally and θ̄ = 1 (as in Zipf’s Law). Two broad patterns emerge from the table. First, the simulated

IME decreases with θ̄. This is because the effect of granularity on the IME is stronger when there is

more dispersion in productivity levels. Second, the simulated IME is highest when productivity is less

correlated across destinations, again because this gives granularity more room to generate a covariance

between average exports per firm and total exports. For our estimate of θ̄ (θ̄ = 2.4) and with no demand

shocks (so there is perfect correlation in firm-level productivity across destinations), the simulated IME

of 0.001 is quite low. The highest simulated IME occurs for the case in which θ̄ = 1 and there is no

correlation between the product of demand shocks and productivity across destinations. In this case the

simulated IME is 0.32, not too far from our preferred estimate based on the data of 0.4. But we think of

this as an extreme case because θ̄ = 1 is far from the estimates that come out of trade data, and because

of the implausible assumption that firm-level exports are completely uncorrelated across destinations.

A low θ̄ also implies that, in contrast to the data, virtually all of the action behind a positive IME comes

from the superstar firms. To see that, we calculate average simulated exports per firm in each percentile

and use those to estimate an IME per percentile. We plot the resulting 100 IME estimates in Figure E1
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along with the corresponding IME estimates based on the actual data. The IME based on the actual data

is increasing with a spike at the top percentile. Granularity and the Pareto distribution fail to reproduce

this pattern in the simulated data, since the corresponding IME is much smaller than in the data for most

percentiles. The IME in the simulated data is almost zero for small percentiles and is relatively high for a

small number of top percentiles. We conclude that granularity does not offer a plausible explanation for

the positive estimated IME in the data.

Table E2: IME under granularity

cor r (α jϕ,αkϕ)

0 1

θ̃ = 2.4 0.005 0.007

θ̃ = 1.25 0.021 0.015

θ̃ = 1 0.323 0.108

Note: the table presents the estimated coefficients of the regression of the
implied log average exports on log total exports using numerical simula-
tions. The sample is restricted to the year 2007 and to the origin-destination
pairs with at least 100 exporters (867 observations). The first column re-
ports the results from the model with zero correlation between the product
of demand and productivity shocks across destinations. The second column
reports the results for the model with perfect correlation. Three different
values of θ̃ are used.
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Figure E1: IME for each percentile, Pareto and granularity

Source: Exporter Dynamics Database. The darker solid line corresponds to IME for each per-
centile estimated using EDD and four main destinations: France, Germany, Japan and the U.S..
Dashed lines indicate 95% confidence intervals. The lighter solid line is IME for each percentile
implied by the model with Pareto distribution of productivity and granularity, θ̃ = 1. The level of
bilateral fixed trade costs was chosen to match overall IME in the data. The number of draws for
each origin-destination pair is equal to the number of exporters from origin to destination in EDD
as of 2007.

F Estimation of θ̃

In this Appendix we estimate θ̃ following the same approach as in Eaton et al. (2011). First, we derive the

following expression from the Melitz-Pareto model:

xi l | j
xi l |l

=
(

Ni j

Ni l

)−1/θ̄

, (OA.17)

where xi l | j are average exports per firm for firms from i that sell in market l but restricted to those firms

that sell in markets l and j . EKK have information on domestic sales for each firm, so they use l = i . We

do not have such information, so we use l∗(i ) ≡ argmaxk Ni k , that is, the largest destination market for

each origin country i (e.g., the United States for Mexico). Letting

zi j ≡
xi l∗(i )| j

xi l∗(i )|l∗(i )
(OA.18)

and

mi j ≡
Ni j

Ni l∗(i )
(OA.19)
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then we have

ln zi j =−1

θ̄
lnmi j . (OA.20)

This suggests an OLS regression to recover an estimate for θ̄.

Eaton et al. (2011) estimate this regression for French firm-level data (including information on sales

in France) and obtain a coefficient of −0.57, which implies θ̄ = 1.75. In their case, they keep in their

estimating sample only firms with positive sales in France, so the variables xF F | j and NF j are calculated

based on the same set of firms. To implement an approach comparable to theirs, we drop all firms from

country i that do not sell to l∗(i ), so the sample includes only Ni l∗(i ) firms for country i . This implies

that all firms that make up Ni j are also selling to l∗(i ). Figure F1 reproduces Figure 3 from Eaton et

al. (2011) by plotting the variables in equation (OA.20). The slope in the graph is equal to 1/θ̄, and the

corresponding estimated values are reported in Table F1. Based on all observations in the core sample

of countries and using no weighting, the estimated θ̄ is over 19. But in Figure F1 for small values of mi j ,

which correspond to small values of Ni j , there is a lot of dispersion in zi j . To minimize the effect of that

noise we weight observations by
p

N i j and this lowers the estimate of θ̄ to 4.8. Finally, when we drop all

observations with Ni j < 100 (remember that here Ni j measures the number of firms from country i that

sell to country j and also to l∗(i )) we obtain θ̄ = 2.4, which is still higher than in Eaton et al. (2011). We

will use this estimate in our simulations of the intensive margin elasticity.

