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A Multiple Equilibria with (k0, b−1) as State Variables

One key reason why we solve the wealth-recursive equilibrium using (k0, ω0) as state
variables, instead of a probably more straightforward choice (k0, b−1) is that, there can be
multiple equilibria if we use the latter as state variables. Figure A.1 provides two such
examples. The left panel in the figure plots the policy functions in ω0 fixed a value of
k0 (1.85). In the top-left figure, b−1 is generated using equation (4). We see that b−1 is
non-monotone in ω0. Therefore, if we use (k0, b−1) as the state variables, then when b−1

lies between −1.806 and −1.805, there are two equilibria with binding ZLB and bind-
ing borrowing constraint, but with different values of output, labor supply, and markup.
Similarly, the right panel in the figure shows that when b−1 lies between−1.90 and−1.89,
there are two equilibria, one with binding ZLB and the other one with non-binding ZLB.
For the same parameter values, Proposition 2 shows that there exists an unique equilib-
rium with (k0, ω0) as state variables.

Why are there multiple equilibria with (k0, b−1) as state variables? To understand this
issue, we use the definition of wealth share (4) at t = 0:

ω0 =
RK

0 k0 + b−1

RK
0 k0

.

When agents in the economy expect higher RK
0 , the entrepreneurs’ wealth share is higher

(b−1 is negative), which leads them to invest more. This implies higher aggregate demand
and hence higher relative price of entrepreneurs’ output, higher wage and higher level of
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labor supply from the households. All these factors support a higher value RK
0 because

RK
0 = 1− δ + Pe

0 A1−α
0

(
L0

k0

)1−α

,

making the expectation self-fulfilling. On the other hand, if agents expect lower RK
0 then

the same factors imply a lower value of RK
0 . For this mechanism to generate multiple

equilibria, we need investment to be significantly responsive to entrepreneurs’ wealth
share. This is more likely to be the case when the borrowing constraint binds as shown by
strictly positive multipliers in Figure A.1. The figure also shows that, when two equilibria
exists with the same value of (k0, b−1), one equilibrium features higher RK

0 , output, labor
supply, and entrepreneurs’ wholesale price than the other.
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Figure A.1: Multiple Equilibria when using (k0, b−1) as States

Note: This figure is generated by setting β = 0.99, γ = 0.98, α = 0.35, δ = 0.025, A0 = 1, A1 = 1.005, m = 0.9 and ε = 21. k0 = 1.85.

B Two-Period Economy with Natural Borrowing Limit

In this appendix, we first provide the explicit solution for equilibrium in the last period
t = 1 of the two-period economy. Then, we derive the expression for the AS-AD curves
at t = 0 and their properties.
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B.1 Last-Period Equilibrium

In the last period, there are no borrowing or lending, and thus we have b1 = 0. The
entrepreneurs makes no further investment either, i.e., k2 = 0. We assume the markup
takes its steady state value,

X1 = X∗.

In the last period, the entrepreneurs and households consume all their wealth. From
equations (3a),(3b), and (5a), (6a) at t = 1, we obtain

c1 = RK
1 k1ω1, (A.1a)

and
c′1 = RK

1 k1 (1−ω1) +
(

1− α

X∗
)

Y1. (A.1b)

Given ω1 and k1, for a labor supply L1, we can solve w1 and RK
1 from (6d) and (6e), and

c1 and c′1 from (A.1a) and (A.1b). Lastly, from (5b) at t = 1, we solve for L1 from the
following equation:

1− α

X∗
L−α

1 −
(

1− α

X∗
ω1

)
L1−α

1 = (1−ω1) (1− δ)

(
k1

A1

)1−α

. (A.1c)

It follows that L1 is decreasing in k1 and increasing in ω1.

B.2 Derivations of the AS-AD curves

By the result that RK
1 = R0 and the expression for RK

1 in (6e), we obtain

RK
1 = 1− δ +

α

X∗
A1−α

1

(
k1

L1

)α−1

= R0.

So
k1

L1
=

[
(R0 − 1 + δ)

X∗

α
Aα−1

1

] 1
α−1

. (A.2)

From the households’ Euler equation and intra-temporal condition at t = 1, we obtain

c′0 =
c′1

βR0
=

w1

βR0
.

In addition

w1 =
1− α

X∗
A1−α

1

(
k1

L1

)α

.
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Plugging the expression for k1/L1, (A.2), into this equation for w1, we obtain the expres-
sion for c′0:

c′0 =
1

βR0

1− α

X∗
A1

[
(R0 − 1 + δ)

X∗

α

] α
α−1

. (A.3)

From the households’ intra-temporal condition at t = 0,

w0 = c′0 =
w1

βR0
.

Therefore,
1− α

X0
A1−α

0

(
k0

L0

)α

=
1

βR0

1− α

X∗
A1−α

1

(
k1

L1

)α

or equivalently,

L0

k0
=

(
βR0

X∗

X0

A1−α
0

A1−α
1

) 1
α L1

k1
=

1
A0

(
βR0

A0

A1

X∗

X0

) 1
α
(
(R0 − 1 + δ)

X∗

α

) 1
1−α

, (A.4)

where the second inequality is obtained from (A.2). Plugging this expression for L0/k0

into the expression for RK
0 , (6e) at t = 0, we arrive at

RK
0 = 1− δ +

A0

X0
α

(
L0

k0

)1−α

= 1− δ +

(
A0

A1
βR0

) 1−α
α
(

X∗

X0

) 1
α

(R0 − 1 + δ) . (A.5)

From the entrepreneurs’ budget constraint

c0 +
1

R0
c1 = RK

0 k0ω0,

and the Euler equation
c1 = γR0c0,

we obtain
c0 =

1
1 + γ

RK
0 k0ω0.

Combining this with the last expression for RK
0 , we obtain

c0 =
1

1 + γ
RK

0 ω0k0, (A.6)

where RK
0 given in (A.5) is the value of each unit of capital at time 0.
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Lastly, the investment of the entrepreneurs is given by

I0 = k1 − (1− δ) k0. (A.7)

From the feasibility constraint at t = 1,

c1 + c′1 = A1−α
1 k1

(
L1

k1

)1−α

+ (1− δ)k1

= k1

(
1− δ + (R0 − 1 + δ)

X∗

α

)
.

Therefore,

k1 =
c1 + c′1

1− δ + X∗
α (R0 − 1 + δ)

, (A.8)

with

c1 = γR0c0,

c′1 =
1− α

X∗
A1

(
(R0 − 1 + δ)

X∗

α

) α
α−1

,

and the expressions for c0 is given by (A.6).
For the aggregate supply equation, we first obtain the expression for w0X0 from (6d):

w0X0 = A1−α
0 (1− α)

(
k0

L0

)α

.

Then from the expression for L0/k0 in (A.4) and the expression for YAS
0 as a function of

w0X0 from (9), we obtain:

YAS
0 =

X∗

α

(
βR0

A0X∗

A1X0

) 1−α
α

(R0 − 1 + δ) k0. (A.9)

Lemma 1. When the ZLB does not bind, the aggregate supply curve is upward slopping in R0.
There exists R̄0 such that aggregate demand curve is downward sloping when R0 ≤ R̄0.

Proof. Given the ZLB is not binding, we can set X0 = X∗ in the AS curve (A.9) and AD
curve (8). Then it is easy to see that the AS curve is increasing in R0. The AD curve
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becomes

YD
0 =

[
1

βR0
+

1
1− δ + X∗

α (R0 − 1 + δ)

]
1− α

X∗
A1

[
(R0 − 1 + δ)

X∗

α

] α
α−1

+

(
1 +

γR0

1− δ + X∗
α (R0 − 1 + δ)

)
1

1 + γ
ω0

[
1− δ +

(
A0

A1
βR0

) 1−α
α

(R0 − 1 + δ)

]
k0 − (1− δ) k0.

On the right-hand side, the first term is decreasing in R0, and the second term is increasing
in R0. Taking derivative of YD

0 with respect to R0, we have

∂YD
0

∂R0
=−

 1
βR2

0
+

X∗
α[

1− δ + X∗
α (R0 − 1 + δ)

]2

 1− α

X∗
A1

[
(R0 − 1 + δ)

X∗

α

] α
α−1

−
[

1
βR0

+
1

1− δ + X∗
α (R0 − 1 + δ)

]
1− α

X∗
A1

[
(R0 − 1 + δ)

X∗

α

] 1
α−1 X∗

1− α

+

γ
1+γ (1− δ)

(
1− X∗

α

)
[
1− δ + X∗

α (R0 − 1 + δ)
]2 ω0

[
1− δ +

(
βR0

A0

A1

) 1−α
α

(R0 − 1 + δ)

]
k0

+

(
1 +

γR0

1− δ + X∗
α (R0 − 1 + δ)

)
1

1 + γ
ω0k0

[
1− α

α
β

A0

A1

(
βR0

A0

A1

) 1−2α
α

(R0 − 1 + δ) +

(
βR0

A0

A1

) 1−α
α

]
.

Since limR0→1−δ
∂YD

0
∂R0

= −∞, and limR0→∞
∂YD

0
∂R0

= ∞, and the expression of ∂YD
0

∂R0
is continu-

ous, there exists an R̄0 such that the AD curve is downward sloping when R0 ≤ R̄0.

Lemma 2. When the ZLB binds, both AS and AD curves, in Y0 and Pe
0 , are upward slopping.

Proof. With binding ZLB, the AS curve can be expressed as

YS
0 = (Pe

0)
1−α

α

(
1

βX∗
A1

A0

) α−1
α δX∗

α
k0,

which is increasing in Pe
0 . For the AD curve, inserting R0 = 1 into (A.3) and using c′1 =

βR0c′0, we find that both c′0 and c′1 are independent of Pe
0 . On the other hand, by (A.6) and

c1 = γR0c0, and (A.7), we find that c0 and I0 are increasing in Pe
0 . Thus the AD curve is

also increasing in Pe
0 .

B.3 Graphical Representations for Proposition 1 (Part 1)

When the ZLB does not bind, i.e., R0 > 1, our specification of monetary policy, (2) implies
X0 = X∗. The AD and AS expressions, (8) and (A.9), can be represented by output Y0 as
functions of interest rate R0. Lemma 1 in Appendix B.2 shows that the aggregate supply
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curve is upward slopping and the aggregate demand curve is downward slopping when
R0 is not too high.

Why is the AS curve upward sloping? In period 0, since both the TFP A0 and capital
stock k0 are given, YS

0 responds to R0 through the labor supply. A higher R0 reduces
c′0 in two ways. First, it encourages saving and discourages consumption through the
inter-temporal substitution effect. Second, with R0 = RK

1 , a higher R0 implies a lower
capital-labor ratio in the last period t = 1 by (6e), and thus lower c′1 and w1 by (5b) and
(6d), which reduces c′0 through the income effect. Combining both effects, labor cost w0

in the first period becomes cheaper by the labor supply equation (5b), which boosts the
aggregate supply.

The intuition for why the AD curve is downward sloping is more involved since it is
the summation of three variables: the households’ consumption (c′0), entrepreneurs’ con-
sumption (c0), and investment (I0). Investment demand I0 is determined such that the
capital stock at t = 1, k1 = (1− δ) k0 + I0, suffices to serve the consumption demand c1

and c′1, with the marginal product of capital pinned down by R0 in equilibrium. Combin-
ing this equation with the inter-temporal optimal choices c1 = γR0c0 and c′1 = βR0c′0, in
Appendix B.2, we show that the AD curve can be written as

YAD
0 =

[
1 +

βR0

1− δ + X∗
α (R0 − 1 + δ)

]
c′0 +

(
1 +

γR0

1− δ + X∗
α (R0 − 1 + δ)

)
c0 − (1− δ) k0.

(A.10)

On the right-hand side, the first component is associated with the households’ consump-
tion and is decreasing in R0. As discussed earlier, a higher R0 depresses c′0 and c′1, and
thus depresses I0 by reducing the demand in period 1. The second component is associ-
ated with the entrepreneurs’ consumption and is increasing in R0. This is because as labor
cost w0 becomes cheaper, the returns to capital and thus to the entrepreneurs’ wealth be-
come higher. However, we show that as long as the entrepreneur wealth share ω0 and
interest rate R0 are not too high (as guaranteed by the conditions given in Proposition 1),
the change in the second component is dominated by that of the first one, leaving the AD
curve downward sloping. This is the case we focus on here.

Part 1 of Proposition 1 shows that R0 is decreasing in k0 and increasing in ω0, which
also implies that the ZLB tends to bind when k0 is high or when ω0 is low. The intuition
for these results can be analyzed by plotting the AS and AD curves in Figure A.2 (output
on the x-axis and interest rate on the y-axis).31

31The standard representations of the AS-AD curves plot price-level against output. We cannot strictly
follow these representations in this case because the wholesale price level is constant at 1/X∗. We can do
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Figure A.2: AS-AD Curves when R0 > 1
Note: This figure is generated by setting β = 0.99, γ = 0.98, α = 0.35, δ = 0.025, A0 = 1, A1 = 1.005
and ε = 21. kL

0 = 4, kH
0 = 4.1; ωL

0 = 0.18, ωH
0 = 0.2. We set k0 = kL

0 and ω0 = ωL
0 as the baseline

values.

Consider an exogenous increase in the initial capital, k0. As implied by (A.9), given
R0, output increases in k0, and the AS curve shifts to the right. This result is unsurprising
since larger k0 implies greater production capacity. The AD curve, on the contrary, shifts
to the left. We show in Appendix B.2 that given R0, c′0 does not depend on k0. Although
c0 and k1 are increasing in k0, they increase by a smaller amount compared to the increase
in (1− δ) k0. Thus the aggregate demand is decreasing in k0. As a result, R0 is lower in
equilibrium. This is illustrated in the left panel of Figure A.2.

For an exogenous increase in the entrepreneurs’ wealth share, ω0, the AS curve is not
affected. For the AD curve, since the entrepreneurs now have more wealth, c0 increases.
In addition, the entrepreneurs also increase their consumption in period 1, c1, which, in
order to clear the good market in period 1, requires higher capital holding k1 and thus
higher investment. Given R0, c′0 is does not depend on ω0. Therefore, in sum, the AD
curve shifts to the right. In equilibrium, both R0 and output Y0 are higher. This is illus-
trated in the right panel of Figure A.2.

C Proof of Proposition 1

Combining the expressions for c′0, c0, and I0 in (A.3), (A.6) and (A.7), the optimal inter-
temporal choices, c1 = γR0c0 and c′1 = γR0c′0, we can reduce the whole system into one
equation with one unknown: R0 or X0 depending on whether the ZLB is binding or not
as follows:

so when the ZLB binds and the wholesale price level varies.
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1
k0

=

(1− δ)

[
(1− δ)

(
1− X∗

α

) (
1− 1

1+γ ω0

)
+

(
X∗
α −

X∗
α +γ
1+γ ω0

)
R0

]
1−α
X∗ A1

[
X∗
α (R0 − 1 + δ)

] α
α−1
[
1 + X∗

αβ + 1
βR0

(1− δ)
(

1− X∗
α

)] (A.11)

+

[
(1− δ)

(
1− X∗

α

) (
X0
α − 1

1+γ ω0

)
+

(
X∗
α

X0
α −

X∗
α +γ
1+γ ω0

)
R0

] (
A0
A1

βR0

) 1−α
α
(

X0
X∗

)− 1
α
(R0 − 1 + δ)

1−α
X∗ A1

[
X∗
α (R0 − 1 + δ)

] α
α−1
[
1 + X∗

αβ + 1
βR0

(1− δ)
(

1− X∗
α

)] .

Lemma 3. When the ZLB does not bind, R0 is decreasing in k0 and increasing in ω0 if ω0 ≤
X∗+X∗γ
X∗+αγ .

Proof. The monetary policy rule in equation (2) implies that, when R0 > 1, X0 = X∗.
Inserting X0 = X∗ into (A.11), we obtain

1
k0

=

(1− δ)

[
(1− δ)

(
1− X∗

α

) (
1− 1

1+γ ω0

)
+

(
X∗
α −

X∗
α +γ
1+γ ω0

)
R0

]
1−α
X∗ A1

[
X∗
α (R0 − 1 + δ)

] α
α−1
[
1 + X∗

αβ + 1
βR0

(1− δ)
(

1− X∗
α

)] (A.12)

+

[
(1− δ)

(
1− X∗

α

) (
X∗
α − 1

1+γ ω0

)
+

((
X∗
α

)2
−

X∗
α +γ
1+γ ω0

)
R0

] (
A0
A1

βR0

) 1−α
α

(R0 − 1 + δ)

1−α
X∗ A1

[
X∗
α (R0 − 1 + δ)

] α
α−1
[
1 + X∗

αβ + 1
βR0

(1− δ)
(

1− X∗
α

)] .

In the equation above, for the right-hand side, the denominator is decreasing in R0, and
the numerators are increasing in R0 if ω0 ≤ X∗+X∗γ

X∗+αγ . As a result, its right-hand side is
increasing in R0. As R0 → ∞, the right-hand side goes to infinity. As R0 → 1− δ, the
right-hand side goes to zero. Thus there is a unique solution of R0 between [1− δ,+∞).
As k0 increases, R0 decreases. When k0 is large enough and hits the threshold k̂0 (ω0) as
in Lemma 5, the ZLB is binding, and we switch to the other system with R0 = 1 and X0

being the unknowns.
To see how R0 responds to ω0, we can rewrite the equation above as follows:

(1− δ)

[
(1− δ)

(
1− X∗

α

)(
1− 1

1 + γ
ω0

)
+

(
X∗

α
−

X∗
α + γ

1 + γ
ω0

)
R0

]

+

[
(1− δ)

(
1− X∗

α

)(
X∗

α
− 1

1 + γ
ω0

)
+

((
X∗

α

)2
−

X∗
α + γ

1 + γ
ω0

)
R0

](
A0

A1
βR0

) 1−α
α

(R0 − 1 + δ)

− 1− α

X∗
A1

[
X∗

α
(R0 − 1 + δ)

] α
α−1
[

1 +
X∗

αβ
+

1
βR0

(1− δ)

(
1− X∗

α

)]
1
k0

=0.

Denote its left-hand side as F (R0, ω0). A careful examination shows that F is increasing in
R0 if ω0 ≤ X∗+X∗γ

X∗+αγ , and decreasing in ω0. By the Implicit Function Theorem, ∂R0/∂ω0 >
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0.

Lemma 4. When the ZLB binds and α < X∗
1+X∗ , X0 is increasing in k0, and is decreasing in ω0.

Output Y0 is decreasing in k0, and increasing in ω0.

Proof. By the monetary policy rule (2), when R0 = 1, X0 > X∗. By setting R0 = 1 in (A.11)
and after some calculation, we have the following equation to pin down X0:

1− α

X∗
A1

(
δX∗

α

) α
α−1
(

1 +
δX∗

αβ
+

1
β
(1− δ)

)
1
k0

(A.13)

=

(
1− δ +

δX∗

α

)
δ

(
1
β

A1

A0

) α−1
α
(

X0

X∗

)− 1
α
(

X0

α
− 1
)

+

[(
1− δ +

δX∗

α

)(
1− 1

1 + γ
ω0

)
− γ

1 + γ
ω0

] [
(1− δ) + δ

(
1
β

A1

A0

) α−1
α
(

X0

X∗

)− 1
α

]
.

The left-hand side is independent of X0. If α < X∗
1+X∗ , the right-hand side is decreasing in

X0. As k0 increases, the left hand side decreases, so X0 must increase. Since the right-hand
side is decreasing in ω0, when ω0 increases, X0 decreases.

For output, inserting the expression for Y0 from the AS curve (A.9) into (A.13), we
arrive at

1− α

X∗
A1

(
δX∗

α

) α
α−1
(

1 +
δX∗

αβ
+

1
β
(1− δ)

)
(A.14)

=

[(
1− δ +

δX∗

α

)(
1− 1

1 + γ
ω0

)
− γ

1 + γ
ω0

]
[(1− δ) k0 + Y0]

+

(
1− δ +

δX∗

α
+ γ

)
1

1 + γ
ω0

(
1− α

X0

)
Y0.

Since the left-hand side of (A.14) is constant, and X0 is increasing in k0, with larger k0, Y0

must decrease to equate (A.14). Thus, Y0 is decreasing in k0 when the ZLB binds. To see
how Y0 responds to ω0, we can insert the expressions of c′0, c0 and I0 from (A.3), (A.3) and
(A.7) into the AD curve (8), and get

Y0 =

(
1
γ
+

1
(1− δ)

(
1− X∗

α

)
+ X∗

α

)
γ

1 + γ
ω0

[
1− δ + δ

(
β

A0

A1

) 1−α
α
(

X0

X∗

)− 1
α

]
k0 − (1− δ) k0

+

(
1
β
+

1
(1− δ)

(
1− X∗

α

)
+ X∗

α

)
1− α

X∗
A1

[
δX∗

α

] α
α−1

.

As ω0 increases, X0 decreases, and we can see that Y0 is increasing in ω0.

Lemma 5. Given an initial wealth distribution ω0, there exists a cutoff value k̂0 (ω0) such that
when k0 < k̂0 (ω0), the ZLB is not binding; and when k0 > k̂0 (ω0), the ZLB is binding. k̂0 (ω0)
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is increasing in ω0.

Proof. Inserting R0 = 1 and X0 = X∗ in equation (A.11), we obtain the expression for
k̂0 (ω0) as

k̂0 (ω0) =

1−α
X∗ A1

(
δX∗

α

) α
α−1
(

1 + δX∗
αβ + 1

β (1− δ)
)

(1− δ)
(

1− δ + δX∗
α

) (
1− 1

1+γ ω0

)
− (1− δ) γ

1+γ ω0 + δ
[(

1− δ + δX∗
α

) (
X∗
α − 1

1+γ ω0

)
− γ

1+γ ω0

] (
β A0

A1

) 1−α
α

, (A.15)

which is increasing in ω0 and A1.
We first show that when k0 < k̂0 (ω0), the ZLB is not binding in any equilibrium.

Otherwise, given a binding ZLB, X0 is increasing in k0 by Lemma 4, which implies X0 <

X∗ when k0 < k̂0 (ω0). This contradicts the restriction X0 ≥ X∗. Thus, any equilibrium
with k0 < k̂0 (ω0) features non-binding ZLB. From equation (A.12), we can see that a
unique equilibrium exists in this region without a binding ZLB.

Similarly, we can show that when k0 ≥ k̂0 (ω0), the ZLB is binding in any equilibrium.
Otherwise, given R0 > 1, R0 is decreasing in k0 by Lemma 3, which implies R0 < 1
when k0 > k̂0 (ω0). This contradicts the ZLB restriction. Thus the ZLB is binding when
k0 ≥ k̂0 (ω0).

Lemma 6. When m = 1, given ω0, there is an upper bound of initial capital k̄0 (ω0), such that
an equilibrium does not exist when k0 > k̄0 (ω0). k̄0 (ω0) is increasing in ω0 and A1.

Proof. By setting X0 → ∞ in (A.13), we obtain the expression for k̄0 (ω0):

k̄0 (ω0) =

1−α
X∗ A1

(
δX∗

α

) α
α−1
(

1 + δX∗
αβ + 1

β (1− δ)
)

(1− δ)
(

1− δ + δX∗
α

)
−
(

1− δ + δX∗
α + γ

)
1−δ
1+γ ω0

. (A.16)

By Lemma 4, X0 increases with k0. Since at k0 = k̄0 (ω0), X0 cannot be increased further,
an equilibrium does not exist with binding ZLB when k0 > k̄0 (ω0). Since by Lemma 5,
X0 = X∗, Lemma 4 implies that k̂0 (ω0) < k̄0 (ω0). In Lemma 5, we also show that there
is no equilibrium with R0 > 1 when k0 > k̂0 (ω0). Thus there is no equilibrium when
k0 > k̄0 (ω0). We can easily see from (A.16) that k̄0 (ω0) is increasing in ω0 and A1.

The intuition for this non-existence result is as follows – to simplify the discussion we
assume exogenous labor supply. At the ZLB, the return to capital RK

1 is equal to 1. There-
fore, by (6e) for t = 1, k1 is bounded from above. Thus output and the consumption of
households and entrepreneurs are all bounded from above by the market clearing condi-
tion (3a) in period 1. Then, from the Euler equations of the entrepreneurs and households,
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c0 and c′0 are also bounded from above. Therefore, if k0 is sufficiently high,

(1− δ)k0 > c′0 + c0 + k1

violating (3a) in period 0 even if output falls to zero.