Table F1: Estimates of θ̄

θ̄ s. e. Observations

All observations, no weights 18.61*** [0.787] 39,712

Weights
√

Ni j 4.481*** [0.0360] 39,712

Dropping Ni j < 100 2.657*** [0.0175] 7,781

Dropping Mi j < 100 2.360*** [0.0147] 5,267

Note: the table presents estimates of θ̃ as discussed in Section F of
this Online Appendix. Ni j denotes the number of exporters from i to
j and Mi j denotes the number of exporters from i to j that also ex-
port to i ’s largest destination. Robust standard errors are reported in
brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1% significance
levels respectively.
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Figure F1: Exports to largest destination and market entry

Source: Exporter Dynamics Database, core sample of countries. The x-axis represents for each
country i the log of the ratio of average exports per exporter to destination j to average exports per
exporter to i ’s most popular destination market, logmi j . The y-axis represents for each country
i the log of the ratio of the number of exporters to destination j to the number of exporters to i ’s
most popular destination market, log zi j . A more formal definition of the variables can be found
in the Online Appendix F. For the calculation of both average exports per exporter and number of
exporters we focus only on firms from i that sell both in j and in the most popular destination.

G EKK extension

Eaton et al. (2011) (henceforth EKK) extend the basic Melitz-Pareto model to allow for lognormally dis-

tributed firm-level destination-specific demand and fixed-cost shocks. Except for constants that capture

the net effects of these shocks, our equations (OA.1) and (OA.2) remain valid in the EKK environment,

and hence the behaviour of the intensive margin in this environment is exactly the same as that of the

simple Melitz-Pareto model as described in Section 3.1.1

It is important to note, however, that if productivity is distributed Pareto then the presence of log-

normally distributed demand or fixed-cost shocks would imply that equations (OA.1) and (OA.2) no

longer hold. The critical assumption in EKK that allows their model to be consistent with our equations

(OA.1) and (OA.2) is that, loosely speaking, they consider the limit as the scale parameter of the Pareto

distribution converges to zero. That is, EKK specify a function for the measure of firms with productiv-

ity above some level, with that measure going to infinity as productivity goes to zero. This is equivalent

to taking a limit with the (exogenous) measure of firms going to infinity and the scale parameter of the

1This can be confirmed by simple manipulation of equations (20) and (28) in EKK.
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Pareto distribution going to zero. Although equations (OA.1) and (OA.2) do not hold anywhere in this

sequence, they do hold in the limit.

To formally establish this result, recall that to get equations (OA.1) and (OA.2) we assumed that

ϕ∗
i j > bi . If instead ϕ∗

i j ≤ bi then Ni j = Ni and xi j =
(

θ
θ−(σ−1)

)
A j

(
wiτi j

bi

)1−σ
. In the extreme, if ϕ∗

i j ≤ bi

holds for all i , j pairs, then we would have IME = 1 rather than IME = 0. Now think about the case with

firm-specific demand and fixed-cost shocks. Specifically, assume that each firm is characterized by a

productivity level ϕ as well as a demand shock α j and a fixed cost shock f j in each destination j , with ϕ

drawn from a Pareto distribution (with scale parameter bi and shape parameter θ) and α j and f j drawn

iid from some distribution. Let xi j (ϕ,α j ) ≡ A jα j (σ̄
wiτi j

ϕ )(1−σ) and let ϕ∗
i j (α j , f j ) be implicitly defined by

xi j (ϕ∗
i j ,α j ) =σ f j . By the same argument we used in Section 3.1, if for all i , j and all possible (α j , f j ) we

have ϕ∗
i j (α j , f j ) > bi , we can easily show that we still have IME = 0.2 However, if α j and f j are lognor-

mally distributed, then for bi > 0 for all i there must be a positive mass of firms for whichϕ∗
i j (α j , f j ) < bi ,

and for those firms there would be a positive intensive margin elasticity. EKK essentially avoid this by

taking the limit with bi → 0 for all i .

In principle, one could use this result to argue that a Melitz model with Pareto distributed produc-

tivity but extended to allow for log-normally distributed demand and fixed-cost shocks could match the

positive IME that we see in the data. However, such a model would not exhibit any of the convenient

features of the canonical Melitz-Pareto model: the sales distribution is not distributed Pareto, the trade

elasticity is not common across country pairs and fixed, and the gains from trade are not given by the

ACR formula. Given that, our approach in this paper is to move all the way to a model where productivity

as well as destination-specific demand and fixed-cost shocks are lognormally distributed. Such a model

has at least the advantage that it is computationally tractable, and amenable to likelihood estimation

methods, as we show in Section 4.

H QQ-Estimation of σϕ

Exports from country i to country j of a firm with productivity ϕ in the model with CES preferences and

monopolistic competition is given by xi j
(
ϕ

)=σFi j

(
ϕ/ϕ∗

i j

)σ−1
. Since lnϕ∼ N

(
µϕ,i ,σϕ

)
then ln xi j (ϕ) ∼

Ntr unc
(
µ̄ϕ,i j , σ̄ϕ; ln

(
σFi j

))
, where σ̄ϕ =σϕ (σ−1), µ̄ϕ,i j =µϕ,i (σ−1)+ ln

(
σFi j

)+(1−σ) ln
(
ϕ∗

i j

)
, and the

truncation point is ln
(
σFi j

)
.