Combining the results from Lemmas 3 to 6, we obtain a complete proof of Proposition
1.

D Proof of Proposition 2

The equilibrium in the last period, t = 1, is the same as for the natural borrowing limit
and is provided in Appendix B.1. Here, we focus on equilibrium at t = 0.

Proposition 2. Assume that m < 1, α < X∗
1+X∗ and ω0 is smaller than a threshold v, which

depends on model parameters and is given in Appendix D (equation (A.21a)). There is a cutoff
value ¯̄k0(ω0) > 0 such that when 0 < k0 ≤ ¯̄k0(ω0), there exists a unique equilibrium and when
k0 > ¯̄k0(ω0) there does not exist an equilibrium. In addition,

1. if
ω0 < Λ0(m, γ, β, α, X∗),

(the expression for Λ0 is given by (A.18f)) then ¯̄k0(ω0) < k̄0(ω0), where k̄0(ω0) is defined in
Proposition 1. ¯̄k0(ω0) is increasing in ω0 and decreasing in m. If ω0 > Λ0, ¯̄k0(ω0) = k̄0(ω0);

2. the collateral constraint is binding if and only if ω0 ≤ ωCC
0 (k0), for some cutoff function

ωCC
0 (k0).

Proof. We note that the proof for equilibrium uniqueness turns out to be rather challeng-
ing. For example, in the region of state space featuring an equilibrium with binding ZLB
and binding collateral constraint, not only we need to establish equilibrium uniqueness
with this binding pattern, we also need to rule out equilibria with all possible combina-
tions of binding or non-binding ZLB and collateral constraint. What adds to the complex-
ity is that the systems of equations determining equilibria with different binding patterns
are fundamentally different. The non-existence result for k0 > ¯̄k0(ω0) is a novel result
for this class of New Keynesian models. It is similar to the natural borrowing limit case
analyzed in Subsection 2.3 and we provide more details in Appendix D.4. It points to
the difficulties in solving the infinite-horizon version of these models which we and other
researchers have encountered. In particular, if one solves the model using an iterative
algorithm such as policy iterations, at some point the algorithm might not be able to find
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an equilibrium in certain region of the state space. One way to get around this issue of
equilibrium non-existence is to add investment frictions to the model as in Subsection 2.5
and Section 3.

The detailed proof is provided in the remainder of this section and we proceed as
follows.

(1) Describe the cutoff function ωCC
0 (k0) of ω0 for a binding collateral constraint, and

the cutoff function ¯̄k0 (ω0) of k0 for equilibrium existence.
(2) We show that when ω0 ≤ ωCC

0 (k0) and k0 < ¯̄k0 (ω0), there exists a unique equilib-
rium with binding collateral constraint, while such an equilibrium does not exist when
ω0 > ωCC

0 (k0) or k0 ≥ ¯̄k0 (ω0)

(3) We show that when ω0 > ωCC
0 (k0) and k0 < ¯̄k0 (ω0), there exists a unique equi-

librium with non-binding collateral constraint, while such an equilibrium does not exist
when ω0 ≤ ωCC

0 (k0) or k0 ≥ ¯̄k0 (ω0).

D.1 Thresholds for Collateral Constraint and Equilibrium Existence

In this first step of the proof, we construct the threshold functions ωCC
0 (.) and ¯̄k0(.) for

binding collateral constraint and equilibrium existence. We use these thresholds later in
Step 2 and Step 3 of the proof.

D.1.1 Cutoff Value for a Binding Collateral Constraint

The following two lemmas help us identify the cutoff value of a binding collateral con-
straint in the {k0, ω0} space.

Lemma 7. With natural borrowing limit (m = 1), given α < X∗
1+X∗ and ω0 < X∗+X∗γ

X∗+αγ , in the

unique equilibrium constructed in Proposition 1, the leverage ratio − b0
RK

1 k1
is decreasing in ω0.

Proof. From the entrepreneurs’ budget and their optimal choice c0 = 1
1+γ Rk

0ω0k0, their
leverage ratio is

− b0

Rk
1k1

= 1− γ

1 + γ

Rk
0ω0k0

k1
.

Showing that the leverage ratio is decreasing in ω0 is equivalent to showing that Rk
0ω0k0
k1

is
increasing in ω0.

First, consider the case in which ZLB is not binding, i.e. R0 > 1. Using the expression
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for k1 from (A.8) we obtain

Rk
0ω0k0

k1
=

ω0Rk
0k0

[
1− δ + X∗

α (R0 − 1 + δ)
]

γR0
1+γ ω0Rk

0k0 +
1−α
X∗ A1

(
(R0 − 1 + δ) X∗

α

) α
α−1

=
1− δ + X∗

α (R0 − 1 + δ)

γR0
1+γ +

1−α
X∗ A1((R0−1+δ)X∗

α )
α

α−1

ω0Rk
0k0

.

Differentiating the last line in ω0, the derivative d
dω0

[
Rk

0ω0k0
k1

]
has the same sign as

X∗

α

dR0

dω0

 γR0

1 + γ
+

1−α
X∗ A1

(
(R0 − 1 + δ) X∗

α

) α
α−1

ω0Rk
0k0


−

 γ

1 + γ

dR0

dω0
+

d
dω0

1−α
X∗ A1

(
(R0 − 1 + δ) X∗

α

) α
α−1

ω0Rk
0k0

 [1− δ +
X∗

α
(R0 − 1 + δ)

]
. (A.17)

By Proposition 1, given ω0 < X∗+X∗γ
X∗+αγ , R0 increases with ω0: dR0

dω0
> 0. In addition, by

setting X0 = X∗ in (A.5), RK
0 becomes

RK
0 = 1− δ +

(
A0

A1
βR0

) 1−α
α

(R0 − 1 + δ) ,

which is strictly increasing in R0 and hence in ω0. Therefore,

d
dω0

1−α
X∗ A1

(
(R0 − 1 + δ) X∗

α

) α
α−1

ω0Rk
0k0

< 0.

To show that (A.17) is positive, we only need to show that

X∗

α

dR0

dω0

γR0

1 + γ
>

γ

1 + γ

dR0

dω0

[
1− δ +

X∗

α
(R0 − 1 + δ)

]
.

This inequality holds because X∗
α > 1.

Now, consider the case in which ZLB is binding, i.e. R0 = 1 and X0 > X∗. Using the
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expression for k1 from (A.8), we obtain

Rk
0ω0k0

k1
=

ω0Rk
0k0

[
1− δ + X∗

α δ
]

γ
1+γ ω0Rk

0k0 +
1−α
X∗ A1

(
δ X∗

α

) α
α−1

=
1− δ + X∗

α δ

γ
1+γ +

1−α
X∗ A1(δ X∗

α )
α

α−1

ω0Rk
0k0

.

So leverage is decreasing in ω0 if ω0Rk
0 is increasing in ω0. By setting R0 = 1 in (A.5), RK

0

becomes

RK
0 = 1− δ +

(
A0

A1
β

) 1−α
α

δ

(
X∗

X0

) 1
α

.

Proposition 1 shows that when α < X∗
1+X∗ , X0 is decreasing with ω0. Therefore, RK

0 is
increasing in ω0. Hence, ω0RK

0 is increasing in ω0 as desired.

Lemma 8. Given m < 1, α < X∗
1+X∗ and ω0 < X∗+X∗γ

X∗+αγ , there is a cutoff value of wealth, ωCC
0 (k0)

such that in the unique equilibrium of the model with natural borrowing limit constructed in
Proposition 1, the leverage ratio − b0

Rk
1k1

= m at ω0 = ωCC
0 (k0).

Proof. By Lemma 7, with natural borrowing limit, the leverage ratio − b0
Rk

1k1
is decreasing

in ω0. Thus we can derive the expression of ωCC
0 (k0) by setting − b0

Rk
1k1

= m.

At ωCC
0 (k0), we have ω1 = 1 − m and RK

1 = R0. After some calculations, given
k0, we obtain the following system of two equations with two unknowns,

{
ωCC

0 , R0
}

or{
ωCC

0 , X0
}

depending on whether the ZLB is binding,

k1 =
γ

1 + γ

1− δ +
(

βR0
A0
A1

) 1−α
α
(

X∗
X0

) 1
α
(R0 − 1 + δ)

1−m
ωCC

0 k0, (A.18a)

k1 =

[
(1− δ)

(
1− ω0

1 + γ

)
+

(
X0

α
− ω0

1 + γ

)(
X∗

X0

) 1
α
(

A0

A1
βR0

) 1−α
α

(R0 − 1 + δ)

]
k0 (A.18b)

− 1− α

X∗
A1

(
X∗

α

) α
α−1
[

1
βR0

(R0 − 1 + δ)
α

α−1

]
,

in which k1 is a decreasing function of R0 :

k1 =

1−α
X∗ A1

(
X∗
α

) 1
α−1

(R0 − 1 + δ)
α

α−1

mα(1−δ)
X∗ +

(
1− α

X∗ (1−m)
)
(R0 − 1 + δ)

.
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We consider the two cases, binding or non-binding ZLB separately.
Case 1: Non-binding ZLB
We first consider the case that the ZLB is not binding at ωCC

0 (k0). So X0 = X∗ in the
two equations above. Given k0,

{
R0, ωCC

0
}

are the two unknowns. After some calcula-
tions, we can express ωCC

0 and k0 as functions of R0:

ωCC
0 =

(1−δ)+X∗
α

(
βR0

A0
A1

) 1−α
α

(R0−1+δ)[(
1+

X∗
α −(1−m)

β −(
X∗
α −1)(1−δ)

βR0

)
γ

1+γ
1

1−m+ 1
1+γ

][
1−δ+

(
βR0

A0
A1

) 1−α
α

(R0−1+δ)

] ,

k0 = 1
βR0

X∗
α

[
X∗
α −1+m+β+

β
γ (1−m)

]
R0−

(
X∗
α −1

)
(1−δ)

( X∗
α −1+m)R0−( X∗

α −1)(1−δ)

1−α
X∗ A1

(
X∗
α

) 1
α−1 (R0−1+δ)

α
α−1

1−δ+X∗
α

(
β

A0
A1

R0

) 1−α
α

(R0−1+δ)

.

(A.18c)

Notice that R0 is strictly decreasing in k0. So we can write ωCC
0 as a function of k0. By

varying the value of R0, we can trace out ωCC
0 (k0). In particular, when k0 equals to

k̂CC
0 =

(
X∗
α −1

)
δ+m

β + 1 + 1
γ (1−m)(X∗

α − 1 + m
)
−
(X∗

α − 1
)
(1− δ)

1−α
α A1

(
X∗
α

) 1
α−1

δ
α

α−1

1− δ + X∗
α δ
(

β A0
A1

) 1−α
α

, (A.18d)

R0 = 1 at ω0 = ωCC
0

(
k̂CC

0

)
. Thus out result here with non-binding ZLB only applies for

k0 < k̂CC
0 .

Case 2: Binding ZLB
Now consider the case that the ZLB is binding at ωCC

0 (k0). We set R0 = 1 in equations
(A.18a) and (A.18b). Given k0,

{
X0, ωCC

0
}

are the two unknowns. After some calculations,
we can express ωCC

0 and k0 as functions of X0:

ωCC
0 = Λ0

1−δ+δ
(

β
A0
A1

) 1−α
α X0

α

(
X∗
X0

) 1
α

1−δ+δ
(

β
A0
A1

) 1−α
α
(

X∗
X0

) 1
α

,

k0 = Λ1

1−α
X∗ A1

(
δ X∗

α

) α
α−1

1−δ+δ
(

β
A0
A1

) 1−α
α X0

α

(
X∗
X0

) 1
α

,

(A.18e)
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in which Λ0 and Λ1 are constants:

Λ0 =

1+γ
γ (1−m)

m−δ+ δX∗
α

β + 1+γ−m
γ

, (A.18f)

Λ1 =

m−δ
β + δX∗

αβ + 1 + 1−m
γ

m (1− δ) +
(X∗

α − 1 + m
)

δ
. (A.18g)

Notice that X0 is increasing in k0. So we can write ωCC
0 as function of k0. By varying the

value of X0, we can trace out ωCC
0 (k0). In particular, when k0 equals to k̂CC

0 in (A.18d),
X0 = X∗. Thus our result here with binding ZLB only applies for k0 > k̂CC

0 . Furthermore,

when k0 = Λ1

1−α
X∗ A1

(
δ X∗

α

) α
α−1

1−δ , ωCC
0 (k0) = Λ0, and X0 → +∞. Thus there is no solution

for ωCC
0 (k0) when k0 > Λ1

1−α
X∗ A1

(
δ X∗

α

) α
α−1

1−δ . This happens because the {k0, ω0} lies in the
region where no equilibrium exists as shown in Proposition 1.

To sum up, we have completed the calculation for ωCC
0 (k0). When k0 ≤ k̂CC

0 in (A.18d),

ωCC
0 (k0) is given by (A.18c), and when k̂CC

0 < k0 ≤ Λ1

1−α
X∗ A1

(
δ X∗

α

) α
α−1

1−δ , ωCC
0 (k0) is given

by (A.18e). When k0 > Λ1

1−α
X∗ A1

(
δ X∗

α

) α
α−1

1−δ , ωCC
0 (k0) is not defined. See the dashed line in

Figure 3 for an example.

D.1.2 Threshold for Equilibrium Existence

We define ¯̄k0 (ω0) as follows. When ω0 ≥ Λ0 given in equation (A.18f), we set ¯̄k0 (ω0) =

k̄0 (ω0) in equation (A.16), the cutoff value for equilibrium existence in the natural bor-
rowing limit case. When ω0 < Λ0, ¯̄k0 (ω0) is solved by the following two equations in
which the marginal product of capital, rK

1 = RK
1 − (1− δ) ∈ (δ,+∞), is used as an auxil-

iary variable:

k1 +
1
β

1− α

X∗
A1

(
X∗

α

) α
α−1 (

rK
1

) α
α−1

= (1− δ)

(
1− ω0

1 + γ

)
¯̄k0, (A.18h)(

1−m (1− δ)−mrK
1

)
k1 =

γ

1 + γ
(1− δ)ω0

¯̄k0. (A.18i)

In both equations, k1 is a decreasing function of rK
1 as below:

k1 =

1−α
X∗ A1

[
X∗
α

] α
α−1 [rK

1
] α

α−1

m (1− δ) +
(X∗

α − 1 + m
)

rK
1

. (A.18j)
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Equations (A.18h) and (A.18i) imply that rK
1 is a decreasing function of ω0:

rK
1 =

(
1+γ
ω0
− 1
)
(1−m (1− δ))−

(
γ + γ

β m (1− δ)
)

(
1+γ
ω0
− 1
)

m + γ
β

(X∗
α − 1 + m

) . (A.18k)

Inserting this expression into (A.18h), we see that ¯̄k0 (ω0) is increasing, and thus rK
1 is

decreasing in k0 at k0 = ¯̄k0 (ω0). In particular, at ω0 = Λ0, the equation above implies
rK

1 = δ, and by (A.18i) we have ¯̄k0 (ω0) = k̄0 (ω0) at ω0 = Λ0. This shows that the function
¯̄k0 (ω0) is continuous at ω0 = Λ0.

When ω0 < Λ0, by the expression of k̄0 (ω0) in (A.16), we have

(1− δ) γ
1+γ ω0

γ
β

1−α
X∗ A1

(X∗
α

) α
α−1

k̄0 (ω0) =
1 + β + δ

(
X∗
α − 1

)
(

1+γ
ω0
− 1
) (

1− δ + δX∗
α

)
− γ

δ
α

α−1 . (A.18l)

Similarly, by (A.18i), (A.18j) and (A.18k), we have

γ
1+γ (1− δ)ω0

γ
β

1−α
X∗ A1

(X∗
α

) α
α−1

¯̄k0 (ω0) =
1−m (1− δ) +

βm+m2(1−δ)
X∗
α −(1−m)(

1+γ
ω0
− 1
)(

1−m (1− δ) +
m2(1−δ)

X∗
α −(1−m)

)
− γ

[
rK

1

] α
α−1 ,

(A.18m)

whose left-hand side is the same as that of (A.18l).
Given ω0 < Λ0, we can show that the first term on the right-hand-side of (A.18l) is

larger than that of (A.18m). Besides, from (A.18k), we have rK
1 > δ at k0 = ¯̄k0 (ω0), and

then δ
α

α−1 >
[
rK

1
] α

α−1 . Thus by comparing (A.18l) and (A.18m), we see that ¯̄k0 (ω0) <

k̄0 (ω0). Applying the Implicit Function Theorem to equations (A.18k) and (A.18m), we
can show that ¯̄k0 (ω0) is decreasing in m when ω0 < Λ0. By (A.18h) and (A.18k), it follows
that ¯̄k0 (ω0) is increasing in A1.

D.2 Equilibrium Properties with Binding Collateral Constraint

Having defined the thresholds ωCC
0 (.) and ¯̄k0(.), now we proceed with Step 2 for the

proof of Proposition 2. When the collateral constraint is binding, b0 = −mRK
1 k1, and by

(4), ω1 = 1− m. Using the equations in Appendix B.1, we can explicitly solve for the
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equilibrium at t = 1 given RK
1 . For example, by (6e) and (A.1c),

k1

L1
= A1

[
X∗

α

(
RK

1 − 1 + δ
)] 1

α−1

,

L1 =
1−α
X∗

mα(1−δ)

X∗(RK
1−1+δ)

+ 1− α
X∗ (1−m)

.

Now, back to time t = 0. Denote the marginal product of capital as rK
t = RK

t − (1− δ).
We can express the other variables as functions of

{
rK

1 , R0
}

or
{

rK
1 , X0

}
depending on

whether the ZLB is binding. In particular,

k1 =

1−α
X∗ A1

(
X∗
α

) 1
α−1 (rK

1
) α

α−1

mα(1−δ)
X∗ +

(
1− α

X∗ (1−m)
)

rK
1

, (A.19a)

which is decreasing in rK
1 .

By (5b) for period 0 and 1, (5c) and (6e), we have

rK
0 =

(
βR0

A0

A1

) 1−α
α
(

X∗

X0

) 1
α

rK
1 . (A.19b)

Equilibria with binding collateral constraint can be written as systems of two equations
and two unknowns,

{
rK

1 , R0
}

or
{

rK
1 , X0

}
:

k1 =

[
(1− δ)

(
1− ω0

1 + γ

)
+

(
X0

α
− ω0

1 + γ

)(
X∗

X0

) 1
α
(

A0

A1
βR0

) 1−α
α

rK
1

]
k0

− 1− α

X∗
A1

(
X∗

α

) α
α−1
[

1
βR0

(
rK

1

) α
α−1
]

, (A.19c)

and (
1− m

(
1− δ + rK

1
)

R0

)
k1 =

γ

1 + γ

(
1− δ + rK

0

)
ω0k0, (A.19d)

in which k1 and rK
0 are given in equations (A.19a) and (A.19b). Equation (A.19c) is derived

by the feasibility condition (3a) in period 0, while equation (A.19d) is derived by applying
c0 = 1

1+γ RK
0 k0ω0 and b0 = −mRK

1 k1 (binding collateral constraint) to the entrepreneurs’
budget constraint in period 0.

A solution to the system of equations (A.19c) and (A.19d) corresponds to an equilib-
rium with binding collateral constraint if the multiplier µ0 implied by (7) is positive, i.e.,
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if
R0 ≤ RK

1 . (A.19e)

In the next subsection, we characterize the properties of the solution to (A.19c) and
(A.19d), depending on whether the ZLB is binding. We temporarily ignore the require-
ment (A.19e) and get back to it later in Subsection D.2.3.

D.2.1 Equilibrium with Non-binding ZLB and Binding Collateral Constraint

Lemma 9. Assume that the collateral constraint is binding, and ω0 < X∗
α . Given k0, there is a

cutoff value of ω0, ω̂0 (k0) such that if ω0 ≥ ω̂0 (k0), there exists a unique solution to (A.19c)
and (A.19d) with non-binding ZLB, and R0 is increasing in ω0. If ω0 < ω̂0 (k0), there does not
exist such a solution.

Proof. Step 1: Equilibrium Representation
Setting X0 = X∗, rK

1 can be expressed as functions of R0 in both (A.19c) and (A.19d).
Equation (A.19c) becomes

1−α
X∗ A1

(
X∗
α

) 1
α−1

mα(1−δ)
X∗ +

[
1− α

X∗ (1−m)
]

rK
1

+
1− α

X∗
A1

(
X∗

α

) α
α−1 1

βR0

=

[
(1− δ)

(
1− ω0

1 + γ

)
+

(
X∗

α
− ω0

1 + γ

)(
A0

A1
βR0

) 1−α
α

rK
1

]
k0

(
rK

1

) α
1−α

(A.20a)

in which rK
1 is a decreasing function of R0. Denote this implicit function as rK

1 = f1 (R0).
We can easily verify that limR0→0 f1 (R0)→ +∞, and limR0→+∞ f1 (R0)→ 0.

We can write this equation in the form of

1− α

X∗
A1

(
X∗

α

) 1
α−1

= −ψ1
0 (R0)− ψ1

1 (R0) rK
1 + ψ1

2

(
rK

1

) α
1−α

+ ψ1
3 (R0)

(
rK

1

) 1
1−α

+ ψ1
4 (R0)

(
rK

1

)1+ 1
1−α

,

(A.20b)

where ψ1
0, ψ1

1, ψ1
2, ψ1

3, ψ1
4 > 0. Denote its right-hand side as F1

(
rK

1 , R0
)
.

Equation (A.19d) becomes

1 =
m
(
1− δ + rK

1

)
R0

+
γ

1 + γ
ω0k0

[
1− δ +

(
βR0

A0
A1

) 1−α
α rK

1

] [
mα(1−δ)

X∗ +
(
1− α

X∗ (1−m)
)

rK
1

]
1−α
X∗ A1

(X∗
α

) 1
α−1
(
rK

1

) α
α−1

,

(A.20c)
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which can be similarly written as

1− α

X∗
A1

(
X∗

α

) 1
α−1

= ψ2
0 (R0) + ψ2

1 (R0) rK
1 + ψ2

2

(
rK

1

) α
1−α

+ ψ2
3 (R0)

(
rK

1

) 1
1−α

+ ψ2
4 (R0)

(
rK

1

)1+ 1
1−α

,

(A.20d)

where ψ2
0, ψ2

1, ψ2
2, ψ2

3, ψ2
4 > 0. Thus there exists a unique solution for rK

1 as a function of
R0. Denote this implicit function as rK

1 = f2 (R0). We can also easily verify that that
limR0→m(1−δ) f2 (R0)→ 0, and as limR0→+∞ f2 (R0)→ 0. Thus f2 (R0) is not monotone.

Step 2: Equilibrium Existence
First, we show that, given ω0 < X∗

α , as R0 → +∞, f2 (R0) is asymptotically higher than
f1 (R0) .

As R0 → +∞, f1 (R0) and f2 (R0) both converge to zero. We can derive the following
asymptotic behaviors as R0 → +∞:

[ f1 (R0)]
1

1−α ∝
1(

X∗
α − ω0

1+γ

) (1− α) A1

(
X∗
α

) 1
α−1

(
A0
A1

β
) 1−α

α k0mα (1− δ)

R
α−1

α
0 ,

[ f2 (R0)]
1

1−α ∝
1+γ

γ

ω0

(1− α) A1

(
X∗
α

) 1
α−1

(
β A0

A1

) 1−α
α k0mα (1− δ)

R
α−1

α
0 .

If ω0 < X∗
α , f2 (R0) is asymptotically higher than f1 (R0).

From the last two steps, we obtain f1(R0) > f2(R0) at R0 = m(1− δ) and f1(R0) <

f2(R0) when R0 is sufficiently high. By the Intermediate Value Theorem, the two functions
will cross at least once. This guarantees the existence of a solution

(
R0, rK

1
)

for the two
equations (A.20a) and (A.20c) without considering the ZLB.