As in Head et al. (2014), we estimate σ̄ϕ using a quantile-quantile regression, which minimizes the

distance between the theoretical and empirical quantiles of log exports. Empirical quantiles are given by

2Consider the group of firms from country i that have some given draw {(α j , f j ), j = 1, ...,n}. The exact same argument
used in Section 3.1 can be used to show that the sample of firms obtained by combining such firms across all origins i satisfies
IME = 0. One can then simply integrate across all possible draws {(α j , f j ), j = 1, ...,n} to show that IME = 0 for the whole set of
firms.
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ln xi j ,n , where n is the rank of the firm among exporters from i to j . We calculate theoretical quantiles

of exports from i to j as µ̄ϕ,i j + σ̄ϕΦ−1
(
Φ̂i j ,n

)
, where Φ̂i j ,n = Ni−(n−1)

Ni
is the empirical CDF and Ni is the

imputed number of firms from the BR data.3 Following Head et al. (2014) we adjust the empirical CDF

so that Φ̂i j ,n = Ni−(n−1)−0.3
Ni+0.4 since otherwise we would get Φ−1

(
Φ̂i j ,1

)=∞ when n = 1. The QQ-estimator

of σ̄ϕ is the coefficient β obtained from the regression

ln xi j ,n =αi j +βΦ−1 (
Φ̂i j ,n

)+εi j ,n . (OA.21)

Table H2 reports the QQ-estimate of σ̄ϕ. We report three sets of estimates: for the full sample, the

largest 50% of firms and the largest 25% of firms for each origin-destination pair in each year. According

to the model, the estimates of the slope should not change when we consider different sub-samples, but

this is not the case in Table H2. This comes from a not very surprising empirical failure of the simple

Melitz-lognormal model outlined in the first part of Section 3: whereas this model implies that the sales

distribution for any country pair should be distributed as a truncated lognormal (with the truncation at

sales of σFi j ), no such truncation exists in the data (i.e., we observe exporters with very small sales).

A related issue is that our estimates for either of the sub-samples are significantly larger than the

estimate of 2.4 in Head et al. (2014). The difference comes from the fact that Head et al. (2014) assume

that the sales distribution for any i j pair is lognormal, whereas we stick close to the simple model and

assume that it is a truncated lognormal, and then use data for Ni j and our estimated values Ni to derive

implicit truncation points. These truncation points tend to be on the right tail of the distribution, since

Ni j /Ni tends to be quite low, hence the small σ̄ϕ estimated by Head et al. (2014) would not be able to

match the observed dispersion in the sales of exporters. In general, the higher the Ni one takes as an

input in the QQ regression, the higher the estimate of the shape parameter one obtains.

In private correspondence, the authors of Head et al. (2014) pointed out that their approach would

be consistent with the Melitz-lognormal model if one allows for heterogeneous fixed costs and lets the

variance of these costs go to infinity, whereas our approach would be right if the variance goes to zero.

This is part of our motivation in allowing for heterogeneous fixed costs and then in using MLE to estimate

the full Melitz-lognormal model.

3The elasticity of the number of firms with respect to the population is close to 1, as reported in Table H1 and charted on
Figure H1.
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Table H1: Elasticity of number of firms to population

log number of firms

log population 0.945*** 0.944***

Standard error [0.0136] [0.0139]

Observations 468 468

Year FE Yes

Note: the table presents the estimated coefficients of the regression of log
number of firms, taken from Bento and Restuccia (2017) on log population,
taken from World Development Indicators. Robust standard errors are re-
ported in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1% signifi-
cance levels, respectively.

Table H2: QQ estimates of σ̄ϕ

All firms Top 50% Top 25%

σ̄ϕ 6.829*** 4.676*** 4.020***

[0.0010] [0.0006] [0.0008]

Observations 11,902,823 5,917,685 2,949,514

R2 0.81 0.93 0.94

Bilateral FE Yes Yes Yes

Year FE Yes Yes Yes

Note: the table presents estimates of σ̃ϕ as discussed
in Section H of this Online Appendix. Robust standard
errors are reported in brackets. ∗, ∗∗, and ∗∗∗ repre-
sent the 5%, 1%, and 0.1% significance levels respec-
tively.
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Figure H1: Number of firms and population

Source: the x-axis represents log of population taken from the World Development Indicators and
the y-axis represents the number of firms as computed by Bento and Restuccia (2017). The sam-
ple includes all country-years for which the EDD and the data from Bento and Restuccia (2017)
overlap.

I Full Melitz-Lognormal model

Join distribution

Joint distribution of productivity, demand, and fixed trade costs in the full Melitz-lognormal model is

given by:
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ln f J



∼N





µϕ,i

µα

...

µα

µ f ,i 1

...

µ f ,i J



,



σ2
ϕ,i 0 . . . 0 0 . . . 0

0 σ2
α,i . . . 0 σα f ,i . . . 0

...
...

. . .
...

...
. . .

...

0 0 . . . σ2
α,i 0 . . . σα f ,i

0 σα f ,i . . . 0 σ2
f ,i . . . 0

...
...

. . .
...

...
. . .

...