Step 3: Equilibrium Uniqueness
We show at any intersection of f1, f2, i.e. f1 (R0) = f2 (R0), the slope of f2 must be steeper

than the one for f1, i.e. f ′1 (R0) < f ′2 (R0).
By the Implicit Function Theorem,

f ′1 (R0) = −
∂F1/∂R0

∂F1/∂rK
1

,
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in which

∂F1

∂rK
1
= −ψ1

1 (R0) +
α

1− α
ψ1

2

(
rK

1

) α
1−α−1

+
1

1− α
ψ1

3 (R0)
(

rK
1

) α
1−α

+

(
1 +

1
1− α

)
ψ1

4 (R0)
(

rK
1

) 1
1−α

,

∂F1

∂R0
= − d

dR0
ψ1

0 (R0)−
d

dR0
ψ1

1 (R0) rK
1 +

d
dR0

ψ1
3 (R0)

(
rK

1

) 1
1−α

+
d

dR0
ψ1

4 (R0)
(

rK
1

)1+ 1
1−α

.

We can easily check that ∂F1
∂R0

> 0. Since rK
1 is a decreasing function of R0, by the implicit

function theorem, ∂F1
∂rK

1
> 0.

Similarly,

f ′2 (R0) = −
∂F2/∂R0

∂F2/∂rK
1

,

in which

∂F2

∂rK
1
= ψ2

1 (R0) +
α

1− α
ψ2

2

(
rK

1

) α
1−α−1

+
1

1− α
ψ2

3 (R0)
(

rK
1

) α
1−α

+

(
1 +

1
1− α

)
ψ2

4 (R0)
(

rK
1

) 1
1−α

,

∂F2

∂R0
=

d
dR0

ψ2
0 (R0) +

d
dR0

ψ2
1 (R0) rK

1 +
d

dR0
ψ2

3 (R0)
(

rK
1

) 1
1−α

+
d

dR0
ψ2

4 (R0)
(

rK
1

)1+ 1
1−α

.

After lengthy algebras using these expressions, we find that f ′1(R0) < f ′2(R0) is implied
by

[
d

dR0
ψ1

3 (R0)
(

rK
1

) 1
1−α

+
d

dR0
ψ1

4 (R0)
(

rK
1

)1+ 1
1−α

]
×
[

α

1− α
ψ2

2

(
rK

1

) α
1−α−1

+
1

1− α
ψ2

3 (R0)
(

rK
1

) α
1−α

+

(
1 +

1
1− α

)
ψ2

4 (R0)
(

rK
1

) 1
1−α

]
>

[
d

dR0
ψ2

3 (R0)
(

rK
1

) 1
1−α

+
d

dR0
ψ2

4 (R0)
(

rK
1

)1+ 1
1−α

]
×
[

α

1− α
ψ1

2

(
rK

1

) α
1−α−1

+
1

1− α
ψ1

3 (R0)
(

rK
1

) α
1−α

+

(
1 +

1
1− α

)
ψ1

4 (R0)
(

rK
1

) 1
1−α

]
.

Inserting the expressions of ψ1
1, ψ1

2, ψ1
3, ψ1

4 and ψ2
1, ψ2

2, ψ2
3, ψ2

4 above and after some calcula-
tions, we see that the inequality above holds.32

Combining the previous three steps together, we can see that with binding collateral
constraint and non-binding ZLB, a solution to (A.20a) and (A.20c) exists and is unique
(without checking whether the implied R0 satisfies the ZLB).

Step 4: Cutoff of ω0 for ZLB
An example of equations (A.20a) and (A.20c) are given in Figure A.3. In particular,

32The calculations are relatively straightforward since F1
(
rK

1 , R0
)

and F2
(
rK

1 , R0
)

take the same form,
and many common terms cancel out.
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by checking equations (A.20a) and (A.20c), we see that, as ω0 increases both curves shift
to the right, and the equilibrium R0 increases. In other words, R0 increases with ω0.
Thus we can identify the cutoff for binding ZLB, ω̂0 (k0), such that given k0, R0 = 1 at
ω0 = ω̂0 (k0). The expression of ω̂0 (k0) can be solved implicitly by imposing R0 = 1 in
(A.20a) and (A.20c).

1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

1.2

Figure A.3: Equilibria with Binding Collateral Constraint and no ZLB

Note: This figure is generated by setting β = 0.99, γ = 0.98, α = 0.35, δ = 0.025, A0 = 1, A1 = 1.005, m = 0.8 and ε = 21. k0 = 0.1.

We can show that at ω0 = ω̂0 (k0), rK
1 is decreasing in k0. In particular, there is a

constant

k̂0 =

[
1

m(1−δ)+( X∗
α −(1−m))( 1

m−(1−δ))
+ 1

β

]
1−α
X∗ A1

[
X∗
α

(
1
m − (1− δ)

)] α
α−1

1− δ + X∗
α

(
β A0

A1

) 1−α
α
(

1
m − (1− δ)

) , (A.20e)

such that when k0 = k̂0, ω̂0

(
k̂0

)
= 0, and rK

1 = 1
m − (1− δ). As k0 → +∞, limk0→+∞ ω̂0 (k0) =

(1+γ)(1−m(1−δ))

1+γ+
(

γ
β−1

)
m(1−δ)

, and limk0→+∞ rK
1 [k0, ω̂0 (k0)] = 0. See the blue solid line in Figure A.4

for an example of ω̂0 (k0).
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Figure A.4: Cut-offs with Binding Collateral Constraint

Note: This figure is generated by setting β = 0.99, γ = 0.98, α = 0.35, δ = 0.025, A0 = 1, A1 = 1.005, m = 0.5 and ε = 21.

D.2.2 Equilibrium with Binding ZLB and Binding Collateral Constraint

Now we explore the situation when both the collateral constraint and the ZLB are binding.

Lemma 10. Assume the collateral constraint is binding, and ω0 is smaller than

v = min
{
(1 + γ)

1− α

α
X∗, H (γ, β, δ, m, α, X∗)

}
, (A.21a)

where H is a function defined in (A.21g). Given k0, there is a cutoff value of ω0, ω0 (k0) <

ω̂0 (k0) defined in Lemma 9 such that if ω0 (k0) < ω0 < ω̂0 (k0), there exists a unique solution
to (A.19c) and (A.19d) with binding ZLB, and in this solution, X0 is decreasing in ω0. If ω0 ≥
ω̂0 (k0) or ω0 ≤ ω0 (k0), there does not exist such an solution.

Proof. Step 1: Equilibrium Representation
In this case, we represent the system as functions of

{
rK

1 , rK
0
}

. Setting R0 = 1, and from
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(A.19b) X0 can be expressed as a function of
{

rK
1 , rK

0
}

as below:

X0 = X∗
(

β
A0

A1

)1−α
(

rK
1

rK
0

)α

. (A.21b)

The counterpart for the restriction X0 ≥ X∗ is

rK
0 ≤

(
β

A0

A1

) 1−α
α

rK
1 . (A.21c)

Equation (A.19c) becomes

k1 +
1
β

1− α

X∗
A1

(
X∗

α

) α
α−1 (

rK
1

) α
α−1

= (1− δ)

(
1− ω0

1 + γ

)
k0 +

(
X∗

α

(
β

A0

A1

)1−α
(

rK
1

rK
0

)α

− ω0

1 + γ

)
rK

0 k0, (A.21d)

If ω0 < (1 + γ) 1−α
α X∗, we can show that rK

0 is a decreasing function of rK
1 . Denote rK

0 =

g1
(
rK

1
)
. There is an upper bound for rK

1 , denoted as r̂K
1 , such that g1

(
r̂K

1
)
= 0, and X0 → ∞

at r̂K
1 .
Equation (A.19d) becomes(

1−m (1− δ)−mrK
1

)
k1 =

γ

1 + γ
ω0k0

(
1− δ + rK

0

)
(A.21e)

in which rK
0 is decreasing in rK

1 as well. Denote this function as rK
0 = g2

(
rK

1
)
. Similarly,

in (A.21e), there is also an upper bound for rK
1 , denoted as r̃K

1 , such that g2
(
r̃K

1
)
= 0, and

X0 → ∞ at the upper bound r̃K
1 .

Step 2: Equilibrium Existence
We show that given ω0 < ω̂0 (k0), defined in Lemma 9, and r̂K

1 > r̃K
1 , there exists an

equilibrium with both binding collateral constraint and ZLB.
The intuition of this result can be seen in Figure A.5. The black dashed line corre-

sponds to X0 = X∗ below which we have X0 ≥ X∗. When ω0 < ω̂0 (k0), by equations
(A.20a) and (A.20c) in Subsection D.2.1 (also see Figure A.3), with R0 = 1 and X0 = X∗, rK

1

in (A.21d) is smaller than rK
1 in (A.21e). Correspondingly, in Figure A.5, Point A, the inter-

section of g1
(
rK

1
)

and X0 = X∗ lies to the lower left of Point B, the intersection of g2
(
rK

1
)

and X0 = X∗. In other words, at rK
1 = rK

1,B, the value at point B, g1

(
rK

1,B

)
< g2

(
rK

1,B

)
. Now

with r̂K
1 > r̃K

1 , we see that g1
(
r̃K

1
)
> g2

(
r̃K

1
)
. Since both g1

(
rK

1
)

and g2
(
rK

1
)

are continuous,
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by the Intermediate Value Theorem, they intersect at least once at some rK
1 ∈

[
rK

1,B, r̃K
1

]
with X0 > X∗. Thus there exists an equilibrium with both binding ZLB and collateral
constraint in this range.

0.1 0.15 0.2 0.25
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Figure A.5: Equilibria with Binding Collateral Constraint and ZLB

Note: This figure is generated by setting β = 0.99, γ = 0.98, α = 0.35, δ = 0.025, A0 = 1, A1 = 1.005, m = 0.8 and ε = 21. ω0 = 0.08 and
k0 = 1.27.

Step 3: Equilibrium Uniqueness
When ω0 is smaller than the value in equation (A.21g), the slope of g1

(
rK

1
)

is higher than the
slope of g2

(
rK

1
)

when they intersect.
Using implicit function theorem, the derivatives of g1

(
rK

1
)

and g2
(
rK

1
)

are

∂g1

∂rK
1

(
rK

1

)
=

∂k1
∂rK

1
− 1

β A1

(
X∗
α

) 1
α−1 (rK

1
) 1

α−1 − X0k0
rK

0
rK

1(
1−α

α X0 − ω0
1+γ

)
k0

,

∂g2

∂rK
1

(
rK

1

)
=
−mk1 +

(
1−m (1− δ)−mrK

1
) ∂k1

∂rK
1

γ
1+γ ω0k0

.

We will show that given (A.21c) and δ ≤ rK
1 ≤

1−m(1−δ)
m ,

∂g1

∂rK
1

(
rK

1

)
>

∂g2

∂rK
1

(
rK

1

)
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holds at their intersection for ω0 sufficiently small. The lower bound of rK
1 , δ is derived

by the relation RK
1 ≥ R = 1, while its upper bound, 1−m(1−δ)

m is from equation (A.21e).
Indeed, the inequality can be rewritten as(([

− ∂k1

∂rK
1

]
+

1
β

A1

(
X∗

α

) 1
α−1 (

rK
1

) 1
α−1

)
γ

1 + γ
+

1
1 + γ

(
mk1 +

(
1−m (1− δ)−mrK

1

) [
− ∂k1

∂rK
1

]))
ω0

≤
(

1− α

α

(
mk1 +

(
1−m (1− δ)−mrK

1

) [
− ∂k1

∂rK
1

])
− γ

1 + γ
ω0k0

rK
0

rK
1

)
X0, (A.21f)

in which the expression of k1 is from (A.19a).
After some calculations, we can show a stronger result as below:(([
− ∂k1

∂rK
1

]
+

1
β

A1

(
X∗

α

) 1
α−1 (

rK
1

) 1
α−1

)
γ

1 + γ
+

1
1 + γ

(
mk1 +

(
1−m (1− δ)−mrK

1

) [
− ∂k1

∂rK
1

]))
ω0

≤ 1− α

α

(
m +

(
1− α

X∗ (1−m)
) (

1−m (1− δ)−mrK
1
)

mα(1−δ)
X∗ +

(
1− α

X∗ (1−m)
)

rK
1

)
k1X∗,

and this inequality holds if

ω0 < H(γ, β, δ, m, α, X∗) ≡ min
{

G (δ) , G
(

1−m(1− δ)

m

)}
, (A.21g)

in which

G
(

rK
1

)
=

1− α

α

(
m2α (1− δ)

X∗
+
(

1− α

X∗
(1−m)

)
(1−m (1− δ))

)
X∗/

{
(

1 + γ +

(
γ

β
− 1
)

m (1− δ)

)
1

1 + γ

α

1− α

mα (1− δ)

X∗
1
rK

1

+

(
γ

β
(X∗ − α (1−m))− αm

)
1

1− α

1
1 + γ

(
1− α

X∗
(1−m)

)
rK

1

+
1

1 + γ

1
1− α

(
1− α

X∗
(1−m)

)(
1 + γ +

(
2α

γ

β
− 1
)

m (1− δ)

)
+

1
1 + γ

1− 2α

1− α

m2α (1− δ)

X∗
}.

As a result, given k0, ω0 < ω̂0 (k0) from Subsection D.2.1, and r̂K
1 > r̃K

1 , an equilibrium
with binding collateral constraint and ZLB exists and is unique. Otherwise, if there are
multiple equilibria in this region, g1

(
rK

1
)

and g2
(
rK

1
)

cross for multiple times, and then
one of these equilibria features dg1

drK
1
≤ dg2

drK
1

which contradicts the slope comparison above.
Step 4: Equilibrium Non-Existence with Binding ZLB and Collateral Constraint
In Figure A.6, we show the comparative statics results for decreasing ω0. We see that

as ω0 decreases, g1
(
rK

1
)

shifts to the right, while g2
(
rK

1
)

shifts to the left, making the
equilibrium rK

1 higher and rK
0 lower. From (A.21b), X0 also increases. Thus X0 decreases in

ω0.
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We also see that ∂r̂K
1

∂ω0
> 0 and ∂r̃K

1
∂ω0

< 0. When ω0 drops to the level ω0 (k0) such that
r̂K

1 = r̃K
1 , at the intersection of g1

(
rK

1
)
and g2

(
rK

1
)
, rK

0 = 0, and X0 goes to infinity.
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Figure A.6: Comparative Statics with Binding Collateral Constraint and ZLB

Note: This figure is generated by setting β = 0.99, γ = 0.98, α = 0.35, δ = 0.025, A0 = 1, A1 = 1.005, m = 0.8 and ε = 21, and k0 = 1.27.

Now we solve the cut-off value ω0 (k0) by setting r̂K
1 = r̃K

1 . Accordingly, by setting
rK

0 = 0 in equations (A.21d) and (A.21e), we have

k1 +
1
β

1− α

X∗
A1

(
X∗

α

) α
α−1 (

rK
1

) α
α−1

= (1− δ)

(
1−

ω0
1 + γ

)
k0,(

1−m (1− δ)−mrK
1

)
k1 =

γ

1 + γ
(1− δ)ω0k0.

Notice that these two equations are exactly the same as equations (A.18h) and (A.18i)
when we define ¯̄k0 (ω0). Thus ω0 (k0) is the inverse function of ¯̄k0 (ω0) and is increasing
in k0.

We can show that ∀k0 > 0, ω0 (k0) < ω̂0 (k0), the cutoff for binding ZLB in Lemma 9.
First, when

k0 = k0 =

1−α
X∗ A1

[
X∗
α

(
1
m − (1− δ)

)] α
α−1

m (1− δ) +
(X∗

α − (1−m)
) ( 1

m − (1− δ)
) , (A.21h)

ω0 (k0) = 0, and the implied rk
1 = 1

m − (1− δ). Notice k0 > k̂0 in equation (A.20e).

As k0 → +∞, limk0→+∞ ω0 (k0) = (1+γ)(1−m(1−δ))

1+γ+
(

γ
β−1

)
m(1−δ)

, and limk0→+∞ rK
1

[
k0, ω0 (k0)

]
= 0.
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Lastly, ω0 (k0) and ω̂0 (k0) never cross. Otherwise, rK
0 = 0 at their intersection. To sum

up, we have ω0 (k0) < ω̂0 (k0). See the red dashed line in Figure A.4 for an example of
ω0 (k0).

Now we show that, when ω0 < ω0 (k0), there is no solution to (A.19c) and (A.19d)
with binding collateral constraint and binding ZLB. We keep our definition of Point B

as the intersection of g2
(
rK

1
)

and rK
0 =

(
β A0

A1

) 1−α
α rK

1 in equation (A.21c). Since ω0 <

ω0(k0) < ω̂0 (k0), we have g1

(
rK

1,B

)
< g2

(
rK

1,B

)
at rK

1 = rK
1,B. We also have g1

(
r̂K

1
)
<

g2
(
r̂K

1
)
. Then in the range

[
rK

1,B, r̂K
1

]
, if g1

(
rK

1
)

and g2
(
rK

1
)

intersect, they would intersect

at least twice, and at one of the intersections, the condition dg1
drK

1
> dg2

drK
1

would be violated.
Consequently, there is no solution with binding collateral constraint and ZLB in this re-
gion.

We can use similar argument to rule out any solution to (A.19c) and (A.19d) with
binding collateral constraint and binding ZLB when ω0 ≥ ω̂0 (k0). In this case, Point
B lies to the lower-left of Point A in Figure A.5, and r̃K

1 < r̂K
1 . Therefore, if g1

(
rK

1
)

and
g2
(
rK

1
)

intersect, they would intersect at least twice. Then at one of the intersections, the
condition dg1

drK
1
> dg2

drK
1

would be violated.

D.2.3 Equilibrium Existence and Uniqueness with Binding Collateral Constraint

In the previous subsections, we impose a binding collateral constraint and characterize
the equilibrium properties without checking that whether µ0 ≥ 0, or equivalently (A.19e).
It is possible that RK

1 < R0 and borrowing to the limit may not be the entrepreneurs’
optimal choice. In this subsection, we check whether this is the case.

The following lemma is useful in proving the equilibrium existence and uniqueness
with binding collateral constraint.

Lemma 11. The derivative of the excess return RK
1 − R0 is negative at ω0 = ωCC

0 (k0) given in
Lemma 8.

Proof. It is equivalent to show that rK
1 − R0 is decreasing in ω0 at ω0 = ωCC

0 (k0). Notice
that since the collateral constraint is binding at ω0 = ωCC

0 (k0), the equilibrium properties
with binding collateral constraint from Lemmas 9 and 10 still apply at ω0 = ωCC

0 (k0).
If the ZLB is binding at ω0 = ωCC

0 (k0), R0 = 1, and RK
1 = 1− δ+ rK

1 is decreasing in ω0

as shown in Figure A.6, which implies a negative derivative of RK
1 − R0 at ω0 = ωCC

0 (k0).
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If the ZLB is not binding, we write the system that determines rK
1 and R0 as

F1

(
rK

1 , R0; ω0

)
= 0,

F2

(
rK

1 , R0; ω0

)
= 0,

where F1 and F2 are defined in equations (A.20b) and (A.20d). By the Implicit Function
Theorem,  ∂F1

∂rK
1

∂F1
∂R0

∂F2
∂rK

1

∂F2
∂R0

 [ drK
1

dω0
dR0
dω0

]
= −

[
∂F1
∂ω0
∂F2
∂ω0

]
,

we have [
drK

1
dω0
dR0
dω0

]
= − 1

∂F1
∂rK

1

∂F2
∂R0
− ∂F1

∂R0

∂F2
∂rK

1

 ∂F2
∂R0

− ∂F1
∂R0

− ∂F2
∂rK

1

∂F1
∂rK

1

 [ ∂F1
∂ω0
∂F2
∂ω0

]
.

In Subsection D.2.1, we have shown that

∂F1

∂rK
1

∂F2

∂R0
− ∂F1

∂R0

∂F2

∂rK
1
< 0.

Thus to show drK
1

dω0
− dR0

dω0
< 0, we need to show that

∂F2

∂R0

∂F1

∂ω0
− ∂F1

∂R0

∂F2

∂ω0
+

∂F2

∂rK
1

∂F1

∂ω0
− ∂F1

∂rK
1

∂F2

∂ω0
< 0.

We can see that ∂F1
∂R0

> 0, ∂F1
∂rK

1
> 0, ∂F1

∂ω0
< 0, ∂F2

∂rK
1
> 0, and ∂F2

∂ω0
> 0. But the sign of ∂F2

∂R0
is

not clear. In particular, we have ∂F2
∂ω0

= −γ ∂F1
∂ω0

. Thus to show the inequality above, it is
sufficient to show that

∂F2

∂R0

∂F1

∂ω0
+ γ

∂F1

∂R0

∂F1

∂ω0
+

∂F2

∂rK
1

∂F1

∂ω0
+ γ

∂F1

∂rK
1

∂F1

∂ω0

=

(
∂F2

∂R0
+ γ

∂F1

∂R0
+

∂F2

∂rK
1
+ γ

∂F1

∂rK
1

)
∂F1

∂ω0
< 0.

Since ∂F1
∂ω0

< 0, it is then sufficient to show that

∂F2

∂R0
+ γ

∂F1

∂R0
+

∂F2

∂rK
1
+ γ

∂F1

∂rK
1
> 0.
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Since ∂F1
∂rK

1
> 0, we can show a stronger result

∂F2

∂R0
+ γ

∂F1

∂R0
+

∂F2

∂rK
1
> 0.

This expression can be written as

∂F2

∂R0
+ γ

∂F1

∂R0
+

∂F2

∂rK
1
=

d
dR0

ψ2
0 (R0)− γ

d
dR0

ψ1
0 (R0) + ψ2

1 (R0)

+

[
d

dR0
ψ2

1 (R0)− γ
d

dR0
ψ1

1 (R0)

]
rK

1

+

[
d

dR0
ψ2

3 (R0) + γ
d

dR0
ψ1

3 (R0)

] (
rK

1

) 1
1−α

+

[
d

dR0
ψ2

4 (R0) + γ
d

dR0
ψ1

4 (R0)

] (
rK

1

)1+ 1
1−α

+
α

1− α
ψ2

2

(
rK

1

) α
1−α−1

+
1

1− α
ψ2

3 (R0)
(

rK
1

) α
1−α

+

(
1 +

1
1− α

)
ψ2

4 (R0)
(

rK
1

) 1
1−α ,

in which the expressions ψ1
0, ψ1

1, ψ1
3, ψ1

4, ψ2
0, ψ2

1, ψ2
3, ψ2

4>0 can be found in equations (A.20b)
and (A.20d).

Since d
dR0

ψ1
3 (R0), d

dR0
ψ1

4 (R0), d
dR0

ψ2
3 (R0), d

dR0
ψ2

4 (R0) > 0, it is then sufficient to show
that

d
dR0

ψ2
0 (R0)− γ

d
dR0

ψ1
0 (R0) + ψ2

1 (R0) +

[
d

dR0
ψ2

1 (R0)− γ
d

dR0
ψ1

1 (R0)

]
rK

1 > 0.

Inserting the expressions of ψ1
0 (R0), ψ1

1 (R0), ψ2
0 (R0), ψ2

1 (R0) into the expression above,
and use the fact that 1− δ + rK

1 = R0 at ωCC
0 (k0), it remains to show that

[
γ

β
(1− δ)m +

γ

β

(
X∗

α
− (1−m)

)
rK

1

] 1−α
X∗ A1

(
X∗
α

) 1
α−1

R2
0

> 0,

which holds naturally. Thus rK
1 − R0 is decreasing in ω0 at ωCC

0 (k0) when the ZLB is not
binding.

Lemma 12. When ω0 ≤ ωCC
0 (k0) and k0 < ¯̄k0 (ω0), there is a unique equilibrium with binding

collateral constraint. When ω0 > ωCC
0 (k0) or k0 ≥ ¯̄k0 (ω0), there is no such an equilibrium.

Proof. In Lemma 10, we show ¯̄k0 (ω0) is the inverse function of ω0 (k0). And the region
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with k0 < ¯̄k0 (ω0) is equivalent to the region with ω0 > min
{

0, ω0 (k0)
}

. When ω0 ≤
min

{
0, ω0 (k0)

}
, Lemma 10 shows that there is no equilibrium with binding collateral

constraint and binding ZLB. Lemma 10 also shows that ω0 (k0) < ω̂0 (k0) in Lemma 9. By
Lemma 9, there is also no equilibrium with binding collateral constraint and non-binding
ZLB when ω0 ≤ ω0 (k0).