0 0 . . . σα f ,i 0 . . . σ2
f ,i





. (OA.22)

Free entry condition

To show equation 21, note that profits gross of fixed costs by firms from i are equal to 1
σ

∑
j λi j X j and

total fixed costs of exporting by firms from i in market j are

Ni wi eµ f ,i j

∫ ∞

−∞

∫ hi j+ϕ̃

−∞
e f̃ g (ϕ̃, f̃ )d f̃ dϕ̃,
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hence the free entry condition for firms in i is

F e wi Ni =
∑

j

(
1

σ
λi j X j −Ni wi eµ f ,i j

∫ ∞

−∞

∫ hi j+ϕ̃

−∞
e f̃ gi j (ϕ̃, f̃ )d f̃ dϕ̃

)
.

Using (17), (18) and (20) we get

eµ f ,i j = λi j X j

ehi j Niσwi
∫ ∞
−∞ eϕ̃

∫ hi j+ϕ̃
−∞ gi j (ϕ̃, f̃ )d f̃ dϕ̃

,

and so we can rewrite the free entry condition as equation (21).

Counterfactuals

A system of equations to compute counterfactual changes in the endogenous variables is given by:

hi j (ĥi j −1) = ln

(
(ŵi τ̂i j )1−σP̂σ−1

j X̂ j

ŵi

)
(OA.23)

P̂ 1−σ
j =∑

k
λk j P̂ 1−σ

k j (OA.24)

P̂ 1−σ
i j = N̂i (ŵi τ̂i j )1−σ

∫ ∞
−∞ eϕ̃

∫ ĥi j hi j+ϕ̃
−∞ gi j (ϕ̃, f̃ )d f̃ dϕ̃∫ ∞

−∞ eϕ̃
∫ hi j+ϕ̃
−∞ gi j (ϕ̃, f̃ )d f̃ dϕ̃

(OA.25)

λ̂i j =
P̂ 1−σ

i j

P̂ 1−σ
j

(OA.26)

ŵi N̂i
∑

j
λi j X j

(
1−

∫ ∞
−∞

∫ hi j+ϕ̃
−∞ e f̃ gi j (ϕ̃, f̃ )d f̃ dϕ̃

ehi j
∫ ∞
−∞ eϕ̃

∫ h(ni j )+ϕ̃
−∞ gi j (ϕ̃, f̃ )d f̃ dϕ̃

)

=∑
j
λi j X j λ̂i j X̂ j

1−
∫ ∞
−∞

∫ ĥi j hi j+ϕ̃
−∞ e f̃ gi j (ϕ̃, f̃ )d f̃ dϕ̃

e ĥi j
∫ ∞
−∞ eϕ̃

∫ ĥi j hi j+ϕ̃
−∞ gi j (ϕ̃, f̃ )d f̃ dϕ̃

 (OA.27)

ŵi Yi =
∑

j
λi j X j λ̂i j X̂ j (OA.28)

X̂ j X j = ŵ j Y j + ∆̂ j (X j −Y j ) (OA.29)

J Quasi-Bayesian Estimation for the full Melitz-lognormal model

The likelihood function is a product of density functions of individual firms that sell or do not sell to

multiple destinations. In this section we will use the notation from Section 4 of the paper. Let ϕ̄i ≡
(σ− 1)[lnϕ−µϕ,i ] be a random variable that denotes deviations from mean productivity for country i

(adjusted by σ−1). Individual firm density of export sales (xi 1, ..., xi J ) can be written as
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fXi 1,..,Xi J (xi 1, ..., xi J ) =
∫
ω

fXi 1,...,Xi J |ϕ̄i (xi 1, ..., xi J |ω) fϕ̄i (ω)dω (OA.30)

=
∫
ω

∏
j

fXi j |ϕ̄i (xi j |ω) fϕ̄i (ω)dω, (OA.31)

where the second equality comes from the fact that, conditional on productivity, sales are independent

across markets (as well as the probability of selling to those markets). We now need to characterize

fXi j |ϕ̄i ( fi j |ω) to calculate the likelihood function. In general we have

fXi j |ϕ̄i (xi j |ω) = [
fZi j |ϕ̄i (xi j |ω)Pr{Zi j ≥ lnσ+ ln fi j |ϕ̄i =ω, Zi j = xi j }

]I(xi j 6=;)×
× [

Pr{lnσ+ ln fi j ≥ Zi j |ϕ̄i =ω}
]I(xi j=;) . (OA.32)

The term in the first line of equation (OA.32) corresponds to the density function for the cases when we

observe exports, while the second line corresponds to the mass at the point xi j =;.

For the case when sales are not zero Xi j = Zi j and

Zi j |
[
ϕ̄i =ω

]=ω+di j + lnα−µα, (OA.33)

Zi j |
[
ϕ̄i =ω

]∼ N (di j +ω,σ2
α,i ). (OA.34)

In addition

Pr[Zi j ≥ lnσ+ ln fi j |ϕ̄i =ω, Zi j = xi j ] = Pr[lnσ+ ln fi j ≤ xi j | lnα−µα = xi j −di j −ω], (OA.35)

lnσ+ ln fi j |
[
lnα−µα = xi j −di j −ω

]∼ N
(
µ1,σ2

1,i

)
,

where

µ1 ≡ µ̄ f ,i j +
σα f ,i

σ2
α,i

(xi j −di j −ω),

σ2
1,i ≡σ2

f ,i (1−ρ2
i ).

Finally we have

Pr[Zi j ≤ lnσ+ ln fi j |ϕ̄i =ω] = Pr[− lnσ− ln fi j + (lnα−µα)+di j ≤−ω], (OA.36)

− lnσ− ln fi j + (lnα−µα)+di j ∼ N (−µ̄ f ,i j +di j ,σ2
2,i ), (OA.37)
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where

σ2
2,i ≡σ2

f ,i +σ2
α,i −2σα f ,i .

Letφ andΦ denote the PDF and CDF of the standard normal, respectively. Plugging functional forms

into equation (OA.32) we can get the object of interest,

fXi 1,..,Xi J (x1i , ..., xi J ) =
∫
ω

∏
j


 1

σα,i
φ

(
xi j −di j −ω

σα,i

)
Φ

 xi j −
[
µ̄ f ,i j + σα f ,i

σ2
α,i

(xi j −di j −ω)

]
√
σ2

f ,i (1−ρ2
i )



I(xi j 6=;)

×

×

Φ
 −ω+ µ̄ f ,i j −di j√

σ2
f ,i +σ2

α,i −2σα f ,i



I(xi j=;) 1

σϕ̄,i
φ

(
ω

σϕ̄,i

)
dω (OA.38)

However, since we only have a truncated sample of X ′
i j s (as we do not observe sales of firms that do

not export), we need to normalize the density by the inverse of probability that a firm is selling to at least

one destination, and so we are interested in the object

gXi 1,..,Xi J (x1i , ..., xi J ) = fXi 1,..,Xi J∩Is an exporter(x1i , ..., xi J ∩ Is an exporter), (OA.39)

and hence

gXi 1,..,Xi J (x1i , ..., xi J ) =
fXi 1,..,Xi J (x1i , ..., xi J )

Pri [observe sales to at least 1 destination]
=

fXi 1,..,Xi J (x1i , ..., xi J )

1−Pri [observe sales to no destinations]
=

fXi 1,..,Xi J (x1i , ..., xi J )

1−∫
ω

∏
j

[
Φ

(
−ω+µ̄ f ,i j−di j√
σ2

f ,i+σ2
α,i−2σα f ,i

)]
1
σϕ̄,i

φ
(
ω
σϕ̄,i

)
dω

. (OA.40)

Let Ci denote the probability that a firm from origin i sells to at least one of the destinations we consider.4

We know the number of firms, N e
i , that sell to those destinations, and we can thus infer the number of

draws Ni = N e
i /Ci .

The likelihood function is a product of density functions as in equation (OA.40). Parameters to esti-

mate are

Θi =
{{

di j , µ̄ f ,i j
}

i , j , σ̄ϕ,i ,σα,i ,σ f ,i ,ρi

}
.

4Ci is given by the denominator in OA.40.
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We next compute the density in the numerator of equation (OA.40). We can write this density in the

following general form:

fXi 1,..,Xi J (x1i , ..., xi J ) =
∫
ω

G(ω)φ

(
ω

σϕ̄,i

)
dω

=
∫
ω

G(ω)
1p
2π

exp

(
−

[
ωp

2σϕ̄,i

]2)
dω, (OA.41)

where G(ω) is a known function of ω. Using change of variables ω̃ = ωp
2σϕ̄,i

and dω =p
2σϕ̄,i dω̃ we can

write:

fXi 1,..,Xi J (x1i , ..., xi J ) =
∫
ω̃

G(
p

2σϕ̄,i ω̃)
σϕ̄,ip
π

exp
(−ω̃2)dω̃. (OA.42)

We can speed up the process to calculate the object in equation (OA.42) by applying a Gauss-Hermite

quadrature. In general: ∫
x

g (x)exp(−x2)d x ≈∑
k

g (rk )wk , (OA.43)

where rk are the roots of the Hermite polynomial and ωk are associated weights. We calculate 33 values

of rk and corresponding weights wk using the Gauss-Hermite method. The number of points was chosen

to ensure that the quadrature approximation is accurate and that calculations take a reasonable amount

of time.

K MCMC algorithm

Since the likelihood function in equation (14) in the paper is highly nonlinear there may exist multiple

local maxima. We thus estimate a vector of parameters Θ (defined in equation (15) in the paper) using

the methodology developed in Chernozhukov and Hong (2003). This procedure not only gives us point

estimates, but also yields confidence intervals for the estimated parameters, intensive marginal elasticity

implied by the model, and elasticity of trade costs with respect to distance. We implement Chernozhukov

and Hong (2003) procedure using the Metropolis-Hastings Monte-Carlo Markov chain algorithm. This

algorithm yields a chain of parameter draws
{
Θ(n)

i

}N

n=1
for each origin i such that Θ̄i ≡ 1

N

∑
nΘ

(n)
i is a

consistent estimate of Θi . Moreover, using the values of the parameters in the chain we can construct

confidence intervals for some functions f (Θi ). The chain of parameters
{
Θ(n)

i

}N

n=1
for each origin is

constructed in the following way:

Step 1. Randomly choose a starting guessΘ(0)
i .