When ω0 ∈
[
min

{
0, ω0 (k0)

}
, ωCC

0 (k0)
]
, by Lemmas 9 and 10, we impose a bind-

ing collateral constraint and establish the existence of an equilibrium in this region. It
remains to verify that µ0 ≥ 0. In other words, borrowing up to the limit is indeed the
entrepreneurs’ optimal choice. Equivalently we need to show RK

1 ≥ R0. We prove this by
contradiction.

Assume that in an equilibrium at some k0 = ka
0 and ω0 = ωa

0 ∈
[
min

{
0, ω0 (k0)

}
, ωCC

0 (k0)
]
,

the implied µ0 < 0. Since the equilibrium value of µ0 is continuous in ω0, as ω0 decreases,
the value of µ0 also moves continuously. Now if ka

0 ≥ k0 in (A.21h), we can decrease ω0

to ω0 (k0). Since the ZLB is binding at ω0 (k0), and rk
1 > δ at ω0 (k0), µ0 > 0 at ω0 (k0).

Then as ω0 drops, the value of µ0 switches from negative to positive, and it must be zero
at a certain value of ω0 ∈

[
ω0 (k0) , ωa

0

]
. Call this value ωb

0. Then at both
(
ka

0, ωb
0
)

and(
ka

0, ωCC
0 (ka

0)
)
, the leverage ratio is exactly m, and Rk

1 = R0. This violates the fact that
ωCC

0 (k0) is uniquely determined as in Lemma 13.
If ka

0 < k0 in (A.21h), as ω0 drops from ωa
0, it will hit ω0 = 0. If the ZLB is binding at

{ka
0, ω0 = 0}, then by equation (A.21e), RK

1 = 1
m > 1 = R0. If the ZLB is not binding at

{ka
0, ω0 = 0}, then by equation (A.20c), RK

1 = R0
m > R0. In either case, we have µ0 > 0

at {ka
0, ω0 = 0}, and then we can find a value ωb

0 > 0 at which µ0 = 0 and obtain a
contradiction.

Next we show that when ω0 > ωCC
0 (k0), the implied excess return RK

1 − R0 < 0, and
thus borrowing up to the limit is not the optimal choice for the entrepreneurs. We also
show this by contradiction. Suppose that at some k0 = kc

0 and ω0 = ωc
0 > ωCC

0 (k0),
the implied excess return RK

1 − R0 > 0. Since the excess return moves continuously with
ω0, RK

1 − R0 = 0 at ωCC
0 (k0), and its derivative is negative at ωCC

0 (k0) by Lemma 11,
then there must exist a ωd

0 ∈
(
ωCC

0 (k0) , ωc
0
)

such that RK
1 − R0 = 0 at ω0 = ωd

0 , and the
leverage ratio is m. But again this violates the fact ωCC

0 (k0) is uniquely determined as
in Lemma 13. Therefore, there is no equilibrium with binding collateral constraint given
ω0 > ωCC

0 (k0).
Lastly, when k0 ≥ ¯̄k0 (ω0), it must be that ω0 ≤ ω0 (k0). By Lemma 10, an equilibrium

with binding collateral constraint does not exist.
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D.3 Equilibrium Properties with Non-binding Collateral Constraint

Now we proceed to Step 3 in the proof of Proposition 2.

Lemma 13. Given m < 1, α < X∗
1+X∗ and ω0 is smaller than

min
{

X∗ + X∗γ
X∗ + αγ

, (1 + γ)
1− α

α
X∗, H(γ, β, δ, m, α, X∗)

}
,

when ω0 ≥ ωCC
0 (k0) and k0 < ¯̄k0 (ω0) there exists a unique equilibrium with non-binding

collateral constraint; when ω0 < ωCC
0 (k0) or k0 ≥ ¯̄k0 (ω0), such an equilibrium does not exist.

Proof. Notice that an equilibrium with non-binding collateral constraint is equivalent
to an equilibrium with natural borrowing limit defined in Proposition 1. Therefore, by
Lemma 7, the leverage ratio− b0

Rk
1k1

is decreasing in ω0. Recall that, the value of ωCC
0 (k0) is

determined by setting− b0
Rk

1k1
= m. When ω0 ≥ ωCC

0 (k0), the leverage ratio is smaller than
m, and the collateral constraint is not binding. Then an equilibrium exists and is unique
given k0 < k̄0 (ω0) by Proposition 1. In this region, ¯̄k0 (ω0) = k̄0 (ω0) in equation (A.16)
by construction.

When ω0 < ωCC
0 (k0) and k0 ≤ k̄0 (ω0), assuming a non-binding collateral constraint,

the implied leverage ratio would be larger than m by Lemma 7, which violates the col-
lateral constraint. Thus there is no equilibrium with non-binding collateral constraint in
that region.

When k0 ≥ ¯̄k0(ω0), there are two cases, ¯̄k0(ω0) ≤ k0 < k̄0(ω0) and k0 ≥ k̄0(ω0). By
Proposition 1, an equilibrium with non-binding collateral constraint does not exist in the
latter case.

In the former case, we know both k̄0(ω0) and ¯̄k0(ω0) are increasing and ¯̄k0(ω0) <

k̄0(ω0) when ω0 < Λ0 by Lemma 6 and by the construction of ¯̄k0(ω0) in Subsection D.1.2.
By Lemma 10, ¯̄k0(.) is the inverse of ω0 (.). We now show that ω0 (k0) < ωCC

0 (k0) for all
k0 > 0 where both functions are well-defined.

Indeed, if k0 ≥ k̂CC
0 defined in (A.18d), the ZLB is binding at ωCC

0 (k0) by Lemma 8.
Lemma 10 shows that X0 is decreasing in ω0 when both the collateral constraint and ZLB
are binding. Since X0 is finite and determined by (A.18e) at ω0 = ωCC

0 (k0) and X0 = +∞
at ω0 = ω0 (k0) defined in Lemma 10, it must be the case that ω0 (k0) < ωCC

0 (k0).
If k0 < k̂CC

0 , the ZLB is not binding at ωCC
0 (k0) by Lemma 8. Since Lemma 9 shows that

R0 is increasing in ω0 with binding collateral constraint and non-binding ZLB, ωCC
0 (k0) >

ω̂0 (k0), the cutoff value for a binding ZLB given by Lemma 9. Lemma 10 further shows
ω0 (k0) < ω̂0 (k0). Hence, ω0 (k0) < ωCC

0 (k0).
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We have established that ω0 (k0) < ωCC
0 (k0). Since ω0 (k0) is the inverse function of

¯̄k0(ω0), and when ¯̄k0(ω0) ≤ k0 < k̄0(ω0), it must be the case that ω0 ≤ ω0 (k0), which
implies ω0 < ωCC

0 (k0). So for these k0, an equilibrium with natural borrowing limit
exists, but by Lemma 7, the implied leverage ratio would be larger than m which violates
the collateral constraint.

Combining the results from Lemmas 12, 13 and our definition for ¯̄k0 (ω0) in Subsection
D.1.2, we complete the proof of Proposition 2.

D.4 Equilibrium Non-Existence

With tighter borrowing limit, Proposition 2 shows that there does not exist an equilibrium
when capital k0 is sufficiently high, similar to the natural borrowing limit case analyzed
in Subsection 2.3. In Figure A.7, we plot the threshold for equilibrium existence, ¯̄k0, as a
function of ω0 under different borrowing limits m. The collateral constraint binds when
ω0 is low, and we see ¯̄k0 is lower when m is lower. The reason for equilibrium non-
existence when capital goes beyond ¯̄k0 is insufficient demand. When the collateral con-
straint binds with smaller m, the entrepreneurs’ consumption and investment are more
constrained. Thus from the market clear condition (3a), the threshold for equilibrium
nonexistence, ¯̄k0, is smaller. For large ω0, the collateral constraint does not bind, so ¯̄k0

equals k̄0 independent of the value of m. In Appendix D.1.2, we also show that ¯̄k0 is
increasing in A1 and hence, equilibrium is less likely to exist when A1 is low.
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Figure A.7: Upper Bound of Capital
Note: This figure is generated by setting β = 0.99, γ = 0.98, α = 0.35, δ = 0.025, A0 = 1, A1 = 1.005
and ε = 21.

A-35



E Investment Friction and Endogenous Asset Price

In this appendix, we provide the formal statements of the equilibrium characterizations
for 2-period economy with irreversible investment under the natural borrowing limit and
tighter borrowing limits similar to Propositions 1 and 2. The next two appendices provide
the proofs for these results.

E.1 Natural Borrowing Limit

Similar to Subsection 2.3, we focus on the case with natural borrowing limit first. The
collateral constraint (1) does not bind in equilibrium, and µ0 = 0.

Equilibrium Characterizations The Proposition 3 below shows that an equilibrium al-
ways exists, is unique, and has intuitive properties. The state space {k0, ω0} can be par-
titioned into different regions with either binding or non binding ZLB and binding or
non-binding investment irreversibility constraint. Figure A.8 shows what the different
regions look like. The investment irreversibility constraint binds when k0 is sufficiently
high and the ZLB constraint binds when ω0 is sufficiently low. Interestingly, unlike in the
previous model without investment friction, the ZLB does not necessarily bind when k0

is high. Indeed, the proposition below shows that for ω0 sufficiently high, the ZLB does
not bind for any k0 > 0.

Proposition 3. With the investment irreversibility constraint, m = 1, and ω0 smaller than

min

 1
α

X∗ +
1
γ

,
1(

1
γ − 1

β

)
 1 + γ

γ

1− α

α
X∗,

an equilibrium always exists and is unique.33 Besides, there is a threshold of k0, k∗0 (ω0) such
that when k0 < k∗0 (ω0), the irreversibility constraint does not bind and q0 = 1; and when
k0 ≥ k∗0 (ω0), the irreversibility constraint binds and q0 is decreasing in k0.

In addition, denote ω∗0 as

ω∗0 =

X∗
α

[(
A0
A1

β
) 1−α

α − 1
β (1− δ)

]
γ

1+γ

(
1
γ − 1

β

) [
(1− δ) +

(
A0
A1

β
) 1−α

α

] . (A.22)

33With our calibrated parameters, the value of the upper bound of ω0 is 2.4, which is much larger than
the typical values of ω0.
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Figure A.8: Regions for Irreversibility and ZLB When m = 1

Note: This figure is generated by setting β = 0.99, γ = 0.98, α = 0.35, δ = 0.025, A0 = 1, A1 = 0.95, and ε = 21.

1. If ω0 > ω∗0 : the ZLB does not bind ∀k0 > 0. R0 is decreasing in k0 when k0 < k∗0 (ω0),
and is independent of k0 when k0 ≥ k∗0 (ω0).

2. If ω0 ≤ ω∗0 : there exists another threshold k̂0 (ω0) which is smaller than k∗0 (ω0), such
that:

(i) when k0 < k̂0 (ω0), the ZLB does not bind and R0 is decreasing in k0;
(ii) when k0 ∈

[
k̂0 (ω0) , k∗0 (ω0)

]
, the ZLB binds, and X0 is increasing in k0;

(iii) and when k0 ≥ k∗0 (ω0), ZLB binds and X0 is independent of k0.

Proof. The proof is given in Appendix F. We also present the AS-AD representation of the equilibrium in
Appendix F.5.

One distinguishing feature of this model is that an equilibrium exists for any k0 > 0.
As discussed in Proposition 1, Part 3, in equilibrium, the rate of return on each unit of
capital invested at time 0 is bounded from below by the ZLB and by (6e), which puts an
upper bound on aggregate capital supply at time 1 if there is no capital adjustment cost.
However, with investment irreversibility, k1 can be large and RK

1 in (A.23b) can be very
low. The entrepreneurs are still happy to hold units of capital at time 0 because the price

A-37



q0 endogenous drops yielding high return to holding capital. More formally, we show
that as k0 goes to infinity, either R0 converges to 1 or a constant strictly greater than 1, and

q0 = φ (ω0) kα−1
0

for some explicit function φ. Therefore limk0→∞ q0 = 0, warranting that the return to each
unit of capital is exactly R0, as implied by (11).

E.2 Tighter Borrowing Limit

As in Subsection 2.4, the state-space {k0, ω0} can be partitioned into regions depending
on whether each of the three constraints - the collateral constraint, ZLB, and investment
irreversibility constraint - binds. Figure A.9 shows the different regions for a particular set
of parameters. The ZLB and the investment irreversibility constraint tend to bind when
k0 is high and when ω0 is low, and the collateral constraint tends to bind when k0 is low
and when ω0 is low.

0.29 0.3 0.31
0.115

0.135

noZLB,noIrre,noCC

noZLB,noIrre,CC

ZLB,noIrre,noCC

ZLB,Irre,noCC
ZLB,Irre,CC

ZLB,noIrre,CC

Figure A.9: Regions for Irreversibility, ZLB and Collateral Constraint

Note: This figure is generated by setting β = 0.99, γ = 0.98, α = 0.35, δ = 0.025, A0 = 1, A1 = 0.99, m = 0.7 and ε = 21.

The following proposition provides a complete characterization of equilibrium at time
0.
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Proposition 4. With m < 1 and the investment irreversibility constraint, given {k0, ω0}, an
equilibrium always exists and is unique. In addition, there is a threshold value for k0, k∗∗0 (ω0),
such that

(1) if k0 ≥ k∗∗0 (ω0), the investment irreversibility constraint binds. As k0 increases, q0

decreases, but R0, X0 and the multiplier for the collateral constraint, µ0 remain constant. In this
region, the collateral constraint is binding if and only if ω0 ≤ ωCC

0,Irr, a constant whose value
depends on the parameters.

(2) if k0 < k∗∗0 (ω0), the investment irreversibility constraint does not bind. There is a
cutoff value of wealth, ωCC

0 (k0) such that the collateral constraint is binding if and only if
ω0 ≤ ωCC

0 (k0).

Proof. The proof is given in Appendix G. We also present the AS-AD representation of the equilibrium in
Appendix G.6.

Similar to the case with natural borrowing limit, we can also show that as k0 goes to
infinity, either R0 converges to 1 or a constant strictly greater than 1, and

q0 = φCC(ω0)kα−1
0

for some explicit function φCC. So limk0→∞ q0 = 0, inducing the entrepreneurs to hold on
to their old units of capital because the return to each unit of capital is higher than R0, as
implied by (11).

Policy Functions In the six left panels of Figure A.10, we plot several variables as func-
tions of k0 fixing ω0 for m = 1 and m = 0.7. The shapes of the policy functions look
similar under these two values of m. The interest rate R0 is decreasing in k0, and when
the ZLB binds, markup X0 increases from its steady state value X∗. As k0 increases above
some threshold the irreversibility constraint binds and X0, µ0 become constant. Capital
price is decreasing in k0. The bottom right panel shows that when m decreases from 1 to
0.7, output decreases (weakly), but the magnitude of the decrease is only significant when
both collateral constraint and ZLB bind (for k0 greater than 0.09). Similarly, the six right
panels of Figure A.10 show several variables as functions of ω0 fixing k0 for m = 1 and
m = 0.7. All variables, except for the multiplier on the collateral constraint, are increasing
in ω0. In addition, output decreases significantly when m decreases from 1 to 0.7 if both
collateral constraint and ZLB bind (for ω0 less than 0.2).
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Figure A.10: Policy Functions with Irreversibility Constraint, m = 1

Note: This figure is generated by setting β = 0.99, γ = 0.98, α = 0.35, δ = 0.025, A0 = 1, A1 = 0.99, and ε = 21. In the left panel, ω0 = 0.1.
In the right panel, k0 = 0.1.

F Proof of Proposition 3

To prove Proposition 3, we proceed as follows:

1. Describe the threshold for a binding irreversibility constraint, k∗0 (ω0).

2. Show that an equilibrium with binding irreversibility constraint exists, and is unique,
if and only if k0 ≥ k∗0 (ω0).

3. Show that an equilibrium with non-binding irreversibility constraint exists, and is
unique, if and only if k0 < k∗0 (ω0).

Combining the results from the previous three steps, we can prove Proposition 3.

F.1 Equilibrium Properties

We first describe some equilibrium results which are useful for the following proof of
Proposition 3.

Last Period In the last period, period 1, there is no return of investment, the irreversibil-
ity constraint is binding, i.e., k2 = (1− δ) k1, and the capital price q1 = 0. We still set
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the markup X1 = X∗. The market clearing condition (3a) implies c1 + c′1 = Y1. Given
{k1, ω1}, we can solve for the equilibrium in closed-form. In particular,

L1 =
1−α
X∗

1− α
X∗ω1

, (A.23a)

RK
1 =

α

X∗

(
1−α
X∗ A1

1− α
X∗ω1

)1−α

kα−1
1 . (A.23b)

First Period In period 0, the gross return for holding capital k1 is RK
1

q0
. With natural bor-

rowing limit, by the no-arbitrage condition,

R0 =
RK

1
q0

. (A.24a)

Given k1, R0 and q0, in the last period, we can derive the follow expressions:

Y1 =
X∗

α
q0R0k1, (A.24b)

c′1 =
1− α

X∗
A1

(
X∗

α
q0R0

) α
α−1

,

c1 =
X∗

α
q0R0k1 −

1− α

X∗
A1

(
X∗

α
q0R0

) α
α−1

.

Using the optimal consumption choices c0 = c1
γR0

and c′0 =
c′1

γR0
, we obtain the expressions

for consumption at t = 0:

c0 =
1
γ

X∗

α
q0k1 −

1
γR0

1− α

X∗
A1

(
X∗

α
q0R0

) α
α−1

, (A.24c)

c′0 =
1

βR0

1− α

X∗
A1

(
X∗

α
q0R0

) α
α−1

. (A.24d)

The return to capital at t = 0 is

RK
0 = (1− δ) q0 +

(
βR0

A0

A1

) 1−α
α
(

X0

X∗

)− 1
α

q0R0, (A.24e)
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and the aggregate output is

Y0 =
1
γ

X∗

α
q0k1 −

(
1
γ
− 1

β

)
1

R0

1− α

X∗
A1

(
X∗

α
q0R0

) α
α−1

. (A.24f)

By the market clearing condition of used capital, (10d), and the budget constraint of
the entrepreneurs (10c) in period 0 and 1, we have

c0 +
c1

R0
= ω0RK

0 k0.

Then the entrepreneurs’ optimal consumption at t = 0 is

c0 =
1

1 + γ
ω0RK

0 k0.

We can use the following two equations to represent the equilibrium conditions with
two unknowns: {k1, R0}, {q0, R0}, {k1, X0} or {q0, X0} depending on whether the ZLB or
the irreversibility constraint is binding.34 The first equation is derived from (A.24c) for c0:

γ

1 + γ
ω0RK

0 k0 =
X∗

α
q0k1 −

1
R0

1− α

X∗
A1

(
X∗

α
q0R0

) α
α−1

, (A.24g)

in which RK
0 is from equation(A.24e).

The second equation is derived by the feasibility condition at t = 0 and equations
(A.24c), (A.24d) and (A.24f):

1
γ

X∗

α
q0k1 −

(
1
γ
− 1

β

)
1

R0

1− α

X∗
A1

(
X∗

α
q0R0

) α
α−1

+ k1 (A.24h)

= (1− δ) k0 +
X∗

α

(
1

βR0

A1

A0

X0

X∗

) α−1
α

q0R0k0.

34Or we can represent the system in a more rigorous way with 4 unknowns: {k1, q0, R0, X0}with another
two complementary conditions:

(1− q0) [k1 − (1− δ) k0] = 0,
(R0 − 1) (X0 − X∗) = 0.
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F.2 Threshold for Binding Irreversibility Constraint

Assume ω0 <
1−α

α X∗(
1
γ− 1

β

)
γ

1+γ

. Here we construct the threshold of k0 for a binding irreversibil-

ity constraint, k∗0 (ω0). Intuitively, since k∗0 (ω0) is the cutoff of binding irreversibility, we
should have both q0 = 1 and k1 = (1− δ) k0 when k0 = k∗0 (ω0). Its expression also de-
pends on whether the ZLB is binding at k0 = k∗0 (ω0). We give the expression of k∗0 (ω0)

here and verify it later.
In particular, we will show that, when ω0 > ω∗0 in equation (A.22), the ZLB is not

binding at k0 = k∗0 (ω0), and its expression is

k∗0 (ω0) =

1−α
X∗ A1

(
X∗
α

) 1
α−1 A0

A1
β

[
(1−δ)

[
1
β

X∗
α + γ

1+γ

(
1
γ− 1

β

)
ω0

]
X∗
α −

γ
1+γ

(
1
γ− 1

β

)
ω0

] α
α−1

(1− δ)

[
X∗
α −ω0

X∗
α −

γ
1+γ

(
1
γ− 1

β

)
ω0

] , (A.25)

which is increasing in ω0.
When ω0 ≤ ω∗0 , the ZLB is binding at k0 = k∗0 (ω0), and its expression is

k∗0 (ω0) =

1−α
X∗ A1

(
X∗
α

) α
α−1

X∗
α (1− δ)− γ

1+γ ω0

[
(1− δ) +

(
β A0

A1

) 1−α
α
(

X∗0 (ω0)
X∗

)− 1
α

] , (A.26)

in which X∗0 (ω0) is given implicitly by the following equation:

(1− δ)

(
1
γ
− 1

β

)
γ

1 + γ
ω0 +

1
β
(1− δ)

X∗

α
(A.27)

=

(
A0

A1
β

) 1−α
α
(

X∗0 (ω0)

α
−
(

1
γ
− 1

β

)
γ

1 + γ
ω0

) [
X∗

X∗0 (ω0)

] 1
α

.

When ω0 <
1−α

α X∗(
1
γ− 1

β

)
γ

1+γ

, we can easily check that X∗0 (ω0) is decreasing in ω0, and then

k∗0 (ω0) is increasing in ω0 when ω0 ≤ ω∗0 . We can also show that k∗0 (ω0) is continuous at
ω0 = ω∗0 . See the red dashed line in Figure A.8 as one example of k∗0 (ω0).
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F.3 Region with binding irreversibility Constraint

Lemma 14. With natural borrowing limit and ω0 <
1−α

α X∗(
1
γ− 1

β

)
γ

1+γ

, an equilibrium with binding

irreversibility constraint exists and is unique if and only if k0 ≥ k∗0 (ω0) given in Subsection F.2.
When k0 ≥ k∗0 (ω0), q0 is decreasing in k0, and

1. if ω0 ≤ ω∗0 in (A.22), ZLB is binding, and X0 = X∗0 (ω0) in equation (A.27) which is
independent of k0;

2. if ω0 > ω∗0 , ZLB is not binding, and R0 = R∗0 (ω0) in equation (A.28b) which is also
independent of k0.

Proof. When the irreversibility constraint is binding, k1 = (1− δ) k0. Inserting it into
equations (A.24g) and (A.24h) and after some calculation, we have the following equation
with R0 or X0 being the only unknown:

1
β
(1− δ)

X∗

α
+

(
1
γ
− 1

β

)
(1− δ)

γ

1 + γ
ω0 (A.28a)

=

[
X0

α
−
(

1
γ
− 1

β

)
γ

1 + γ
ω0

] (
βR0

A0

A1

) 1−α
α
(

X0

X∗

)− 1
α

R0.

Notice that the solution here does not depend on k0.
Non-binding ZLB
If the ZLB is not binding, we set X0 = X∗ in (A.28a), in which R0 is the only unknown.

The solution is R0 = R∗0 (ω0) as below, which is independent of k0.

R∗0 (ω0) =

(
A0

A1
β

)α−1
 (1− δ)

[
1
β

X∗
α + γ

1+γ

(
1
γ − 1

β

)
ω0

]
X∗
α −

γ
1+γ

(
1
γ − 1

β

)
ω0

α

. (A.28b)

When ω0 <
X∗
α(

1
γ− 1

β

)
γ

1+γ

, R∗0 (ω0) is increasing in ω0, and R∗0 (ω0) ≥ 1 if and only if ω0 ≥ ω∗0

in (A.22).
The capital price q0 is

q0 =
A1−α

1
X∗
α R∗0 (ω0)

 1
γ (1− δ)−

(
1
β

A1
A0

) α−1
α
[R∗0 (ω0)]

1
α(

1
γ − 1

β

)
1−α
X∗


α−1

kα−1
0 ,

which is decreasing in k0. We find in the equation above, q0 ≤ 1 if and only if k0 ≥
k∗0 (ω0) in equation (A.25). As a result, there exists a unique equilibrium with binding
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irreversibility constraint and non-binding ZLB if and only if ω0 > ω∗0 and k0 ≥ k∗0 (ω0).
Binding ZLB
Now consider the case when both the ZLB and the irreversibility constraint are bind-

ing. Then we set R0 = 1 in (A.28a), and X0 becomes the only unknown. After some
calculation, equation (A.28a) becomes (A.27), in which the solution X0 = X∗0 (ω0) is inde-

pendent of k0. When ω0 <
1−α

α X∗(
1
γ− 1

β

)
γ

1+γ

, X∗0 (ω0) is decreasing in ω0, and X∗0 (ω0) ≥ X∗ if

and only if ω0 ≤ ω∗0 .
The capital price q0 is

q0 =
A1−α

1
X∗
α


(1− δ)− γ

1+γ ω0
α

X∗

(
(1− δ) +

(
β A0

A1

) 1−α
α
(

X∗0 (ω0)
X∗

)− 1
α

)
1−α
X∗


α−1

kα−1
0 ,

which is decreasing in k0. We find in the equation above, q0 ≤ 1 if and only if k0 ≥
k∗0 (ω0) in equation (A.26). As a result, there exists a unique equilibrium with binding
irreversibility constraint and binding ZLB if and only if ω0 ≤ ω∗0 and k0 ≥ k∗0 (ω0).

To sum up, when k0 ≥ k∗0 (ω0), there exists a unique equilibrium with binding irre-
versibility constraint. Otherwise, there does not exist such an equilibrium.

F.4 Region with Non-binding Irreversibility Constraint

F.4.1 Region with Non-binding Irreversibility and Binding ZLB

Lemma 15. With natural borrowing limit and ω0 smaller than 1+γ
γ

1−α
α X∗min

{
X∗
α

1+ 1
γ

X∗
α

, 1(
1
γ− 1

β

)
}

,

an equilibrium with non-binding irreversibility and binding ZLB exists and is unique if and only
if ω0 ≤ ω∗0 , and k̂0 (ω0) ≤ k0 < k∗0 (ω0).35 In addition, in this region, X0 is increasing in k0

and is decreasing in ω0. k1
k0

is decreasing in k0.

Proof. When the ZLB is binding and the irreversibility constraint is not binding, using
equations (A.24g) and (A.24h) and after some calculation, we have the following equation

35With our calibrated parameters, the value of this upper bound of ω0 is 2.91. ω∗0 is given in (A.22),
k∗0 (ω0) is in (A.26) and k̂0 (ω0) is in (A.29b).
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with X0 being the only unknown:

(1− δ)

(
1− 1 + α

X∗γ

1 + γ
ω0

)
+

(
X0

α
− 1 + α

X∗γ

1 + γ
ω0

)(
A0

A1
β

) 1−α
α
(

X∗

X0

) 1
α

(A.29a)

=

(
α

X∗
+

1
β

)
1− α

X∗
A1

(
X∗

α

) α
α−1 1

k0
.

If ω0 < 1−α
α X∗ 1+γ

1+ α
X∗ γ

, by the implicit function theorem, X0 is decreasing in ω0 and increas-

ing in k0. Given ω0, X0 = X∗ at k0 = k̂0 (ω0) given below

k̂0 (ω0) =

(
α

X∗ +
1
β

)
1−α
X∗ A1

(
X∗
α

) α
α−1

1− δ + X∗
α

(
β A0

A1

) 1−α
α −

(
α

X∗ +
1
γ

)
γ

1+γ ω0

[
(1− δ) +

(
β A0

A1

) 1−α
α

] . (A.29b)

Thus there is no equilibrium with binding ZLB and non-binding irreversibility constraint
when k0 < k̂0 (ω0).

The ratio k1
k0

can be expressed as

k1

k0
=

1− α

X∗
A1

(
X∗

α

) 1
α−1 1

k0
+

α

X∗
γ

1 + γ
ω0

[
1− δ +

(
A0

A1
β

) 1−α
α
(

X∗

X0

) 1
α

]
, (A.29c)

which is decreasing in k0. In particular, k1
k0

= 1− δ when k0 = k∗0 (ω0) in (A.29b). Thus
there is no equilibrium with binding ZLB and non-binding irreversibility constraint when
k0 ≥ k∗0 (ω0).

After some calculation, we find k̂0 (ω0) ≤ k∗0 (ω0) if and only if ω0 ≤ ω∗0 . When ω0 >

ω∗0 , the set k̂0 (ω0) ≤ k0 < k∗0 (ω0) is empty. When ω0 ≤ ω∗0 and k̂0 (ω0) ≤ k0 < k∗0 (ω0),
since X0 is increasing in k0, X0 ∈ [X∗, X∗0 (ω0)), in which X∗0 (ω0) is given in equation
(A.27). Thus we know an equilibrium with non-binding irreversibility and binding ZLB
exists and is unique if and only if ω0 ≤ ω∗0 and k̂0 (ω0) ≤ k0 < k∗0 (ω0).

F.4.2 Region with Non-binding Irreversibility and Non-binding ZLB

Lemma 16. With natural borrowing limit and ω0 <
1+γ

γ
X∗
α

1+ 1
γ

X∗
α

X∗
α , an equilibrium with non-binding

irreversibility and non-binding ZLB exists if and only if {k0, ω0} lies in one of the following two
regions: {ω0 > ω∗0 , k0 < k∗0 (ω0)} or

{
ω0 ≤ ω∗0 , k0 < k̂0 (ω0)

}
.36 In addition, in both regions,

R0 is decreasing in k0 and increasing in ω0. The ratio k1
k0

is decreasing in k0.
36ω∗0 is given in (A.22), k∗0 (ω0) is in (A.25) and k̂0 (ω0) is in (A.29b).
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Proof. When the ZLB is not binding, settingX0 = X∗in (A.24g) and (A.24h) and after some
calculation, we get the following equation with R0 as the only unknown:

[
1
γ
−Π0

(
1
γ
− 1

β

)]
1− α

X∗
A1

(
X∗

α

) α
α−1

R
1

α−1
0

=

[
(1− δ)

(
Π0 −

1
1 + γ

ω0

)
+

(
X∗

α
Π0 −

1
1 + γ

ω0

)(
A0

A1
β

) 1−α
α

R
1
α
0

]
k0, (A.30a)

in which Π0 is a constant:

Π0 =
1
γ

X∗
α

1 + 1
γ

X∗
α

. (A.30b)

Given ω0 <
1+γ

γ
X∗
α

1+ 1
γ

X∗
α

X∗
α , by the implicit function theorem, R0 is decreasing in k0 and increas-

ing in ω0. In particular, R0 = 1 when k0 = k̂0 (ω0) in (A.29b). This suggests that there is
no equilibrium with non-binding irreversibility and non-binding ZLB when k0 ≥ k̂0 (ω0).

In addition, the ratio k1
k0

is

k1

k0
=Π1 (1− δ)

(
1− γ

1 + γ

(
1
γ
− 1

β

)
ω0

)
+ Π1

(
X∗

α
− γ

1 + γ

(
1
γ
− 1

β

)
ω0

)(
β

A0

A1

) 1−α
α

R
1
α
0 ,

in which R0 is derived from the previous equation, and Π1 is a constant:

Π1 =
1(

1 + 1
γ

X∗
α

)(
1−

X∗
α

1+ 1
γ

X∗
α

(
1
γ − 1

β

)) . (A.30c)

We see that k1
k0

is decreasing in k0. In particular, k1
k0

= 1 − δ when k0 = k∗0 (ω0) in
(A.25). This suggests that there is no equilibrium with non-binding irreversibility and
non-binding ZLB when k0 ≥ k∗0 (ω0).

To sum up, for an equilibrium with non-binding irreversibility and non-binding ZLB
to exist, we should have k0 < k∗0 (ω0) and k0 < k̂0 (ω0). After some calculation, we find
k̂0 (ω0) ≤ k∗0 (ω0) if and only if ω0 ≤ ω∗0 . Thus the region for the existence of such an equi-
librium is {ω0 > ω∗0 , k0 < k∗0 (ω0)} and

{
ω0 ≤ ω∗0 , k0 < k̂0 (ω0)

}
. Given such an equilib-

rium exists, it is unique since we have a unique solution of R0 from equation (A.30a).

Combining the results of Lemmas 14, 15 and 16, we complete the proof for Proposition
3.
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F.5 AS-AD Representation

If irreversibility constraint (10a) is not binding, q0 = 1 from (10e) and locally, the equi-
librium and the AS-AD curves are the same as the ones without irreversible investment
(except for the last period equilibrium).37 So in this section we focus on the case in which
irreversibility constraint (10a) binds and, thus, q0 < 1.

When the irreversibility constraint binds, I0 = 0, and the aggregate demand is given
by summing up c0 in (A.24c) and c′0 in (A.24d) :

YAD
0 =

1
γ

X∗

α
q0 (1− δ) k0 −

(
1
γ
− 1

β

)
1

R0

1− α

X∗
A1

(
X∗

α
q0R0

) α
α−1

. (A.31)

Using the production function, we derive the AS curve as follows:

YAS
0 =

X∗

α

(
1

βR0

A1

A0

X0

X∗

) α−1
α

q0R0k0. (A.32)

By Proposition 3, when the investment irreversibility constraint binds, both R0 and X0

are independent of k0. As a result, we can plot the AS-AD curves as functions of q0. Notice
that both curves are increasing in q0. For the AS curve in (A.32), a higher q0 increases
RK

1 by the non-arbitrage condition in (A.24a) and depresses wage at t = 1, w1, which
reduces the household’s lifetime wealth. As a results, the household chooses to supply
more labor in period 0, which increases output. For the AD curve, on the one hand, a
higher q0 increases RK

1 and depresses the households’ consumption c′0; on the other hand,
the entrepreneurs enjoy higher c0 since the households’ higher labor supply increases the
entrepreneurs’ wealth. By (A.31), we see the net effect of q0 on the aggregate demand is
positive. We plot the AS-AD curves with binding ZLB and irreversibility constraint in
Figure A.11. We see that as k0 increases, Y0 increases and q0 decreases. As ω0 increases,
both Y0 and q0 increase.

G Proof of Proposition 4

To prove Proposition 4, we proceed in the following steps.

1. Describe the threshold of ω0 for a binding collateral constraint, ωCC
0 (k0), and the

37There is some difference though. In the benchmark model without investment irreversibility, RK
1 =

1− δ + α
X1

(
k1

A1L1

)α−1
; while with irreversibility, RK

1 = α
X1

(
k1

A1L1

)α−1
since capital price in the last period is

0. But this difference does not change the results qualitatively. We choose to omit this part here.
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Figure A.11: AS-AD Curves with Binding ZLB and Irreversibility Constraint

Note: This figure is generated by setting β = 0.99, γ = 0.9, α = 0.35, δ = 0.025, A0 = 1, A1 = 0.99 and ε = 21. We choose k0 = 5 and
ω0 = 0.1 in the baseline case.

threshold of k0 for a binding irreversibility constraint, k∗∗0 (ω0).

2. Show an equilibrium with binding irreversibility constraint exists and is unique if
and only if k0 ≥ k∗∗0 (ω0).

3. Show an equilibrium with non-binding irreversibility constraint and non-binding
collateral constraint exists and is unique if and only if k0 < k∗∗0 (ω0) and ω0 >

ωCC
0 (k0).

4. Show an equilibrium with non-binding irreversibility constraint and binding collat-
eral constraint exists and is unique if and only if k0 < k∗∗0 (ω0) and ω0 ≤ ωCC

0 (k0).

G.1 Equilibrium Properties with Binding Collateral Constraint

The equilibrium in the last period is determined in Appendix F.1. In addition, when
the collateral constraint binds at t = 0, by the definition of wealth share in equation (4),
ω1 = 1−m, and by equation (A.23a) the labor supply at t = 1 is constant and we denote
it as Lcc

1 :
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Lcc
1 =

1−α
X∗

1− (1−m) α
X∗

. (A.33a)

The consumptions at t = 1 are:

c1 = (1−m)
α

X∗
(A1Lcc

1 )1−α kα
1,

c′1 =
1− α

X∗
A1−α

1 (Lcc
1 )−α kα

1.

In the first period,

c0 =
1

1 + γ
ω0RK

0 k0,

c′0 =
c′1

βR0
,

Y0 =

(
β

A0

A1
R0

X∗

X0

) 1−α
α
(

k1

A1Lcc
1

)α−1

k0,

RK
0 = (1− δ) q0 +

α

X0

(
βR0

A0

A1

X∗

X0

) 1−α
α
(

k1

A1Lcc
1

)α−1

. (A.33b)

G.2 Thresholds for Binding Collateral Constraint and Irreversibility

G.2.1 Threshold for Binding Collateral Constraint

We first show that in the model with natural borrowing limit in Subsection E.1, the lever-
age ratio − b1

RK
1 k1

is decreasing in ω0. Now with m < 1, if the collateral constraint is not
binding, the equilibrium is the same as the natural borrowing limit model. Then there is
a cutoff value ωCC

0 (k0) such that − b1
RK

1 k1
= m at ω0 = ωCC

0 (k0).

Lemma 17. With m = 1, the irreversibility constraint and

ω0 ≤
1 + γ

γ

1− α

α
X∗min

 X∗
α

1 + 1
γ

X∗
α

,
1(

1
γ − 1

β

)
 ,

the leverage ratio − b0
RK

1 k1
is decreasing in ω0.

Proof. When m = 1, we have shown in Proposition 3 that the irreversibility constraint is
binding if and only if k0 ≥ k∗0 (ω0) given in Subsection F.2.
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Case I: Non-binding Irreversibility Constraint
When k0 < k∗0 (ω0), the irreversibility constraint is not binding, and R0 = Rk

1. From
the entrepreneurs’ budget and their optimal choice c0 = 1

1+γ Rk
0ω0k0, their leverage ratio

is

− b0

Rk
1k1

= 1− γ

1 + γ

Rk
0ω0k0

k1
.

Showing that the leverage ratio is decreasing in ω0 is equivalent to showing that Rk
0ω0k0
k1

is
increasing in ω0.

First, consider the case in which ZLB is not binding, i.e. R0 > 1. Substituting in the
expression for k1 using (A.24b), (A.24c) and (A.24d), we obtain

Rk
0ω0k0

k1
=

X∗
α R0

γR0
1+γ +

1−α
X∗ A1( X∗

α R0)
α

α−1

ω0Rk
0k0

.

Differentiating both sides of the equation above to ω0, the derivative d
dω0

[
Rk

0ω0k0
k1

]
has the

same sign as the derivative of the right-hand side, which, after some calculation, is

X∗

α

 dR0

dω0

1−α
X∗ A1

(
X∗
α R0

) α
α−1

ω0Rk
0k0

− d
dω0

 1−α
X∗ A1

(
X∗
α R0

) α
α−1

ω0Rk
0k0

 R0

 . (A.34)

By Lemma 16, R0 increases with ω0: dR0
dω0

> 0. In addition, by setting X0 = X∗ and q0 = 1
in (A.24e), RK

0 becomes

RK
0 = 1− δ +

(
βR0

A0

A1

) 1−α
α

R0,

which is strictly increasing in R0 and hence in ω0. Therefore,

d
dω0

 1−α
X∗ A1

(
X∗
α R0

) α
α−1

ω0Rk
0k0

 < 0,

then expression (A.34) is positive.
Now, consider the case when k0 < k∗0 (ω0) and ZLB is binding, i.e. R0 = 1 and X0 >
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X∗. Then we obtain

Rk
0ω0k0

k1
=

X∗
α

γ
1+γ +

1−α
X∗ A1( X∗

α )
α

α−1

ω0Rk
0k0

.

By setting R0 = 1 and q0 = 1 in (A.24e), RK
0 becomes

RK
0 = 1− δ +

(
β

A0

A1

) 1−α
α
(

X0

X∗

)− 1
α

.

Lemma 15 shows that when ω0 < 1−α
α X∗ 1+γ

1+ α
X∗ γ

, X0 is decreasing in ω0. Therefore, RK
0 is

increasing in ω0. Hence, Rk
0ω0k0
k1

is increasing in ω0 as desired.
Case II: Binding Irreversibility Constraint
When k0 > k∗0 (ω0), the irreversibility constraint is binding, q0 < 1, k1 = (1− δ) k0,

and R0 =
Rk

1
q0

. From the entrepreneurs’ budget and their optimal choice c0 = 1
1+γ Rk

0ω0k0,
their leverage ratio is

− b0

Rk
1k1

= 1− γ

1 + γ

Rk
0ω0k0

q0k1

= 1− γ

1 + γ

Rk
0ω0

q0 (1− δ)
.

Replacing Rk
0 by its expression in (A.24e), we have

− b0

Rk
1k1

= 1− γ

1 + γ
ω0

1 +

(
βR0

A0
A1

) 1−α
α
(

X0
X∗

)− 1
α R0

1− δ

 .

We show in Lemma 14 that given ω0 <
1−α

α X∗(
1
γ− 1

β

)
γ

1+γ

, when k0 > k∗0 (ω0) and ω0 ≥ ω∗0 in

equation (A.22), X0 = X∗ and R0 = R∗0 (ω0) in (A.28b) which is increasing in ω0. Thus
in the equation above, − b0

Rk
1k1

is decreasing in ω0. When k0 > k∗0 (ω0) and ω0 < ω∗0 , by

Lemma 14, R0 = 1 and X0 = X∗ (ω0) in equation (A.27) which is decreasing in ω0. Thus
in the equation above, − b0

Rk
1k1

is also decreasing in ω0.
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(a) Case I: RCC > 1
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(b) Case II: RCC < 1

Figure A.12: Regions for Irreversibility, ZLB and Collateral Constraint

Note: Both figures are generated by setting β = 0.99, γ = 0.6, α = 0.35, δ = 0.025, A0 = 1, m = 0.7 and ε = 21. In Case I, A1 = 1; in Case II,
A1 = 0.93.

A-53



Lemma 18. With m = 1, the irreversibility constraint and

ω0 ≤
1 + γ

γ

1− α

α
X∗min

 X∗
α

1 + 1
γ

X∗
α

,
1(

1
γ − 1

β

)
 ,

there is a threshold value of ω0, ωCC
0 (k0) such that the leverage ratio − b1

RK
1 k1

= m at ω0 =

ωCC
0 (k0). In particular, define a constant

RCC =

(
1
β

A1

A0

) 1−α
α

(1− δ)

(
1
γ
(1−m)

α

X∗
+

1
β

(
1− α

X∗
(1−m)

))
. (A.35a)

1. If RCC ≥ 1, ωCC
0 (k0) =

ωCC
0,noZLB (k0) , k0 ∈

[
0, kCC

0,Irr

]
;

ωCC
0,Irr, k0 ∈

(
kCC

0,Irr,+∞
)

.

2. If RCC < 1, ωCC
0 (k0) =


ωCC

0,noZLB (k0) , k0 ∈
[
0, k̃0

]
;

ωCC
0,ZLB (k0) , k0 ∈

[
k̃0, kCC

0,Irr

]
;

ωCC
0,Irr, k0 ∈

(
kCC

0,Irr,+∞
)

.

in which ωCC
0,noZLB (k0) is given in equation (A.35d), ωCC

0,ZLB (k0) is from (A.35g), k̃0 is a
constant in (A.35e),

ωCC
0,Irr =


(1−m) X∗

α
1+γ

γ

X∗
α

(
1+ 1

β

)
+(1−m)

(
1
γ− 1

β

) , if RCC ≥ 1;
1+γ

γ (1−m)(1−δ)

1−δ+ 1
β

A1
A0

[
1−δ

β +
(

1
γ− 1

β

)
(1−m)(1−δ) α

X∗
] 1

1−α
, if RCC < 1.

(A.35b)

and

kCC
0,Irr =


[
(1− δ)

(
1−m

γ + 1−α
αβLcc

1

)] α
α−1 αβA0Lcc

1
X∗(1−δ)

, if RCC ≥ 1;
1−α
X∗ A1( X∗

α )
α

α−1

( X∗
α −1+m)(1−δ)

, if RCC < 1.

and Lcc
1 is a constant from (A.33a). See the black dotted line in Figure A.12 for an example.

Proof. Proposition 3 shows that the irreversibility constraint is binding if and only if k0 ≥
k∗0 (ω0). We first consider the case with non-binding irreversibility constraint.

Case I: Non-binding irreversibility constraint at ωCC
0 (k0)

Case 1.1: Non-binding irreversibility constraint and non-binding ZLB at ωCC
0 (k0)
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Using the condition − b0
Rk

1k1
= m and (A.30a), we find the interest rate at ωCC

0 is

RCC
0 = (1− δ)α

(
A0

A1
β

)α−1
(

ωCC
0 −Π2

X∗
α Π2 −ωCC

0

)α

,

in which Π2 is constant:

Π2 =
Π0

1
1+γ +

X∗
α −1+m

1+γ
γ (1−m)

[
1
γ −Π0

(
1
γ − 1

β

)] , (A.35c)

and Π0 is a constant defined in (A.30b). We see that RCC
0 is increasing in ω0 when ω0 ∈(

Π2, X∗
α Π2

)
. Inserting the expression of RCC

0 into (A.30a), we can derive the expression
of k0 as below:

k0 =

[
1
γ
−Π0

(
1
γ
− 1

β

)] 1−α
X∗ A1

(
X∗
α

) α
α−1 (RCC

0
) 1

α−1
(

X∗
α Π2 −ωCC

0

)
(1− δ)

[(X∗
α − 1

)
Π0 −Π2

X∗
α −1
1+γ

]
ωCC

0

. (A.35d)

Notice that k0 is decreasing in ωCC
0 , and thus we denote its inverse function as ωCC

0,noZLB (k0),
which is decreasing. At k0 = 0, ωCC

0 = X∗
α Π2, and RCC

0 → +∞. As k0 increases, ωCC
0 and

RCC
0 decrease. In particular, when k0 reaches the cutoff value k̃0 as below:

k̃0 =

(
1
β +

1+ 1−m
γ

X∗
α −1+m

)
1−α
X∗ A1

(
X∗
α

) α
α−1

1− δ + X∗
α

(
β A0

A1

) 1−α
α

, (A.35e)

we have RCC
0

(
k̃0

)
= 1, and

ωCC
0

(
k̃0

)
= Π2

1 +

(
X∗
α − 1

)
1 + (1− δ)

(
β A0

A1

) α−1
α

 . (A.35f)

Thus when k0 > k̃0, our assumption that the irreversibility constraint and ZLB are both
non-binding at ωCC

0 (k0) does not hold.
Case 1.2: Non-binding irreversibility constraint and binding ZLB at ωCC

0 (k0)

Given k0, we have two equations,− b0
Rk

1k1
= m and (A.29a) with two unknowns:

{
X0, ωCC

0
}

.
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After some calculations, we can express both ωCC
0 and k0 as functions of X0 as below:

k0 = Π3

(
α

X∗+
1
β

)
1−α
X∗ A1

(
X∗
α

) α
α−1

1−δ+
X0
α

(
A0
A1

β
) 1−α

α
(

X∗
X0

) 1
α

,

ωCC
0 = Π2

1 +

(
X0
α −1

)(
X0
X∗
)− 1

α

(1−δ)
(

β
A0
A1

) α−1
α

+
(

X0
X∗
)− 1

α

 ,

(A.35g)

in which Π2 is defined in (A.29a), and Π3 is a constant:

Π3 =
1 +

(
X∗
α −1+m

)
1−m

[
1−Π0

(
1− γ

β

)]
( X∗

α −1+m)
1−m

[
1−Π0

(
1− γ

β

)] .