Step 2. Draw a candidate vector of parameters for the chain’s n +1 value as Θ̃n+1
i =Θ(n)

i +ψ(n), where ψ(n)

is a vector of iid shocks taken from the mean-zero normal distribution. The variance-covariance
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matrix of this distribution is diagonal. The initial values of the diagonal elements are set at 0.2Θ(0)
i .

At each step all but 1 elements of ψ(n) are zero. In other words, we only add an iid shock to one

parameter at each step of the chain. Since the vector Θi has 34 elements for each i , we try a new

value for each parameter every 34 steps.

Step 3. CalculateΘ(n+1)
i in the following way:

Θ(n+1)
i =


Θ̃(n+1)

i with probability min
[

1;L
(
Θ̃(n+1)

i

)
−L

(
Θ(n)

i

)]
Θ(n)

i otherwise,

where L(θ) is defined in equation 14 in the paper. Every 3,400 iterations (100 iterations per param-

eter) during the first 100,000 iterations we update diagonal elements of the variance-covariance

matrix of the shocks so that the acceptance rate for each parameter is in the interval 0.25–0.35, as

recommended by Chernozhukov and Hong (2003). We calculate the acceptance rate as a share of

draws for whichΘ(n+1)
i = Θ̃(n+1)

i .

We repeat the procedure until we have at least 34 million draws (1 million draws per parameter) in the

chain after we discard the first 100,000 draws (known as “burn-in period"). For each origin we construct

5 different chains with different starting guesses to check that our estimates are robust with respect to

the starting values (we discuss convergence of the chains in Appendix L).

Having estimated the chains, we take 1,000 random draws from the chains for each origin with re-

placement. We use those draws to calculate point estimates (averages) as well as 95% confidence inter-

vals. Using those draws we simulate the model 1,000 times and run IME regressions the way we run them

in the data. Finally, we run 1,000 regressions of the estimates di j and µ f ,i j on log distance with origin

and destination fixed effects for the 4 destinations (USA, France, Germany, and Japan) and interpret the

results as elasticity of variable and fixed trade costs with respect to distance.

L Convergence of the Monte Carlo Markov chains

We ran our estimation algorithm 5 times per origin country which gave us 5 different chains that started

at different random initial guesses. This lets us compare underlying distributions of parameter estimates

across different chains. We checked the convergence of the chains using the following criteria:

1) comparing the means of parameter estimates in the first and second half of the chain;

2) comparing parameter means across different chains for the same origin.

If the means calculated for the two parts of a chain are statistically indistinguishable, we conclude that
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the chain converged. If the means across different chains are statistically indistinguishable, we conclude

that multiple chains converged to the same region. It turns out that in some cases the chains did not

converge.5 In those cases we disregarded the chains that didn’t converge. Out of remaining chains, we

randomly choose one chain per origin to conduct our numerical analysis.

Figures L1-L34 present the moments from the parameter draws that we obtained using the procedure

to estimate the full Melitz-lognormal model parameters. Each graph corresponds to one parameter and

consists of multiple panels for different origin countries in the EDD. Each panel consists of five horizontal

areas corresponding to 5 different MCMC chains that we ran for each origin. The black, red, and blue

stars denote the mean of the parameter draws in the full chain, the first half of the chain, and the second

half of the chain, respectively. The black lines correspond to the 2.5 – 97.5 percentiles range for the draws.

The plots show that the means and their confidence intervals are virtually indistinguishable across all the

chains and subchains that converged for all countries and all parameters.

5It happens, for example, when some of the values for σϕ,i and σα,i exploded.
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Figure L1: Summary plots for QBE chains: di 1
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Figure L2: Summary plots for QBE chains: di 2
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Figure L3: Summary plots for QBE chains: di 3



THE INTENSIVE MARGIN IN TRADE 43

Figure L4: Summary plots for QBE chains: di 4



44 FERNANDES-KLENOW-MELESHCHUK-PIEROLA-RODRíGUEZ-CLARE

Figure L5: Summary plots for QBE chains: di 5
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Figure L6: Summary plots for QBE chains: di 6
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Figure L7: Summary plots for QBE chains: di 7
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Figure L8: Summary plots for QBE chains: di 8
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Figure L9: Summary plots for QBE chains: di 9
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Figure L10: Summary plots for QBE chains: di 10
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Figure L11: Summary plots for QBE chains: di 11
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Figure L12: Summary plots for QBE chains: di 12
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Figure L13: Summary plots for QBE chains: di 13
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Figure L14: Summary plots for QBE chains: di 14
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Figure L15: Summary plots for QBE chains: di 15
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Figure L16: Summary plots for QBE chains: µ f ,i 1



56 FERNANDES-KLENOW-MELESHCHUK-PIEROLA-RODRíGUEZ-CLARE

Figure L17: Summary plots for QBE chains: µ f ,i 2
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Figure L18: Summary plots for QBE chains: µ f ,i 3
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Figure L19: Summary plots for QBE chains: µ f ,i 4
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Figure L20: Summary plots for QBE chains: µ f ,i 5
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Figure L21: Summary plots for QBE chains: µ f ,i 6
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Figure L22: Summary plots for QBE chains: µ f ,i 7
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Figure L23: Summary plots for QBE chains: µ f ,i 8
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Figure L24: Summary plots for QBE chains: µ f ,i 9
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Figure L25: Summary plots for QBE chains: µ f ,i 10
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Figure L26: Summary plots for QBE chains: µ f ,i 11
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Figure L27: Summary plots for QBE chains: µ f ,i 12
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Figure L28: Summary plots for QBE chains: µ f ,i 13
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Figure L29: Summary plots for QBE chains: µ f ,i 14
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Figure L30: Summary plots for QBE chains: µ f ,i 15
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Figure L31: Summary plots for QBE chains: σ̄ϕ,i
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Figure L32: Summary plots for QBE chains: σα,i
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Figure L33: Summary plots for QBE chains: σ f ,i
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Figure L34: Summary plots for QBE chains: ρi
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M Unconstrained Melitz-Pareto model