Notice that in (A.35d), k0 is increasing in X0. Thus by varying the value of X0 in the
range [X∗,+∞), we can trace out ωCC

0 (k0). In particular, when X0 = X∗, the values of
k0 and ωCC

0 are the same as in equations (A.35e) and (A.35f), suggesting that ωCC
0 (k0) is

continuous at k0 = k̃0.
Case II: Binding irreversibility constraint at ωCC

0 (k0)

We have proved in Lemma 17 that with binding irreversibility constraint, the leverage
ratio is independent of k0 and is decreasing in ω0. Thus we only need to find the cutoff
value of ω0, ωCC

0,Irr such that the leverage ratio − b0
Rk

1k1
= m at ω0 = ωCC

0,Irr. One question is,

whether the ZLB is binding at ω0 = ωCC
0,Irr.

Case 2.1 Binding irreversibility constraint and non-binding ZLB at ωCC
0 (k0)

We find that when RCC ≥ 1, the ZLB is not binding at ωCC
0,Irr. Using k1 = (1− δ) k0,

R0 =
Rk

1
q0

, the entrepreneurs’ optimal choice c0 = 1
1+γ Rk

0ω0k0, and Rk
0 in (A.24e), we have

γ

1 + γ
ωCC

0,Irr

1 +

(
β A0

A1

) 1−α
α
[

R∗0
(

ωCC
0,Irr

)] 1
α

1− δ

 = 1−m,

in which R∗0 (·) is given in (A.28b). Replacing R∗0
(

ωCC
0,Irr

)
by its expression, we have

ωCC
0,Irr =

(1−m) X∗
α

1+γ
γ

X∗
α

(
1 + 1

β

)
+ (1−m)

(
1
γ − 1

β

) . (A.35h)

We find that R∗0
(

ωCC
0,Irr

)
≥ 1 if and only if RCC ≥ 1.
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The value of kCC
0,Irr can be derived by k∗0

(
ωCC

0,Irr

)
from equation (A.25):

kCC
0,Irr =

[
(1− δ)

(
1−m

γ
+

1− α

αβLcc
1

)] α
α−1 αβA0Lcc

1
X∗ (1− δ)

. (A.35i)

When k0 ≥ kCC
0,Irr, and ω0 = ωCC

0,Irr, the leverage ratio equals to m.
Case 2.2 Binding irreversibility constraint and binding ZLB at ωCC

0 (k0)

If RCC < 1, then the ZLB is binding at ωCC
0,Irr. Using k1 = (1− δ) k0, R0 =

Rk
1

q0
, the

entrepreneurs’ optimal choice c0 = 1
1+γ Rk

0ω0k0, and Rk
0 in (A.24e), we have

γ

1 + γ
ωCC

0,Irr

1 +

(
β A0

A1

) 1−α
α

(
X∗0(ωCC

0,Irr)
X∗

)− 1
α

1− δ

 = 1−m,

in which X∗0 (·) is given in (A.29a). After some calculations, we can pin down the value
of X∗0

(
ωCC

0,Irr

)
as below:

X∗0
(

ωCC
0,Irr

)
= β

A0

A1
X∗
[

1− δ

β
+

(
1
γ
− 1

β

)
(1−m) (1− δ)

α

X∗

] α
α−1

.

We find that X∗0
(

ωCC
0,Irr

)
> X∗ if and only if RCC < 1. Inserting its expression into the

expression for leverage, we have

ωCC
0,Irr =

1+γ
γ (1−m) (1− δ)

1− δ + 1
β

A1
A0

[
1−δ

β +
(

1
γ − 1

β

)
(1−m) (1− δ) α

X∗

] 1
1−α

, (A.35j)

Again, the value of kCC
0,Irr can be derived by k∗0

(
ωCC

0,Irr

)
from equation (A.26):

kCC
0,Irr =

1−α
X∗ A1

(
X∗
α

) α
α−1(X∗

α − 1 + m
)
(1− δ)

. (A.35k)

When k0 ≥ kCC
0,Irr, and ω0 = ωCC

0,Irr, the leverage ratio equals to m.
Putting the Pieces Together
When RCC ≥ 1, kCC

0,Irr in equation (A.35k) is smaller than k̃0 in (A.35e), thus as k0

increases from 0, the curve ωCC
0 (k0) intersects k∗0 (ω0) in equation (A.25) before it reaches
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k̃0. Then the ZLB never binds at ωCC
0 (k0). When k0 ∈

[
0, kCC

0,Irr

]
, ωCC

0 (k0) = ωCC
0,noZLB (k0)

in equation (A.35d); when k0 > kCC
0,Irr in (A.35i), ωCC

0 (k0) = ωCC
0,Irr in equation (A.35h).

When RCC < 1, kCC
0,Irr in equation (A.35k) is larger than k̃0 in (A.35e). Thus when k0 ∈[

0, k̃0

]
, ωCC

0 (k0) = ωCC
0,noZLB (k0) in equation (A.35d); when k0 ∈

[
k̃0, kCC

0,Irr

]
, ωCC

0 (k0) =

ωCC
0,ZLB (k0) in equation (A.35g); and when k0 > kCC

0,Irr in (A.35k), ωCC
0 (k0) = ωCC

0,Irr in
equation (A.35j).

G.2.2 Threshold for Binding Irreversibility Constraint

Assume ω0 ≤ (1+γ) 1−α
α X∗

1+γ 1−α
α X∗

.38 Here we denote the threshold of k0 for a binding irreversibil-

ity constraint as k∗∗0 (ω0). As in the case for the natural borrowing limit in F.2, we give
the expression of k∗∗0 (ω0) first and verify it later. k∗∗0 (ω0) is solved such that when
k0 = k∗∗0 (ω0), q0 = 1, and k1 = (1− δ) k0. k∗∗0 (ω0) also depends on whether the ZLB
or the collateral constraint is binding or not at k0 = k∗∗0 (ω0). Eventually, we find its
expression depends on the value of RCC in equation (A.35a).

If RCC ≥ 1,

k∗∗0 (ω0) =



k∗0 (ω0) , ω0 > ωCC
0,Irr;

A1Lcc
1

1−δ

 (1−δ)m α
X∗+

γ
1+γ ω0

α
X∗
(

1
β

A1
A0

) α−1
α

[R∗∗0 (ω0)]
1
α

(1−δ)(1− γ
1+γ ω0)R∗∗0 (ω0)

 1
1−α

, ω0 ∈
[
ω∗∗0 , ωCC

0,Irr

]
;

A1Lcc
1

1−δ

 (1−δ)m α
X∗+

γ
1+γ ω0

α
X∗∗0 (ω0)

(
1
β

A1
A0

X∗∗0 (ω0)
X∗

) α−1
α

(1−δ)(1− γ
1+γ ω0)


1

1−α

. ω0 < ω∗∗0 .

If RCC < 1, then

k∗∗0 (ω0) =


k∗0 (ω0) , ω0 > ωCC

0,Irr;

A1Lcc
1

1−δ

 (1−δ)m α
X∗+

γ
1+γ ω0

α
X∗∗0 (ω0)

(
1
β

A1
A0

X∗∗0 (ω0)
X∗

) α−1
α

(1−δ)(1− γ
1+γ ω0)


1

1−α

, ω0 ∈
[
0, ωCC

0,Irr

]
.

See the blue solid line in Figure A.12 for an example. In the expressions above, Lcc
1 is

given in (A.33a). ωCC
0,Irr is given in equation (A.35b).

38With our calibrated parameters, this value is 1.32.
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R∗∗0 (ω0) is given as below:

R∗∗0 (ω0) =


1

1+γ ω0

1− γ
1+γ ω0

m α
X∗ +

1
β

(
1− (1−m) α

X∗
)

(
β

A0
A1

) 1−α
α

1−δ

(
1−

1
1+γ ω0

1− γ
1+γ ω0

α
X∗

)


α

. (A.36)

When ω0 ≤ 1+γ
γ+ α

X∗
, R∗∗0 (ω0) is increasing in ω0. R∗∗0 (ω0) ≥ 1 if and only if ω0 ≥ ω∗∗0 as

follows:

ω∗∗0 =
(1 + γ)

(
β A0

A1

) 1−α
α − (1 + γ) 1−δ

β

(
1− (1−m) α

X∗
)

(
α

X∗ + γ
) (

β A0
A1

) 1−α
α

+
(

m + γ
β (1−m)

)
(1− δ) α

X∗ −
γ
β (1− δ)

. (A.37)

X∗∗0 (ω0) is given implicitly by the equation below:

(
β A0

A1

) 1−α
α

1− δ

(
1−

1
1+γ ω0

1− γ
1+γ ω0

α

X∗∗0 (ω0)

)(
X∗∗0 (ω0)

X∗

) α−1
α

(A.38)

=
1

1+γ ω0

1− γ
1+γ ω0

m
α

X∗
+

1
β

(
1− (1−m)

α

X∗
)

.

If ω0 <
(1+γ) 1−α

α X∗

1+γ 1−α
α X∗

, X∗∗0 (ω0) is decreasing in ω0. At ω0 = ω∗∗0 , X∗∗0 (ω0) = X∗.

G.3 Region with Non-binding Collateral Constraint

Lemma 19. With m < 1, the irreversibility constraint and

ω0 ≤
1 + γ

γ

1− α

α
X∗min

 X∗
α

1 + 1
γ

X∗
α

,
1(

1
γ − 1

β

)
 ,

there exists a unique equilibrium with non-binding collateral constraint if and only if ω0 >

ωCC
0 (k0) given in Lemma 18.

Proof. Notice that an equilibrium with non-binding collateral constraint is equivalent to
an equilibrium with natural borrowing limit analyzed in Proposition 3. By Lemma 17,

given ω0 ≤ 1+γ
γ

1−α
α X∗min

{
X∗
α

1+ 1
γ

X∗
α

, 1(
1
γ− 1

β

)
}

, the leverage ratio − b1
RK

1 k1
is decreasing in
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ω0, and by Lemma 18, ωCC
0 (k0) is defined such that − b1

RK
1 k1

= m at ω0 = ωCC
0 (k0). When

ω0 > ωCC
0 (k0), the leverage ratio is smaller than m, and the collateral constraint is not

binding. Then an equilibrium with non-binding collateral constraint exists and is unique
by Proposition 3. When ω0 ≤ ωCC

0 (k0), assuming a non-binding collateral constraint, the
implied leverage ratio would be larger than m17, which violates the collateral constraint.
Thus there is no equilibrium with non-binding collateral constraint in that region.

By Proposition 3, we know that in this region, the irreversibility constraint is binding
if and only if k0 ≥ k∗0 (ω0) given in Subsection F.2. By Lemma 18, k∗0 (ω0) and ωCC

0 (k0)

intersects at
{

kCC
0,Irr, ωCC

0,Irr

}
. In addition, by the construction of k∗∗0 (ω0) in Subsection

G.2.2, k∗∗0 (ω0) = k∗0 (ω0) when ω0 > ωCC
0,Irr. Thus we know that given ω0 > ωCC

0 (k0), the
irreversibility constraint is binding if and only if k0 ≥ k∗∗0 (ω0).

G.4 Region with Binding Collateral Constraint and Binding Irreversibil-

ity Constraint

Lemma 20. With m < 1, the irreversibility constraint and ω0 ≤ (1+γ) 1−α
α X∗

1+γ 1−α
α X∗

, there exists a

unique equilibrium with binding collateral constraint and binding irreversibility constraint if and
only if ω0 ≤ ωCC

0,Irr in (A.35b) and k0 ≥ k∗∗0 (ω0) given in Subsection G.2.2. In this equilibrium,
q0 is decreasing in k0, and R0, X0 and the multiplier for the collateral constraint, µ0 are all
independent of k0.

Proof. Assuming the collateral constraint and the irreversibility constraint are binding.
Then k1 = (1− δ) k0 and − b1

RK
1 k1

= m. We also have ω1 = 1 − m and L1 = Lcc
1 as in

(A.33a). In this case, we can express the system by two unknowns, (q0, R0) or (q0, X0)

depending whether the ZLB is binding.
The first equation is derived by the entrepreneurs’ consumption choice c0 = 1

1+γ ω0RK
0 k0,

the expression of RK
0 in (A.33b) and their budget constraint (10c) as below:

k0 =
A1Lcc

1
1− δ

 (1− δ) m
R0

α
X∗ +

γ
1+γ ω0

α
X0

(
1
β

A1
A0

X0
X∗

) α−1
α R

1−α
α

0

q0 (1− δ)
(

1− γ
1+γ ω0

)


1
1−α

. (A.39a)

The second equation is derived by the feasibility condition in period 0, c0 + c′0 = Y0 with
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expressions in Subsection G.1:

(
β

A0

A1
R0

X∗

X0

) 1−α
α
(
(1− δ) k0

A1Lcc
1

)α−1

k0

=
1

1 + γ
ω0k0

[
q0 (1− δ) +

α

X0

(
βR0

A0

A1

X∗

X0

) 1−α
α
(
(1− δ) k0

A1Lcc
1

)α−1
]

(A.39b)

+
1

βR0

1− α

X∗
A1−α

1

(
(1− δ) k0

Lcc
1

)α

.

Combining these two equations together, we have one equation with one unknown, R0

or X0 depending on whether the ZLB is binding:

1
1− δ

(
1−

1
1+γ ω0

1− γ
1+γ ω0

α

X0

)(
β

A0

A1

X∗

X0

) 1−α
α

R
1
α
0 (A.39c)

=
1

1+γ ω0

1− γ
1+γ ω0

m
α

X∗
+

1
β

(
1− (1−m)

α

X∗
)

.

Notice that the solution of (A.39c) is independent of k0.
From (A.39a), q0 can be expressed as below:

q0 =
(1− δ) m

R0
α

X∗ +
γ

1+γ ω0
α

X0

(
1
β

A1
A0

X0
X∗

) α−1
α R

1−α
α

0

(1− δ)
(

1− γ
1+γ ω0

) (
(1− δ) k0

A1Lcc
1

)α−1

. (A.39d)

Notice that q0 is decreasing in k0.
Next, by equation (11), the multiplier for the collateral constraint, µ0 can be expressed

as

µ0 =
1

1−m

(
1

R0
− q0

RK
1

)

=
1

1−m

 (1− δ)
(

1−m− γ
1+γ ω0

)
1

R0
− γ

1+γ ω0
X∗
X0

(
1
β

A1
A0

X0
X∗

) α−1
α R

1−α
α

0

(1− δ)
(

1− γ
1+γ ω0

)
 . (A.39e)

We find µ0 is also independent of k0. For our assumption of binding irreversibility con-
straint and collateral constraint to be valid, the two equations above should imply q0 ≤ 1
and µ0 ≥ 0.
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Case I: Non-binding ZLB
First, we assume that the ZLB is not binding and impose X0 = X∗ in (A.39c). The solu-

tion of R0 = R∗∗0 (ω0) is given by equation (A.36), which is increasing in ω0. R∗∗0 (ω0) ≥ 1
if and only if ω0 ≥ ω∗∗0 in (A.37).

The capital price becomes

q0 =
(1− δ)m α

X∗ +
γ

1+γ ω0
α

X∗

(
1
β

A1
A0

) α−1
α
[R∗∗0 (ω0)]

1
α

(1− δ)
(

1− γ
1+γ ω0

)
R∗∗0 (ω0)

(
(1− δ) k0

A1Lcc
1

)α−1

.

In particular, when k0 = k∗∗0,noZLB (ω0) as below:

k∗∗0,noZLB (ω0) =
A1Lcc

1
1− δ

 (1− δ)m α
X∗ +

γ
1+γ ω0

α
X∗

(
1
β

A1
A0

) α−1
α
[R∗∗0 (ω0)]

1
α

(1− δ)
(

1− γ
1+γ ω0

)
R∗∗0 (ω0)


1

1−α

, (A.39f)

the implied q0 = 1. Thus here we need k0 ≥ k∗∗0,noZLB (ω0). We also need to check whether
µ0 implied by equation (A.39e) is positive. We find that µ0 ≥ 0 if and only if ω0 ≤ ωCC

0,Irr

in equation (A.35b).
To sum up, for an equilibrium with non-binding ZLB, binding collateral constraint

and irreversibility constraint to exist, we should have ω∗∗0 < ω0 ≤ ωCC
0,Irr and k0 ≥

k∗∗0,noZLB (ω0).
Case II: Binding ZLB
Assuming the ZLB is binding and impose R0 = 1 in (A.39c)with X0 as the only un-

known. Denote its solution as X∗∗0 (ω0), which is given in equation (A.38). If ω0 <
(1+γ) 1−α

α X∗

1+γ 1−α
α X∗

, X∗∗0 (ω0) is decreasing in ω0. At ω0 = ω∗∗0 , X∗∗0 (ω0) = X∗. Then for an

equilibrium with binding ZLB to exist here, we need ω0 ≤ ω∗∗0 .
The capital price becomes

q0 =
(1− δ)m α

X∗ +
γ

1+γ ω0
α

X∗∗0 (ω0)

(
1
β

A1
A0

X∗∗0 (ω0)
X∗

) α−1
α

(1− δ)
(

1− γ
1+γ ω0

) (
(1− δ) k0

A1Lcc
1

)α−1

.
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In particular, when k0 = k∗∗0,ZLB (ω0) as below:

k∗∗0,ZLB (ω0) =
A1Lcc

1
1− δ

 (1− δ)m α
X∗ +

γ
1+γ ω0

α
X∗∗0 (ω0)

(
1
β

A1
A0

X∗∗0 (ω0)
X∗

) α−1
α

(1− δ)
(

1− γ
1+γ ω0

)


1
1−α

, (A.39g)

the implied q0 = 1. Thus here we need k0 ≥ k∗∗0,ZLB (ω0). We still need to check whether
µ0 implied by equation (A.39e) is positive. We find that µ0 ≥ 0 if and only if ω0 ≤ ωCC

0,Irr

in equation (A.35b).
To sum up, for an equilibrium with binding ZLB, collateral constraint and irreversibil-

ity constraint to exist, we should have ω0 ≤ min
{

ω∗∗0 , ωCC
0,Irr

}
and k0 ≥ k∗∗0,ZLB (ω0).

Putting the Two Pieces Together
We can verify that when RCC in equation (A.35a) is larger than one, ωCC

0,Irr ≥ ω∗∗0 .
Then the ZLB is binding when ω0 < ω∗∗0 and k0 ≥ k∗∗0,ZLB (ω0) in (A.39g), and not binding

when ω0 ∈
[
ω∗∗0 , ωCC

0,Irr

]
and k0 ≥ k∗∗0,noZLB (ω0) in (A.39f). By the construction of k∗∗0 (ω0)

in Subsection G.2.2, k∗∗0 (ω0) = k∗∗0,ZLB (ω0) when ω0 < ω∗∗0 ; and k∗∗0 (ω0) = k∗∗0,noZLB (ω0)

when ω0 ∈
[
ω∗∗0 , ωCC

0,Irr

]
.

When RCC < 1, ωCC
0,Irr < ω∗∗0 . Then the ZLB is always binding when ω0 < ωCC

0,Irr

and k0 ≥ k∗∗0,ZLB (ω0). By the construction of k∗∗0 (ω0) in Subsection G.2.2, k∗∗0 (ω0) =

k∗∗0,ZLB (ω0) when ω0 ≤ ωCC
0,Irr.

To sum up, there exists a unique equilibrium with binding collateral constraint and
binding irreversibility constraint if and only if ω0 ≤ ωCC

0,Irr and k0 ≥ k∗∗0 (ω0).

G.5 Regions with Binding Collateral Constraint and Non-binding Ir-

reversibility Constraint

In this part, we assume the collateral constraint is binding and the irreversibility con-
straint is not binding. Then the equilibrium properties in this case is very similar to those
in the simple two-period model in Subsection 2.4.

Here we have q0 = 1, and − b1
RK

1 k1
= m. By the definition of the wealth share in (4), we

also have ω1 = 1−m and L1 = Lcc
1 as in (A.33a). In this case, we can express the system

by two unknowns,
{

rK
1 , R0

}
or
{

rK
1 , X0

}
depending whether the ZLB is binding.
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The first equation is derived from the feasibility condition (3a) at t = 0:

A1Lcc
1

(
X∗

α
rK

1

) 1
α−1

=

[
(1− δ)

(
1− ω0

1 + γ

)
+

(
X0

α
− ω0

1 + γ

)(
X∗

X0

) 1
α
(

β
A0

A1
R0

) 1−α
α

rK
1

]
k0

(A.40a)

− 1
βR0

1− α

X∗
A1

(
X∗

α
rK

1

) α
α−1

.

The second equation is derived by the entrepreneurs’ consumption choice c0 = 1
1+γ ω0RK

0 k0,
the expression of RK

0 in (A.33b) and their budget constraint (10c) as below:(
1− mrK

1
R0

)
A1Lcc

1

(
X∗

α
rK

1

) 1
α−1

=
γ

1 + γ
ω0k0

(
1− δ +

(
X∗

X0

) 1
α
(

β
A0

A1
R0

) 1−α
α

rK
1

)
.

(A.40b)
A solution to the system of equations (A.40a) and (A.40b) corresponds to an equilib-

rium with binding collateral constraint if k1 > (1− δ) k0 and the multiplier µ0 implied by
(11) is positive, i.e., if

R0 ≤ RK
1 . (A.40c)

In the next subsection, we characterize the properties of the solution to (A.40a) and (A.40b),
depending on whether the ZLB is binding. We temporarily ignore the requirements
(A.40c) and k1 > (1− δ) k0, and will verify whether they hold or not later.

G.5.1 Equilibrium with Non-binding ZLB and Binding Collateral Constraint

Lemma 21. With ω0 < X∗
α , there exists a unique equilibrium with binding collateral constraint,

non-binding irreversibility constraint and non-binding ZLB if and only if k0 < k∗∗0 (ω0) given in
Subsection G.2.2, ω0 ≤ ωCC

0 (k0) in Lemma 18 and ω0 is larger than a cutoff value, ω̂0 (k0). In
this region, R0 is increasing in ω0, and k1

k0
is decreasing in k0.

Proof. Step 1: Equilibrium Existence
Assuming that the collateral constraint is binding, the irreversibility constraint is non-

binding, and ZLB is non-binding. Setting X0 = X∗, rK
1 can be expressed as functions of

R0 in both (A.40a) and (A.40b).
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Equation (A.19c) becomes

A1Lcc
1

(
X∗

α

) 1
α−1

+
1

βR0

1− α

X∗
A1

(
X∗

α

) α
α−1

rK
1

=

[
(1− δ)

(
1− ω0

1 + γ

)
+

(
X∗

α
− ω0

1 + γ

)(
β

A0

A1
R0

) 1−α
α

rK
1

]
k0

(
rK

1

) 1
1−α

. (A.41a)

in which rK
1 is a decreasing function of R0. Denote this implicit function as rK

1 = h1 (R0).
We easily verify that limR0→0 h1 (R0)→ +∞, and limR0→+∞ h1 (R0)→ 0.

We can write the equation above in the form of

A1Lcc
1

(
X∗

α

) 1
α−1

= −φ1
1 (R0) rK

1 + φ1
2

(
rK

1

) 1
1−α

+ φ1
3 (R0)

(
rK

1

)1+ 1
1−α , (A.41b)

where φ1
1, φ1

2, φ1
3>0. Denote its right-hand side as H1

(
rK

1 , R0
)
.

Equation (A.40b) becomes

1 =
mrK

1
R0

+
γ

1 + γ
ω0k0

1− δ +
(

βR0
A0
A1

) 1−α
α rK

1

A1Lcc
1

(X∗
α

) 1
α−1
(
rK

1

) 1
α−1

, (A.41c)

which can be similarly written as

A1Lcc
1

(
X∗

α

) 1
α−1

= φ2
1 (R0) rK

1 + φ2
2 (R0)

(
rK

1

) 1
1−α

+ φ2
3 (R0)

(
rK

1

)1+ 1
1−α

, (A.41d)

where φ2
1, φ2

2, φ2
3>0. Denote its right-hand side as H2

(
rK

1 , R0
)
. Thus there exists a unique

solution for rK
1 as a function of R0. Denote this implicit function as rK

1 = h2 (R0). We
can also easily verify that that limR0→0 h2 (R0) → 0, and as limR0→+∞ h2 (R0) → 0. Thus
h2 (R0) is not monotone.

We show that, given ω0 < X∗
α , as R0 → +∞, h2 (R0) is asymptotically higher than h1 (R0) .

As R0 → +∞, h1 (R0) and h2 (R0) both converge to zero. We can derive the following
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asymptotic behaviors as R0 → +∞:

[h1 (R0)]
1+ 1

1−α ∝
1(

X∗
α − ω0

1+γ

) A1Lcc
1

(
X∗
α

) 1
α−1

(
β A0

A1

) 1−α
α k0

R
α−1

α
0 ,

[h2 (R0)]
1+ 1

1−α ∝
1+γ

γ

ω0

A1Lcc
1

(
X∗
α

) 1
α−1

(
β A0

A1

) 1−α
α k0

R
α−1

α
0 .

If ω0 < X∗
α , h2 (R0) is asymptotically higher than h1 (R0).

Then we obtain h1 (R0) > h2 (R0) at R0 = 0 and h1(R0) < h2(R0) when R0 is suf-
ficiently high. By the Intermediate Value Theorem, the two functions will cross at least
once. This guarantees the existence of a solution

(
R0, rK

1
)

for the two equations (A.41a)
and (A.41c).

Step 2: Equilibrium Uniqueness
We show at any intersection of h1 and h2, i.e. h1 (R0) = h2 (R0), the slope of h2 must be

steeper than the one for h1, i.e. h′1 (R0) < h′2 (R0).
Since the proof for this statement is the same as Step 3 of Subsection D.2.1, we choose

to omit this part. Combining the previous two steps together, we see that assuming a
binding collateral constraint, non-binding irreversibility constraint and non-binding ZLB,
a solution to (A.41a) and (A.41c) exists and is unique. (without checking whether the
implied R0 ≥ 1.)

Step 3: Comparative Statics
In equation (A.41a), we see that fixing rK

1 , R0 is increasing in ω0. In (A.41c), we see
that fixing R0, rK

1 is decreasing in ω0. Since the slope of h2 (R0) is steeper than the one for
h2 (R0), as ω0 increases both curves shift to the right, and the equilibrium R0 increases.
Thus R0 is increasing in ω0.

To see how the ratio k1
k0

responds to k0, define ρk = k1
k0

, and equations (A.41a) and
(A.41c) can be respectively written as below:

ρ1−α
k

[
ρk − (1− δ)

(
1− ω0

1 + γ

)]
k1−α

0 +
1

βR0

1− α

X∗
A1 (A1Lcc

1 )
−α ρk

=

(
X∗

α
− ω0

1 + γ

)(
β

A0

A1
R0

) 1−α
α α

X∗
(A1Lcc

1 )
1−α ,
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and

ρα
k

[
ρ1−α

k − m
R0

α

X∗
(A1Lcc

1 )
1−α kα−1

0

]
= (1− δ)

γ

1 + γ
ω0 +

γ

1 + γ
ω0

(
βR0

A0

A1

) 1−α
α α

X∗
(A1Lcc

1 )
1−α ρα−1

k kα−1
0 .

If we fix R0, we see that ρk is decreasing in k0 in both equations. As a result, k1
k0

is decreasing in k0.
Step 4: Checking the Assumptions of Binding Collateral Constraint and Non-binding

Irreversibility
Since the ratio k1

k0
is decreasing in k0, we find at k0 = k∗∗0 (ω0) given in Subsection G.2.2,

ρk = 1− δ in the two equations above. Thus there is no equilibrium with binding collat-
eral constraint, Non-binding Irreversibility and non-binding ZLB when k0 > k∗∗0 (ω0).
Otherwise, the restriction k1

k0
≥ 1− δ would be violated.

We can also check the assumption of a binding collateral constraint. Similar to Lemma
11, here we can show that the derivative RK

1 − R0 is negative at ω0 = ωCC
0 (k0) given

in Lemma 18. In addition, using the similar argument in Lemma 12, we can show the
collateral constraint is violated if ω0 > ωCC

0 (k0), while it is satisfied when ω0 ≤ ωCC
0 (k0).

Step 5: Cutoff of ω0 for ZLB
It remains to check whether the assumption of non-binding ZLB holds. Since R0 is

decreasing in ω0, we can identify the cutoff for binding ZLB, ω̂0 (k0), such that given k0,
R0 = 1 at ω0 = ω̂0 (k0). The expression of ω̂0 (k0) can be solved implicitly by imposing
R0 = 1 in (A.41a) and (A.41c). To be specific, imposing R0 = 1 in (A.41a), we have:

ω̂0 =

(
1− δ + X∗

α

(
β A0

A1

) 1−α
α rK

1

)
k0 − A1Lcc

1

(
X∗
α

) 1
α−1 (rK

1

) 1
α−1 − 1

β
1−α
X∗ A1

(
X∗
α rK

1

) α
α−1

1
1+γ

[
1− δ +

(
β A0

A1

) 1−α
α rK

1

]
k0

.

and imposing R0 = 1 in (A.41c), we have:

ω̂0 =

(
1−mrK

1

)
A1Lcc

1

(
X∗
α

) 1
α−1 (rK

1

) 1
α−1

γ
1+γ k0

[
1− δ +

(
β A0

A1

) 1−α
α rK

1

] .
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Combining both equations and after some calculation, we have

1 + γ

γ
A1Lcc

1

(
X∗

α
rK

1

) 1
α−1

+

(
1
β
−

m
γ

X∗
α − 1 + m

)
1− α

X∗
A1

(
X∗

α
rK

1

) α
α−1

=

(
1− δ +

X∗

α

(
β

A0

A1

) 1−α
α

rK
1

)
k0, (A.41e)

in which rK
1 is decreasing in k0. For a given value of k0, inserting the solved rK

1 from the
equation above into either one of the expression for ω̂0, we get the expression for ω̂0 (k0).

Since rK
1 is decreasing in k0 in (A.41e), when k0 = k̃0 in equation (A.35e), rK

1 = 1 in
equation (A.41e). Thus when k0 > k̃0, our assumption of a binding collateral constraint
at ω̂0 (k0) does not hold anymore.

To see how the ratio ρk =
k1
k0

changes along ω̂0 (k0), we replace rK
1 by ρk in the equation

above, which becomes

kα−1
0 =

[
1+γ

γ ρk − (1− δ)
]
(ρk)

1−α

(
A1Lcc

1

)1−α
[(

β A0
A1

) 1−α
α −

(
1
β − α

X∗

(
1−m

β + m
γ

))
ρk

] .

Check carefully this equation, we see that ρk is decreasing in k0 along ω̂0 (k0). In particular,
when k0 = k̂∗∗0 as below:

k̂∗∗0 =
A1Lcc

1
1− δ

[
γ

1− δ

(
β

A0

A1

) 1−α
α

− γ

(
1
β
− α

X∗

(
1−m

β
+

m
γ

))] 1
1−α

, (A.41f)

ω̂0

(
k̂∗∗0
)
= ω∗∗0 in equation (A.37). Thus suggests that when k0 > k̂∗∗0 , our assumption of

a non-binding irreversibility constraint at ω̂0 (k0) does not hold anymore.
When RCC in equation (A.35a) is larger than one, k̂∗∗0 < k̃0, and as k0 increases, the

curve ω̂0 (k0) will cross k∗∗0 (ω0) defined in Subsection G.2.2 at k0 = k̂∗∗0 . When RCC < 1,
k̂∗∗0 > k̃0, and as k0 increases, the curve ω̂0 (k0) will cross ωCC

0 (k0) given in Lemma 18 at
k0 = k̃0.

To sum up, when ω0 < X∗
α , there exists a unique equilibrium with binding collateral

constraint, non-binding irreversibility constraint and non-binding ZLB if and only if k0 <

k∗∗0 (ω0), ω0 ≤ ωCC
0 (k0) and ω0 > ω̂0 (k0).
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G.5.2 Equilibrium with Binding ZLB and Binding Collateral Constraint

Lemma 22. Assume ω0 is smaller than39

min
{
(1 + γ)

1− α

α
X∗, Ξ (α, m, X∗, γ, β)

}
,

in which Ξ is a function defined in (A.42f), there exists a unique equilibrium with binding col-
lateral constraint, non-binding irreversibility constraint and binding ZLB if and only if k0 <

k∗∗0 (ω0) given in Subsection G.2.2, ω0 ≤ ωCC
0 (k0) in Lemma 18 and ω0 ≤ ω̂0 (k0) given

implicitly by (A.41e). In this region, X0 is decreasing in ω0, and k1
k0

is decreasing in k0.

Proof. As in the proof of Lemma 21, we first assuming that the collateral constraint is
binding, ZLB is binding, and the irreversibility constraint is non-binding. With these
assumptions, we can represent the equilibrium by two equations. We will come back
later to check whether the assumptions are valid.

Step 1: Equilibrium Representation
In this case, we represent the system as functions of

{
rK

1 , rK
0
}

. X0 can be expressed as
a function of

{
rK

1 , rK
0
}

as below:

X0 = X∗
(

β
A0

A1

)1−α
(

rK
1

rK
0

)α

. (A.42a)

The counterpart for the restriction X0 ≥ X∗ is

rK
0 ≤

(
β

A0

A1

) 1−α
α

rK
1 ,

and the irreversibility constraint sets a lower bound for rK
1 :

rK
1 ≥

α

X∗

(
(1− δ) k0

A1Lcc
1

)α−1

. (A.42b)

Equation (A.40a) becomes

A1Lcc
1

(
X∗

α
rK

1

) 1
α−1

+
1
β

1− α

X∗
A1

(
X∗

α
rK

1

) α
α−1

= (1− δ)

(
1− ω0

1 + γ

)
k0 +

(
X∗

α

(
β

A0

A1

)1−α
(

rK
1

rK
0

)α

− ω0

1 + γ

)
rK

0 k0, (A.42c)

39With our calibrated parameters, the value is 1.39.
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If ω0 < (1 + γ) 1−α
α X∗, we can show that rK

0 is decreasing in rK
1 . Denote this implicit

function as rK
0 = u1

(
rK

1
)
. Using implicit function theorem, we see that as k0 increases,

u1
(
rK

1
)

shifts to the left, i.e., holding rK
0 unchanged, rK

1 is decreasing in k0.
Equation (A.40b) becomes

(
1−mrK

1

)
A1Lcc

1

(
X∗

α
rK

1

) 1
α−1

=
γ

1 + γ
ω0k0

(
1− δ + rK

0

)
(A.42d)

in which rK
0 is decreasing in rK

1 as well. Denote this implicit function as rK
0 = u2

(
rK

1
)
.

Using implicit function theorem, we can show that as k0 increases, u2
(
rK

1
)

shifts to the
left, i.e., holding rK

0 unchanged, rK
1 is increasing in k0.

Step 2: Equilibrium Existence
We show that if ω0 ≤ ω̂0 (k0), defined implicitly in equation (A.41e), and given rK

1 ≤
α

X∗

(
(1−δ)k0

A1Lcc
1

)α−1
due to the irreversibility constraint, there exists a unique solution

{
rK

1 , rK
0
}

to equations (A.42c) and (A.42d).
The intuition of this result can be seen in Figure A.13. The black dashed line corre-

sponds to X0 = X∗ below which we have X0 ≥ X∗. When ω0 < ω̂0 (k0), by equations
(A.42c) and (A.42d), with R0 = 1 and X0 = X∗, rK

1 in (A.42c) is smaller than rK
1 in (A.42d).

Correspondingly, in Figure A.13, Point A, the intersection of u1
(
rK

1
)

and X0 = X∗ lies to
the lower left of Point B, the intersection of u2

(
rK

1
)

and X0 = X∗. In other words, given
rK

1 = rK
1,B, the value at point B, u1

(
rK

1,B

)
< u2

(
rK

1,B

)
.

Denote the horizontal intercept of u1
(
rK

1
)

as r̂K
a , and the horizontal intercept of u2

(
rK

1
)

as r̂K
b . The question is whether r̂K

a > r̂K
b . Setting rK

0 = 0 in (A.41a) and (A.41c) and applying

the implicit function theorem, we have ∂r̂K
a

∂k0
< 0 and ∂r̂K

b
∂k0

> 0. Thus given ω0, there is a
cutoff value of k̄Irr

0 such that r̂K
a ≥ r̂K

b if and only if k0 ≤ k̄Irr
0 . From (A.42c) and (A.42d),

we can show that k̄Irr
0 can be solved by the following equation:

2A1Lcc
1

(
X∗

α
r̂K

1

) 1
α−1

+

(
1
β
− m

X∗
α − 1 + m

)
1− α

X∗
A1

(
X∗

α
r̂K

1

) α
α−1

= (1− δ) k̄Irr
0 ,

in which Lcc
1 is from equation (A.33a). However, the restriction on rK

1 , (A.42b), is violated
if k0 ≥ k̄Irr

0 . Thus, for the current case, we must have r̂K
a > r̂K

b .
Now with r̂K

a > r̂K
b , we see that u1

(
r̂K

b
)
> u2

(
r̂K

b
)
. Since both u1

(
rK

1
)

and u2
(
rK

1
)

are

continuous, they should intersect at least once when rK
1 ∈

[
rK

1,B, r̃K
1

]
with X0 > X∗. Thus

there exists at least one solution to equations (A.42c) and (A.42d).
Step 3: Equilibrium Uniqueness
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Figure A.13: Equilibria with Binding Collateral Constraint, ZLB and Non-binding Irre-
versibility

Note: This figure is generated by setting β = 0.99, γ = 0.98, α = 0.35, δ = 0.025, A0 = 1, A1 = 1.005, m = 0.7 and ε = 21. ω0 = 0.05 and
k0 = 0.3.

When ω0 ≤ ω̂0 (k0) and u1
(
rK

1
)
= u2

(
rK

1
)
, the slope of u1

(
rK

1
)

is higher than the slope of
u2
(
rK

1
)

when they intersect.
Using implicit function theorem, the derivatives of u1

(
rK

1
)

and u2
(
rK

1
)

are

∂u1

∂rK
1

(
rK

1

)
= −

1
1−α A1Lcc

1

(
X∗
α

) 1
α−1 (rK

1

) 2−α
α−1 + 1

β A1

(
X∗
α

) 1
α−1 (rK

1

) 1
α−1 + X0

rK
0

rK
1

k0(
1−α

α X0 − ω0
1+γ

)
k0

,

∂u2

∂rK
1

(
rK

1

)
= −

1
1−α A1Lcc

1

(
X∗
α

) 1
α−1 (rK

1

) 2−α
α−1 + α

1−α mA1Lcc
1

(
X∗
α

) 1
α−1 (rK

1

) 1
α−1

γ
1+γ ω0k0

.

We will show that given 1 ≤ rK
1 ≤ 1

m ,

∂u1

∂rK
1

(
rK

1

)
>

∂u2

∂rK
1

(
rK

1

)
.

Indeed, the inequality can be rewritten as(
1

1− α
A1Lcc

1

(
X∗

α

) 1
α−1 (

rK
1

) 2−α
α−1

+
1
β

A1

(
X∗

α

) 1
α−1 (

rK
1

) 1
α−1

)
γ

1 + γ
ω0 +

γ

1 + γ
ω0X0

rK
0

rK
1

k0

≤
(

1
1− α

A1Lcc
1

(
X∗

α

) 1
α−1 (

rK
1

) 2−α
α−1

+
α

1− α
mA1Lcc

1

(
X∗

α

) 1
α−1 (

rK
1

) 1
α−1

)(
1− α

α
X0 −

ω0

1 + γ

)
.
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After some calculations, we can show a stronger result as below:(
1

1− α
+

1
1 + γ

(
γ

β

1
Lcc

1
+

α

1− α
m
)

rK
1

)
ω0

≤
(

1− α

α
+ 2mrK

1

)
X0. (A.42e)

and this inequality holds if 40

ω0 < Ξ (α, m, X∗, γ, β) = min
{

V (1) , V
(

1
m

)}
, (A.42f)

in which

V
(

rK
1

)
=

(
1−α

α + 2mrK
1

)
X∗

1
1−α + 1

1+γ

(
γ
β

1−(1−m) α
X∗

1−α
X∗

+ α
1−α m

)
rK

1

. (A.42g)

As a result, given k0, ω0 ≤ ω̂0 (k0) in (A.41e), a binding collateral constraint and a non-
binding irreversibility constraint, an equilibrium with binding ZLB exists and is unique.
Otherwise, if there are multiple equilibria in this region, u1

(
rK

1
)

and u2
(
rK

1
)

cross for
multiple times, and then one of these equilibria features du1

drK
1
≤ du2

drK
1

which contradicts the
slope comparison above.

Step 4: Comparative Statics
By checking equations (A.42c) and (A.42d) carefully, we see that as ω0 increases, u1

(
rK

1
)

shifts to the left, while u2
(
rK

1
)

shifts to the right, making the equilibrium rK
1 lower and rK

0

higher. From (A.42a), X0 is also lower. Thus X0 is decreasing in ω0.
To see how the ratio ρk = k1

k0
changes with k0, we express (A.42c) and (A.42d) as

functions of {ρk, X0}:

ρ1−α
k

[
ρk − (1− δ)

(
1− ω0

1 + γ

)]
k1−α

0 +
1
β

1− α

X∗
A1 (A1Lcc

1 )−α ρk

=

(
X0

X∗
− ω0

1 + γ

α

X∗

)(
X∗

X0

) 1
α
(

β
A0

A1

) 1−α
α

(A1Lcc
1 )1−α ,

40With our calibrated parameters, the value of this upper bound is 1.39.
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and

ρα
k

[
ρ1−α

k −m
α

X∗
(A1Lcc

1 )1−α kα−1
0

]
= (1− δ)

γ

1 + γ
ω0 +

γ

1 + γ
ω0

(
X∗

X0

) 1
α
(

β
A0

A1

) 1−α
α α

X∗
(A1Lcc

1 )1−α ρα−1
k kα−1

0 .

In both functions, given ω0 and fixing X0, ρk is decreasing in k0. Thus in equilibrium, k1
k0

is decreasing in k0.
Lastly, since rK

1 is decreasing in ω0, the excess return RK
1 − R0 is also decreasing in ω0

since RK
1 = rK

1 and R0 = 1.
Step 5: Checking the Assumptions of Binding Collateral Constraint and Non-binding

Irreversibility
Since X0 is decreasing at ω0, and at ω0 = ω̂0 (k0) given in (A.41e), X0 = X∗, the

assumption of a binding ZLB is violated if and only if ω0 > ω̂0 (k0). In addition, since
k1
k0

is decreasing in k0 and we can show that at k0 = k∗∗0 (ω0) given in Subsection G.2.2,
k1
k0

= 1− δ, the assumption of a non-binding irreversibility constraint is violated if and
only if k0 ≥ k∗∗0 (ω0). Lastly, since RK

1 − R0 is decreasing in ω0 and at ω0 = ωCC
0 (k0) given

in Lemma 18, RK
1 − R0 = 0, the assumption of a binding collateral constraint is violated if

and only if ω0 > ωCC
0 (k0).

To sum up, when ω0 is smaller than

min
{
(1 + γ)

1− α

α
X∗, Ξ (α, m, X∗, γ, β)

}
,

there exists a unique equilibrium with binding collateral constraint, non-binding irre-
versibility constraint and binding ZLB if and only if k0 < k∗∗0 (ω0), ω0 ≤ ωCC

0 (k0) and
ω0 ≤ ω̂0 (k0).

G.6 AS-AD Representation

If the collateral constraint is not binding, the equilibrium properties and the AS-AD
curves are the same as the model with natural borrowing limit analyzed in Appendix
F.5. On the other hand, if the irreversibility constraint is not binding, the equilibrium
properties are similar to the simple two-period model in Subsection 2.4. So here we focus
on the AS-AD curves with both binding collateral constraint and binding irreversibility
constraint.

When the collateral constraint is binding, labor supply at t = 1 is constant and given
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by Lcc
1 in equation (A.33a). Together with the labor-leisure choice of the households at

t = 0, 1, the households’ Euler equation for bond holding, as well as k1 = (1− δ) k0 given
a binding irreversibility constraint, the AS curve can be written as

YAS
0 =

(
βR0

A0

A1

X∗

X0

) 1−α
α
(
(1− δ) k0

A0Lcc
1

)α−1

k0. (A.43a)

As k1 = (1− δ) k0, the AD curve is given by summing up c0 and c′0 in Subsection G.1:

YAD
0 =

1
1 + γ

ω0k0

[
q0 (1− δ) +

α

X0

(
βR0

A0

A1

X∗

X0

) 1−α
α
(
(1− δ) k0

A0Lcc
1

)α−1
]

(A.43b)

+
1

βR0

1− α

X∗
A1−α

1

(
(1− δ) k0

Lcc
1

)α

.

When the irreversibility constraint is binding, Proposition 4 shows that both R0 and X0

remain independent to k0 and are functions of ω0 only. Thus given {k0, ω0}, we can ex-
press the AS-AD curves as functions of q0 while replacing R0 and X0 by their equilibrium
values.

As an example, the AS-AD curves are plotted in Figure A.14 when all three constraints:
ZLB, collateral constraint and the irreversibility constraint are all binding. The AS curve
is inelastic to q0, and the AD curve is positively sloped. As k0 increases, both AS and AD
curves shift to the right leading Y0 to increase. The effect on q0 might be ambiguous but
by equation (A.39d), q0 decreases. Similarly, as ω0 increases, both AS and AD curves shift
to the right leading Y0 to increase. By equation (A.39d), q0 increases.

H More Details from the Quantitative Model

In Appendix H.1, we present the full quantitative model. Appendix H.2 describes our
global solution method and Appendix H.3 provides the computed policy functions from
the benchmark quantitative model. Appendix H.5 carries out analyses of numerical errors
from our global solution.

H.1 Complete Setup

Section 3.1 describes the essential ingredients of the quantitative model. We now describe
the remaining setup of the model and refer to the common components shared with the
two-period model when necessary. Time is discrete, starts from 0 and goes to infinity.
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Figure A.14: AS-AD Curves with Binding ZLB, Collateral Constraint and Irreversibility
Constraint

Note: This figure is generated by setting β = 0.99, γ = 0.98, α = 0.35, δ = 0.025, A0 = 1, A1 = 1.005, m = 0.9, and ε = 21. We choose
k0 = 0.15 and ω0 = 0.053 in the baseline case.

The aggregate shocks consist of a productivity shock and a credit shock, as specified in
Section 3.1.

The households The representative households supply labor endogenously and make
saving and borrowing decisions to maximize the expected lifetime utility

E
∞

∑
t=0

βt[log c′t −
1
η

(
L′t
)η
]

where c′t is the consumption and L′t is the labor supply. β > 0 is the households’ common
discount factor. The households are subject to the following sequential budget constraint

Ptc′t +
B′t
Rt
≤ B′t−1 + PtwtL′t + Pt

∫ 1

0
Ξt(z)dz,

taking Pt, Rt, wt and
∫ 1

0 Ξt(z)dz as given, where B′t−1 is the nominal bond accumulated
in the previous period, Rt is the nominal interest rate, wt is the market real wage, and∫ 1

0 Ξt(z)dz is the profits transferred from intermediate good retailers in real terms.
The entrepreneurs The representative entrepreneurs maximize the following expected

utility

E
∞

∑
t=0

γt log ct
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subject to the sequential budget constraint

Ptct + PtqK′
t kt+1 +

Bt

Rt
≤ Bt−1 + PtqK

t kt + Pe
t Ye

t − PtwtLt,

production technology
Ye

t = kα
t (AtLt)

1−α,

and the collateral constraint

min
{mt+1,gt+1,χm

t+1}

[
mtPt+1[qK

t+1 + rK
t+1]kt+1 + Bt

]
≥ 0,

taking Pt, qK′
t , qK

t , Rt, πt, Pe
t , wt as given, where qK′

t and qK
t are market prices for new capital

and existing capital, respectively. Pe
t is the price of intermediate goods.

Equilibrium The problem of the final-good producers is the same as the one in the
two-period model. The retailers’ problem, capital producing firm’s problem and mon-
etary policy rules are specified in section 3.1. We define the real value of debt bt = Bt

Pt

and the markup charged by retailers Xt = Pt/Pe
t . Then the budget constraints of the

entrepreneurs and the households can be written in real variables.
We adopt the standard notation of uncertainty. Time is discrete and runs from 0 to

infinity. In each period, an aggregate shock st = (gt, mt, χm
t ) is realized. st follows a finite-

state Markov chain described in Subsection 3.1. Let st = (s0, s1, . . . , st) denote the history
of realizations of shocks until date t. Assume A−1, g−1, m−1, χm

−1 are given. To simplify
notations, for each variable x, we use xt as a shortcut for xt

(
st).