In the main draft we present results of the estimated model with Pareto-distributed productivity shocks

with the CDF given by Pr
[
ϕi ≤ϕ

] = 1−
(
ϕ
bi

)−ζi
, ∀ ϕi ≥ bi , but with restriction ζi

σ−1 ∈ [1.05,∞]. Below

we present the results for the unconstrained version, in which we only required that ζi
σ−1 ∈ [0,∞]. The

IME is reported in Table M1 and the elasticity of estimated varaible and fixed trade costs with respect to

distance are shown in Table M2. Figure M1 shows results that are analogous to those for the constrained

model presented in Figure 5.

Table M1: Implied IME in full Melitz-Pareto models

IME 95% CI

Data 0.67 [0.61, 0.73]

Full Melitz-lognormal model 0.63 [0.59, 0.67]

Full Melitz-Pareto model, constrained 0.63 [0.57, 0.71]

Full Melitz-Pareto model, unconstrained 0.71 [0.68, 0.75]

Note: The table presents the coefficient from the regression of log average exports on
log total exports with origin and destination fixed effects implied by the simulated full
Melitz-lognormal model, Melitz-Pareto constrained and unconstrained models. The
sample includes 37 origins and 4 main destinations (USA, Germany, France, and Japan)
in 2007. The IME in the data is estimated for the same sample. The point estimates and
95% confidence intervals are calculated based on 1,000 simulations based on random
parameter draws from the generated Monte-Carlo Markov chain.
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Table M2: Implied trade costs in simulated models

Estimate 95% CI Estimate 95% CI Estimate 95% CI

Melitz lognormal
Melitz-Pareto
constrained

Melitz-Pareto
unconstrained

cor r
(
F̃i j , τ̃i j

)
-0.31 [-0.43, -0.18] -0.52 [-0.70, 0.08] -0.29 [-0.43, -0.17]

Distance elasticity:

Fixed costs 0.35 [0.23, 0.49] 0.49 [0.29, 0.62] 0.50 [0.38, 0.63]

Variable costs 0.34 [0.30, 0.37] 0.16 [0.13, 0.19] 0.29 [0.26, 0.33]

Note: The table presents the coefficient from the regression of log fixed and variable trade costs on distance, origin,
and destination fixed effects implied by the simulated lognormal models. The sample includes 37 origins and 4
main destinations (USA, Germany, France, and Japan) in 2007. The point estimates and 95% confidence intervals
are calculated based on 1,000 simulations based on random parameter draws from the generated Monte-Carlo
Markov chain.
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Figure M1: Melitz-Pareto model (unconstrained), goodness of fit

Panel A: PDF of log sales
Panel B: Share of firms selling to

destination X but not Y

Panel C: Correlation between log exports
to top destinations

Panel D: IME for each percentile

Source: Exporter Dynamics Database and authors’ calculations. Panel A: the black line corresponds to standardized log sales (de-

meaned, divided by standard deviation) pooled across different origin-destination cells. The blue line corresponds to standardized

log sales pooled across different cells in the model. Panel B: each point corresponds to the share of firms exporting only to less

popular markets in the data (horizontal axis) and according to the estimated model (vertical axis) for each origin. Panel C: each

point corresponds for each origin and any two destinations among the three most popular ones, to the correlation in export value

across all firms that sell in those two destinations in the data (horizontal axis) and according to the estimated model (vertical axis).

Panel D: the x-axis represents percentiles; the blue solid line represents the coefficient from the regression of log average exports

in each percentile on log total exports in the model; the dashed red lines represent the 95% confidence interval; the black solid line

represents the coefficient from the regression of log average exports in each percentile on log total exports in the data; the dashed

black lines represent the 95% confidence interval.
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N Local trade elasticity in the full Melitz-lognormal model

Let ϕ̄be a combination of demand and productivity shocks (not demeaned and not in logs). Total exports

from i to j is given by

Xi j = Ni
(
σ̄wiτi j

)1−σPσ−1
j X j

∫ ∞

0

∫ ∞

ϕ0,i j (τi j | f )
ϕσ−1g (ϕ| f )dϕg ( f )d f , (OA.44)

where the cutoff productivity for any f is given by

ϕ0,i j (τi j | f ) = σ̄wiτi j

[
σwi f

Pσ−1
j X j

] 1
σ−1

. (OA.45)

Assume that changes in τi j have no effect on P j . Then trade elasticity is equal to

−θi j = (1−σ)+
∂ ln

∫ ∞
0

∫ ∞
ϕ0,i j (τi j | f )ϕ

σ−1g (ϕ| f )dϕg ( f )d f

∂ lnτi j
. (OA.46)

The first term is the intensive margin and the second term is the extensive margin (EM) of trade elasticity.