Definition 3. A competitive equilibrium is sequences, which depend on time t and the
history of shocks st, of inflation and markup {πt, Xt}t,st , prices

{
wt, rK

t , qK
t , qK′

t , Rt

}
t,st

,

retailer real profits
{∫ 1

0 Ξt(z)dz
}

t,st
and allocations {ct, c′t, kt+1, Yt, Ye

t , bt, b′t, Lt, L′t}t,st such

that given the initial conditions k0 > 0, b−1 and b′−1 = −b−1:
(i) The allocations solve the entrepreneurs and the households’ decision problems.
(ii) Markets for labor, bond, intermediate good and final good clear:

Lt = L′t,

bt + b′t = 0,

Yt = Ye
t ,

ct + c′t + Ω (kt, kt+1) + θφ (πt)Yt = Yt,

A-76



in which Ω (kt, kt+1) and θφ (πt)Yt are the capital adjustment cost and price adjustment
cost, respectively, as specified in Section 3.1.

(iii) Retailers’ profits satisfy equation (16). Capital prices satisfy equations (17).
(iv) The New-Keynesian Phillips Curve (13) holds. Taylor rule (18) holds.

As in the two-period model in Section 2, we focus on sequential competitive equilibria
with the wealth share of the entrepreneurs as an endogenous state variable. Their wealth
share is defined as

ωt =

(
rK

t + qK
t
)

kt +
bt−1

1+πt(
rK

t + qK
t
)

kt
. (A.44)

Correspondingly, the households’ wealth share is

ω′t =
b′t−1

1+πt(
rK

t + qK
t
)

kt
.

From the bond market clearing condition, ω′t = 1−ωt in any competitive equilibrium.

Definition 4. A wealth-recursive equilibrium in the infinite-horizon economy is a sequen-
tial competitive equilibrium in which allocations {ct, c′t, kt+1, Yt, bt, Lt}, prices

{
wt, rK

t , qK
t , qK′

t , Rt

}
and inflation and markup {πt, Xt} are functions of {kt, ωt, st, At}.

H.2 Global Solution Method

To calculate wealth-recursive equilibria, we de-trend the retailers’ real profits
{∫ 1

0 Ξt(z)dz
}

and allocations {ct, c′t, kt+1, Yt, bt} by the aggregate TFP shock At and remove At from the
list of exogenous state variables. With some abuse of notations, we use the same symbols
here to denote their corresponding de-trended values.

Given {kt, ωt, st}, we have 7+S unknown variables: ct, c′t, kt+1, bt, µt, πt, Xt, {ωt+1 (st+1)}st+1
,

in which S is the number of states in period t + 1, and ωt+1 (st+1) is the wealth share in
period t + 1 when the state in the next period is st+1.41 We use the following system with
7 + S equations to pin down the values of the variables:

1. Feasibility constraint:

ct + c′t + Ω (kt, kt+1) + θφ (πt)Yt = Yt, (A.45a)
41From equation (A.44), given {kt+1, bt}, ωt+1 is endogenous to state st+1 since

{
rK

t+1, qK
t+1, πt+1

}
are

affected by st+1.
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2. FOC for households’ bond holding:

− 1 + βEt

[ 1
1 + gt+1

Rt

1 + πt+1

c′t
c′t+1

]
= 0, (A.45b)

3. Entrepreneurs’ budget:

ct + qK′
t kt+1 +

bt

Rt
=

(
rK

t + qK
t
)

kt

1 + gt
ωt, (A.45c)

4. FOC for entrepreneurs’ capital holding:

− 1 +
κtµt

qK′
t

+ γEt

[
1

1 + gt+1

(
rK

t+1 + qK
t+1

qK′
t

)
ct

ct+1

]
= 0, (A.45d)

5. Complementary-slackness condition for the collateral constraint:

µt

[
bt + κtkt+1

]
= 0, (A.45e)

with µt ≥ 0,

6. F.O.C. for entrepreneurs’ bond holding:

− 1 + Rtµt + γEt

[ 1
1 + gt+1

Rt

1 + πt+1

ct

ct+1

]
= 0, (A.45f)

7. New-Keynesian Phillips curve:

(1 + πt)φ
′ (πt) =

ε

θ

( 1
Xt
− ε− 1

ε

)
+ βEt

[ 1
1 + gt+1

c′t
c′t+1

(1 + πt+1)φ
′ (πt+1)

Yt+1

Yt

]
,

(A.45g)

8. Consistency condition:

ωt+1 =

(
rK

t+1 + qK
t+1
)

kt+1 +
bt

1+πt+1(
rK

t+1 + qK
t+1

)
kt+1

, ∀st+1, (A.45h)

in which rK
t+1, qK

t+1 and πt+1 are functions of {kt+1, ωt+1, st+1}.
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The auxiliary variables in the equations above are given as follows:

Ω (kt, kt+1) = kt+1 −
1− δ

1 + gt
kt +

ξ

2

(
kt+1 − kt

1+gt

)2

kt
1+gt

,

κt = mt min
st+1

{(
rK

t+1 + qK
t+1

)
πt+1

}
,

qK′
t = 1 + ξ

kt+1 − kt
1+gt

kt
1+gt

,

qK
t = (1− δ)− ξ

2

[
1−

(
(1 + gt) kt+1

kt

)2
]

,

φ (πt) =
πt − π̄√

π̄ − π
− 2
√

πt − π + 2
√

π̄ − π,

Rt = max

{
R̄
(

1 + πt

1 + π̄

)φπ
(

Yt

Ȳ

)φY

, 1

}
,

Lt =

[
1− α

Xt

kα
t

(1 + gt) c′t

] 1
α+η−1

,

rK
t =

α

Xt

[
kt

(1 + gt) Lt

]α−1

,

Yt =

(
kt

1 + gt

)α

L1−α
t .

In addition, we can invert equation (A.44) to get bt−1 :

bt−1 = (ωt − 1) (1 + πt)
(

rK
t + qK

t

)
kt.

We solve for the recursive equilibrium in this economy using the algorithm in Cao
and Nie (2017) and Cao (2018). The original algorithm in Cao (2018) uses wealth share
as endogenous state variables. Cao and Nie (2017) add labor choice as well as housing
consumption decisions. In the current paper, we show that the original algorithm works
similarly when we add imperfect price stickiness, capital and capital adjustment cost, and
Taylor-rule based monetary policy with two occasional binding constraints, ZLB and the
collateral constraint.42 Here we present the details of this algorithm.

Our algorithm looks for a recursive equilibrium mapping from {kt, ωt} and the ex-
ogenous aggregate shock, st = {gt, mt, χm

t }, to the allocations {ct, c′t, kt+1, Yt, bt, Lt}, prices

42We also solved another version of the infinite-horizon economy with a third occasional binding con-
straint: investment irreversibility as discussed in Section E.
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{
wt, rK

t , qK
t , qK′

t , Rt

}
, inflation and markup {πt, Xt}, as well as the future financial wealth

distributions, ωt+1 (st+1), depending on the realization of future aggregate shocks, st+1.
Indeed, given the mapping from {kt+1, ωt+1, st+1} to

{
rK

t+1, qK
t+1, πt+1, ct+1, c′t+1, Yt+1

}
, for

a given set of {kt, ωt, st} , we can solve for the other variables using equations (A.45a) to
(A.45h). In particular, we follow Cao (2018) in solving for ωt+1 simultaneously with other
unknowns. The additional equations needed to solve for ωt+1 are equation (A.45h) ap-
plied to each of the future state st+1 in which the mapping from {kt+1, ωt+1, st+1} to rK

t+1,
qK

t+1 and πt+1 are given by the mapping obtained in the previous iteration of the algo-
rithm.

We solve for the recursive equilibrium using backward induction. The algorithm starts
by solving for the equilibrium mapping for 1-period economy. Then given the mapping
from t = 0 to t = 1 for T-period economy, we can solve for the mapping for (T + 1)-
period economy following the procedure described above. The algorithm converges
when the mappings for T−period economy and (T + 1)-period economy are sufficiently
close to each other.43

43For the model without the credit shock, i.e., mt ≡ m, based on the definition of ωt in (A.44) and the
borrowing constraint (15), we can easily see that the lower bound of ωt is 1− m. With shocks to mt, the
expression of the lower bound of ωt is unknown ex ante, and we show the model can also be solved using
ct as an endogenous state variable instead of ωt.
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H.3 Policy Functions and ZLB duration from the Quantitative Model
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Figure A.15: Policy Functions over (k, ω) Space

Note: The policy functions are evaluated with productivity growth rate equal to its unconditional mean. Surfaces with warm colors correspond to
m High (m = 0.45). Surfaces with cold colors correspond to m Low (m = 0.1).

The policy functions in the full quantitative model carry all the intuitions we have learned
from the two-period model. Figure A.15 plots the policy functions for several key equi-
librium variables over the endogenous states variables (k, ω). The policy functions are
evaluated with productivity growth rate equal to its unconditional mean. The two sur-
faces correspond to policy functions with different levels of leverage constraint m (the
warm-color surfaces correspond to m = 0.45 and the cold-colored ones correspond to
m = 0.1). As shown in the figure, given the productivity, the ZLB tends to bind when
capital stock is high or the entrepreneur wealth share is low. The collateral constraint
tends to bind when the entrepreneur wealth share is low. The inverse of markup drops
substantially when the ZLB binds, and even more so when the ZLB and the collateral
constraint both bind. Both capital price and output are substantially lower in the regions
where zero lower bound binds, and more so when both constraints bind.

What is new in the quantitative model with imperfect price stickiness compared to
the two-period model is that now inflation is allowed to be different from one. Inflation
changes in the same direction along with the inverse of markup over the state space since
it is associated with the inverse of markup through the New-Keynesian Phillips Curve. It
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changes more smoothly due to the forward-looking nature of the Phillips Curve. Intro-
ducing imperfect price stickiness allows the movement of inflation to feedback into the
collateral constraint, through a traditional Fisherian “nominal debt-deflation channel”.
However, from both the policy functions and the crisis episode we study in Section 3, the
movement in inflation is usually small and is not likely to play a quantitatively important
role in determining the severity of the crisis compared to other channels.

Figure A.16 and A.17 plot the regions for binding ZLB and collateral constraints, and
the policy functions projecting onto either k or ω space. Both figures resemble their coun-
terparts for the two-period model and we refer the reader to the main text for the analyt-
ical characterizations and the discussions.
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Figure A.16: Regions for ZLB and Binding Collateral Constraint

Note: The region is based on policy functions at m = m̄ and g = ḡ.
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Figure A.17: Policy Functions Varying Capital (four upper panels) and Wealth Share (four
lower panels)

Note: The policy functions are at g = ḡ. m High corresponds to m = 0.45. m Low corresponds to m = 0.1.

The average duration of a ZLB episode in the ergodic set is around 2 quarters. Never-
theless, the histogram of ZLB durations, shown in Figure A.18, exhibits a long right tail,
and the model can produce lengthy ZLB episodes with the appropriate choice of realized
shock series, albeit with low probability.
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Figure A.18: Histogram of ZLB Durations in the Ergodic Set
Note: The histogram is based on 24 sample paths, each with 50,000 periods and with the first
5,000 periods dropped. The longest ZLB episode in the simulated sample lasts for 25 quarters.

H.4 Asset Prices in the Data and in the Model

In this appendix, we discuss the dynamics of asset prices implied by the quantitative
model during the Great Recession and compare them to the data. As we described in Sub-
section 3.1, capital in the model stands in for a combination of housing and non-housing
capital. Therefore, in the left panel of Figure A.19, we plot the model capital price against
the price indices of both housing and stock market from the data. Stock prices dropped
significantly more than housing prices but recovered more quickly. Overall, our model
captures relatively well the timing and magnitude of the average dynamics of prices in
these time series. The magnitude of the drops in the model is slightly smaller because
we leave out other important factors influencing prices during the Great Recession, such
as changes in risk premium and liquidity, and deteriorated balance sheet of the financial
sector.

The right panel of Figure A.19 plots the model implied excess returns against the credit
spread constructed by Gilchrist and Zakrajsek (2012) (GZ spread). The dynamics of ex-
cess return in the model tracks the overall timing of the rise and fall of the GZ spread.
However, the magnitude of the rise of the excess return is significantly larger than that of
the GZ spread. This is partly because the size of the credit shock in the model is calibrated
to match the overall drop in bank loans and the excess returns correspond to excess re-
turns on a broad range of assets, whereas the GZ spread measures the spread on bonds
issued by publicly listed firms which have better access to external financing.
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Figure A.19: Asset Price and Excess Return, Model versus Data

Note: The variables in the left panel are reported as ratios to their 2007Q3 values.

H.5 Numerical Error Analyses

For each state xt = (kt, ωt, gt, mt, χm
t ), following Judd, Maliar, and Maliar (2011) and Guer-

rieri and Iacoviello (2015), we define the unit-free Euler equation errors for the bond and
capital choices of the households and the entrepreneurs as below:

E b′(xt) = −1 + βEt

[ 1
1 + gt+1

Rt

1 + πt+1

ct

ct+1

]
E b(xt) = −1 + Rtµt + γEt

[ 1
1 + gt+1

Rt

1 + πt+1

ct

ct+1

]
.

E k(xt) = −1 +
κtµt

qK′
t

+ γEt

[ 1
1 + gt+1

(rK
t+1 + qK

t+1

qK′
t

) ct

ct+1

]
. (A.46)

We evaluate the errors for a sample of 120000 xt drawn from the model’s ergodic set.44

Table A.1: Euler Equation Errors

mean |E b′ | mean |E b| mean |E k|
All Samples 2.9E-04 2.5E-05 4.1E-04
ZLB Binding 4.3E-04 4.1E-05 3.4E-04
ZLB & CC Binding 4.2E-04 4.0E-05 3.1E-04

44To draw samples from the ergodic set, we simulate 24 paths of 6000 periods. Notice by the ergodic
theory, the long run distribution of samples across time of a single simulation path converges to the ergodic
distribution; we choose multiple paths to utilize parallel computation. We drop the first 1000 periods and
keep the remaining 5000 periods of the 24 paths, which give us 120000 observations in total.
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Table A.1 reports the mean absolute errors across xt in the full samples, the samples
with binding ZLB, and the samples with both binding ZLB and collateral constraints. As
shown, the mean absolute errors across all samples and subsamples are below 5E − 4.
The accuracy is slightly lower for states with binding ZLB due to the nonlinear dynamics
in these regions of the state space. The numerical errors are of similar magnitude as the
errors from Guerrieri and Iacoviello’s OccBin for their model without ZLB Guerrieri and
Iacoviello (2015, Figure 4) and are lower than the OccBin errors for their model with ZLB
Guerrieri and Iacoviello (2015, Figure 6).

H.6 Comparisons with Piecewise-linear Solutions

The global nonlinear solutions provide a full characterization of the economy in and out
of normal times, and capture agents’ precautionary motives facing severe although infre-
quent crises. An alternative approach, popularized by the toolbox OccBin (Guerrieri and
Iacoviello, 2015), approximates the nonlinear solutions with piecewise linear functions.
This section compares the OccBin solution with the global nonlinear solution, highlight-
ing the non-linearity of the current model and the importance of capturing agents’ pre-
cautionary motives in understanding the crisis dynamics.

To do so, we need to modify the benchmark model in several ways. First, the bench-
mark collateral constraint is specified as

mt ·min
[

Pt+1

(
qK

t+1 + rK
t+1

)
kt+1 + Bt

]
≥ 0.

This constraint corresponds to a condition that the entrepreneurs will not default under
any realization of future exogenous states, and hence equips the lenders with a strong
precautionary motive. Since the local solution cannot handle the min operator, we modify
the collateral constraint to

mt ·Et

[
Pt+1

(
qK

t+1 + rK
t+1

)
kt+1 + Bt

]
≥ 0,

where Et is the expectation operator conditional on the current state. Second, in the
benchmark model we specify the credit shock, mt, to have innovations with asymmetric
distributions, aiming at capturing the infrequent nature of financial crises. The piecewise
linear solution method cannot handle this asymmetry, so we modify the process of the

A-86



credit shock to an AR(1) process:45

mt+1 = (1− ρm)m̄ + ρmmt + εm,

where εm satisfies the normal distribution with mean zero and standard deviation σm.
We choose m̄ to be the same as in the benchmark model, ρm = 0.99 and σm = 0.01,
so the process is close to the one used in the benchmark model.46 Third, after the two
modifications above, we recalibrate the discount factor of the entrepreneurs, β, so that the
average nominal interest rate is 5% in the ergodic set based on the nonlinear solution.47

45For the collateral constraint to be well-defined, we need to truncate mt to be within [0, 1], but in the
simulated ergodic set, mt never hits the upper of lower bounds with the chosen standard deviation of the
shock.

46Notice for the event study interested in this subsection, the choice of σm matters for the global nonlinear
solution but not for the piecewise linear solution. Setting σm = 0.01 allows us to discretize the innovation
to be {−0.01, 0.01} based on a two-point Gaussian quadrature, and together with a high ρm, brings the
process of mt close to the one in the benchmark model.

47This procedure is mainly to ensure comparability across models. The recalibrated β = 0.9991, close to
the calibrated value 0.9993 in the benchmark model.
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Figure A.20: The ZLB Episode, Global Nonlinear Solutions v.s. Piecewise Linear Solutions

Note: Output, investment, capital price, and the volume of credit are ratios to their 2007Q3 values.
“Benchmark” corresponds to the benchmark result in Section 3.3. “Alternative Spec” corresponds to
the alternative collateral constraint specification that associates the borrowing limit with the expected
value of future capital. “Alternative Spec, OccBin” corresponds to the piecewise linear solution ob-
tained using toolbox OccBin. The initial capital and deb levels are calibrated so that the nominal
interest rate is 5% and the debt-to-asset ratio is 35%, based on the nonlinear solution for each specifi-
cation.

Since the piecewise linear solution method is not designed to produce policy func-
tions over a global domain such as those in Figure A.15, we focus on the comparison
for the ZLB episode studied in Section 3.3. To do so, we compare the dynamics implied
by different solution methods by starting from the same initial capital and debt levels,48

and feeding in the same sequences of gt and mt as described in Section 3.3. Figure A.20
plots the aggregate dynamics in models with different specifications and solved with dif-
ferent solution methods. The solid lines correspond to the benchmark results in Section
3.3. The dash-dotted lines correspond to the results under the alternative collateral con-
straint specification, based on the global nonlinear solution. As shown, the effects of the
negative productivity growth shock and credit shock are already much larger under the
alternative specification than the benchmark.49 This is because in the benchmark model

48The initial capital and debt levels are calibrated so that the nominal interest rate is 5% and the debt-
to-asset ratio is 35% based on the nonlinear solution, the same targets as in the benchmark experiment in
Section 3.3.

49One intermediate model specification between the benchmark and the current alternative model is to
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the lenders assign full weight to the worst scenario when evaluating the collateral value
of future capital, and thus are well prepared for the crisis state by allowing lower lever-
ages ex ante. Whereas with the alternative specification, the lenders are less precaution-
ary by allowing the entrepreneurs to borrow against the expected value of future capital,
putting less weight on the rare but severe crisis state. Consistent with this intuition, the
bottom right panel shows that the volume of credits grows much faster before the crisis
hits under the alternative specification than under the benchmark specification (the vol-
ume of credit in 2007Q3 is normalized to 1). Similarly, the dotted lines correspond to the
piecewise log-linear solution for the alternative specification, obtained using OccBin. As
shown, although the piecewise log-linear solution captures the overall shape of the dy-
namics, it overstates the severity of the crisis even more than the global solution for the
alternative specification: output and capital price drop by more than 40%, whereas both
drops implied by the benchmark model are modest and well align with the data.

In summary, for the model to produce crises with magnitude in line with data, it is
important to model agents taking precautionary measures against the rare but severe
crisis state, and to capture the high nonlinearity of the model when the crisis hits. The
global nonlinear solution is able to appropriately take into account both features.

I Representative Agent Model with Exogenous Wedges

The representative agent model shares all the ingredients with the full model, except
that the households and entrepreneurs are combined into representative households, who
solve the following problem:

max
ct,Lt,kt+1,Bt

E0

[
log ct −

1
η
(Lt)

η
]

s.t. Ptct + Pt
1

1− ∆k
t

qK′
t kt+1 +

1
1 + ∆b

t

Bt

Rt
≤ Bt−1 + Pt(rK

t + qK
t )kt + PtwtLt + Pt

∫ 1

0
Ξt(z)dz,

where, to remind readers, Pt is the price level, Rt is the bond nominal interest rate, rK
t is the

real return on capital, qK′
t and qK

t are the market prices for new and existing capital, wt is
the real wage, and

∫ 1
0 Ξt(z)dz is the profits transferred from the retailers in real terms. The

terms ∆b
t and ∆k

t are exogenous wedges and correspond to errors in the Euler equations

use the benchmark credit shock process and the alternative collateral constraint specification. The responses
in this intermediate model are also significantly larger than those in the benchmark model, suggesting that it
is the collateral constraint specification rather than the credit shock process that drives the main difference.
Results from the intermediate model are available upon requests.
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for bond and capital holdings of the representative households. The Euler equations with
these wedges are given in (19).

Following a tradition in the literature (e.g., Smets and Wouters (2007), Coibion et al.
(2012), Christiano et al. (2015), Gust et al. (2017)), we use this representative agent model
to interpret the data generated from the full model. To do so, we treat ∆b

t and ∆k
t as

exogenous consumption and financial wedges and back out them from the simulated time
series data from the full model. We treat the nominal interest rate, Rt, expected inflation

rate Et[πt+1], and the expected real return to capital Et[
rK

t+1+qK
t+1

qK′
t

] as observables50 and,

following Christiano et al. (2015), we set Mt+1
Mt

= β when constructing the two wedges.51

We allow households to correctly forecast future prices and allocations taking into
account the effects of their expectation errors, and to understand that ∆b

t and ∆k
t are re-

current exogenous shocks. To do so, we estimate an AR(1) process for each of ∆b
t and

∆k
t :

∆x
t+1 = µx + ρx∆x

t + εx
t , εx

t ∼ Normal(0, σ2
εx)

for x = b, k. In implementation, we draw a 50000-period time series from the full model,
drop the first 10000 period observations and estimate the AR(1) processes with the re-
maining sample. Table A.2 reports the point estimates for the coefficients.

Table A.2: Estimated AR(1) Processes for Consumption and Financial Wedges

µ ρ σε

∆b -0.0015 0.678 0.0032
∆k -0.0068 0.470 0.0123

We embed the processes of the two wedges, as well as the productivity growth process
that is the same as in the full model, to the representative agent model. This leaves four
continuous state variables (three for exogenous shocks and one for capital). We solve the
model using the global solution method described in Appendix H.2. We keep all parame-

50To estimate ∆b
t , Christiano et al. (2015) use the federal funds rate for Rt and the core CPI-inflation

forecasts from the Survey of Professional Forecasters for Etπt+1. Then the consumption wedge is calculated
from 1 + ∆b

t = (1 + Etπt+1)/(βRt) by ignoring the covariance terms. They estimate ∆k
t using the credit

spread constructed in Gilchrist and Zakrajsek (2012). The nominal interest rate, expected inflation rate, and
capital return in our model, which we treat as observables to the econometrician, contain the same set of
information as the empirical counterparts used in Christiano et al. (2015).

51The choice of the deterministic discount factor affects the estimated mean of the consumption wedge
and the financial wedge, but not the time variations. As long as the discount factor is recalibrated to match
the same bond interest rate, which we do, the choice of the deterministic discount factor when backing out
the wedges does not matter.
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ters the same as in the full model, except for the households’ discount factor β, which we
recalibrate to match the same target as in the full model—an annualized average nominal
bond interest rate of 5%.

We then take the representative agent model to analyze the ZLB episode. We set the
initial capital stock (in 2015Q1) such that the annualized nominal bond interest rate is at
5%. For the “Benchmark” experiment presented in Figure 8, we construct the consump-
tion and financial wedges from the ZLB episode in the full model that is described in
Section 3.3. In the experiment labeled “No ZLB,” we keep the consumption and finan-
cial wedges constructed from the full model. In the experiment labeled “Shutdown ZLB
wedge,” we construct the wedges from the full model with the ZLB constraint relaxed.
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