Letting

Γi j =
∫ ∞

0

∫ ∞

ϕ0,i j (τi j | f )
ϕσ−1g (ϕ| f )dϕg ( f )d f , (OA.47)

then

E M =
∫ ∞

0

∂
∫ ∞
ϕ0,i j (τi j | f )ϕ

σ−1g (ϕ| f )dϕ

∂τi j
g ( f )d f

τi j

Γi j
(OA.48)

=−
∫ ∞

0
ϕ0,i j (τi j | f )σg (ϕ0,i j (τi j | f )| f )g ( f )d f

1

Γi j
, (OA.49)

where we used

∂ϕ0,i j (τi j | f )

∂τi j
= ϕ0,i j (τi j | f )

τi j
. (OA.50)

Now we can use the expression for the extensive margin of trade elasticity to calculate local trade elastic-

ity implied by the full Melitz-lognormal model.

We plot the local trade elasticities against the share of firms that export on Figure N1. Note that

since the estimated shape parameters of the lognormal distribution vary across origins, it is possible for

two countries to have different trade elasticities conditional on ni j . However, for a given origin, trade

elasticity is declining and approaching σ−1 = 4 when the number of exporters is increasing. The chart

only covers international country-pairs for which i = j . When i = j and ni i = 1, we have "domestic"

elasticity of θi i = 4 across all i .
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Figure N1: Number of exporters and trade elasticity

Source: Exporter Dynamics Database and authors’ calculations. The figure plots the share of the firms that export on the
horizontal axis and the implied local trade elasticity in the full Metlitz-lognormal model on the vertical axis.

O Relation to Melitz and Redding (2015)

In this section we explore how the implications of our model relate to those in Melitz and Redding (2015).

We start with a symmetric, two-country economy, with heterogeneous firms as in our Melitz-lognormal

model. Following Melitz and Redding (2015), we set the domestic trade share to be 0.9, the share of

exporters to be 0.18, and international trade costs to be τ = 1.83. We set the parameters of the produc-

tivity and fixed cost shocks at their median values (across origin countries) from our estimation. We

then conduct a trade liberalization experiment and compare welfare responses in the true model and

the Melitz-Pareto models in the following way:

1. Increase trade costs to τbi g and calculate the local trade elasticity θs implied by the true lognormal

model as outlined in Appendix Section N. This is similar to the “starting" trade elasticity in Melitz

and Redding (2015).
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2. Reduce trade costs from τbi g to 1.25 and calculate the following welfare responses:

(a) Welfare gains in the true Melitz-lognormal model.

(b) Welfare gains in the Melitz-Pareto model using the ACR formula with θs and changes in trade

shares implied by the true model. Following ACR, we refer to this as an ex-post welfare anal-

ysis for the Melitz-Pareto model.

(c) Welfare gains in the Melitz-Pareto model using the ACR formula with θs and changes in trade

shares implied by the exact hat algebra in the Melitz-Pareto model. Following ACR, we refer

to this as an ex-ante welfare analysis for the Melitz-Pareto model.

The results are reported in Figure O1. In contrast to Melitz and Redding (2015), we do not find large

differences between the true model and the Pareto model. As the figure shows, the trade elasticity is

below 4.2 even for high starting trade costs. Since the trade elasticity cannot fall below σ− 1 = 4, the

starting trade elasticity θs is close to the average trade elasticity along the path of liberalization, and thus

the differences between the welfare responses in the two models are not quantitatively large, both for the

ex-post and the ex-ante analysis.

To highlight the importance of the variation in the trade elasticity for these results, we redo the exer-

cise above but reducing the standard deviation of the sum of productivity and demand shocks from 4.15

used above to 1.5, which is far below the minimum standard deviation we find in out estimation. As can

be seen in Figure O2, the trade elasticity becomes much more variable, and the differences in the welfare

response become more pronounced. This establishes that our results are driven not by the nature of our

exercise or the use of a lognormal distribution but by the discipline imposed by the estimation using the

EDD data.

We thus conclude that while the the full Melitz-lognormal model in this paper can theoretically yield

similar results to those in Table 1 in Melitz and Redding (2015), that does not happen when the model is

estimated on the EDD data.
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Figure O1: 2-country world: changes in welfare after trade liberalization I

Note: the figure presents the change in welfare in response to a reduction in trade costs in a symmetrical two-country world
in spirit of Melitz and Redding (2015) (see Online Appendix section O for the definitions and calibration of parameters). The
x-axis represents the level of trade costs at which trade liberalization starts. The y-axis (left) represents the changes in welfare
in different models. The y-axis (right panel) represents the local trade elasticity in the true model at the corresponding level of
trade costs.
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Figure O2: 2-country world: changes in welfare after trade liberalization II

Note: the figure represents the change in welfare in response to a reduction in trade costs in a symmetrical two-country world
in spirit of Melitz and Redding (2015) (see Online Appendix section O for the definitions and calibration of parameters). The
x-axis represents the level of trade costs at which trade liberalization starts. The y-axis (left) represents the changes in welfare
in different models. The y-axis (right panel) represents the local trade elasticity in the true model at the corresponding level of
trade costs.
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