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A Proof of Proposition 1

Before proving Proposition 1, for convenience, we restate (in more detail) the assumptions of the
model and we prove two lemmas that are used to demonstrate the Proposition.

The model. A single contract is auctioned off through an AB or ABL auction. There are
n risk neutral firms that participate in the auction. Firm i’s cost of completing the job is given
by ¢i(x1,22,...,xy), where x; is a cost signal privately observed by firm i (z; is the type of firm
). We sometimes write compactly z_; to denote the vector of signals of all firms other than i.
We assume that firm ¢’s cost is separable in her own and other firms’ signals and linear in z;,
that ¢; (2, v—;) = a;x; + Ti(x_;), with a; > 0, OI';/0x; > 0, for all 4,j # ¢. Firm 4’s signal is
distributed according to a cumulative distribution function F;(z;), with full support [z,,Z;] and
density f;(z;). Signals are independent. The cost functions as well as the signals’ distributios
are common knowledge. Firms submit sealed bids formulated as percentage discounts over the
reserve price R. We restrict our attention to situations in which all firms always participate in the
auction, because they find it worthwhile to do so. Without this restriction, one should take into
account the possibility that a firm may decide not to participate for some cost signal realizations:
this would complicate the analysis but would not change the results qualitatively. Moreover, this
restriction rules out the possibility of non serious bids.

Now, let d; € [0, 1] denote firm i’s bid (discount). The expected profit of firm ¢, type x;, when
she participates and bids d; and the other firms follow the strategies §_; is:

(2, di, 0-5) = [(1 — di) R — Ci(xs,di, 6—5)] PW;(ds,0-;),

where PW,(d;,d_;) is the probability that firm ¢ wins when she bids d; and the other firms follow
the strategies d_;, and C;(z;,d;,d_;) is the expected cost of firm ¢ when her signal is x;, she bids
d; and the other firms follow the strategies §_;, conditional on the fact that ¢ wins the auction.
In symbols,

Ci(xi,diy6-3) = ax; + E_; [Ti(x—;) | ¢ wins when strategies are (d;,d_;)].

In the AB auction, the winning bid is the bid closest from below to A2. In the ABL auction, the
winning bid is the bid closest from above to W, provided that this bid does not exceed A2. If no
bid satisfies this requirement, the winning bid will be the one equal, if there is one, or closest from
below to W. In both auctions, if all firms submit the same bid, the contract is assigned randomly.
Similarly, if two or more firms make the same winning bid, the winner is chosen randomly among
them.

We first show that, for both auctions, whatever the strategies of the others, a firm has always
the possibility of placing a bid that gives her a strictly positive probability of winning the auction.
Since this result is pretty intuitive, we omit the proof.

LEMMA 1. Consider firm i and denote by d_; the bidding strategies of the other firms. Then,
for any §_;, there exists d; such that PW;(d;,d_;) > 0.

This result, together with the restriction of full participation, implies that, in equilibrium, all
firms will have a strictly positive probability of winning the auction.

We now show that, for both auctions, equilibrium bids are monotone.

LEMMA 2. Let § = (61,09,...,0,) be a (Bayes-) Nash equilibrium of either auction formats.
Then, for all i, 6;(x;) is weakly decreasing.

Proof. Counsider firm ¢, and let d; = 6;(x;), d} = d;(x}), be her equilibrium bids when her
signals are x; and z}, respectively, with z; < x}. Notice first that, in equilibrium, the probability



of winning the auction must be weakly decreasing in types. In fact, since d; and d; are equilibrium
bids, it must be true that:

and that

[(1 — d;)R — Cl(,’E/ d/» 1) Z)} PWZ(d;, 572) Z [(1 — dl)R — Cl(,’B;,dZ, (S,Z‘)] PWi(di, 572) (2)

1)y Y

Summing them up, we obtain

[Ci(y, di, 0-3) — Ci(ws, di, 6-3)] PWi(di, 6_3) > [Ci(}, dy, 6—5) — Cilwq, di, 6_3)| PWi(dy, 5_;).

Notice that Cy(z},d,d0_;) — Ci(zi,d,d_;) = a;(x; — z;) > 0, for all d. Hence, we obtain
PW;(d;,6_;) > PW,(d},6_;),

i.e., in equilibrium, the probability of winning the auction is weakly decreasing in types.

We now show that the equilibrium bidding function §;(x;) must be weakly decreasing. Now,
suppose, by contradiction, that there exists z;, x}, with x; < 2 and d; < d}. Notice that, because,
in equilibrium, PW,(d;,d_;) > 0 and PW;(d},5_;) > 0, the LHS and the RHS of (1)) are strictly
positive and the LHS of is weakly positive. Hence, multiplying by , we get

(1 —di)R — Ci(wi, di, 6-)] [(1 — d}) R — Ci(a}, d}, 6-4)] >

(1 = di)R — Ci(xi, d}, 6-3)] [(1 — di) R — Cy(xy, di, 04)]

and, after some manipulation,
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Now, since C;(z},d,d_;) — Ci(x;,d,0—;) = a;(x; — ;) > 0, for all d, the inequality above reduces
to

29 )

Hence, we get C;(a},d}, 6_;) > Ci(«},d;, 6_;); but this implies

[(1 - d;)R — C’i(x;, d;, 5_L)] PWZ(d;, 5_1) < [(1 - dz)R - C’i(x;, di, 5_L)] PWi(di, 5_1‘),
which contradicts . O

From the monotonicity property above, we can derive more precise predictions on the (Bayes-)
Nash equilibria in the two formats. Let’s start with the AB auction.

PROPOSITION 1-(i). In the AB auction, there is a unique equilibrium in which all firms submit
a 0-discount (irrespective of their signals), i.e., for all i, §;(x;) =0, for all x;.

Proof. The proof proceeds in three steps.

STEP 1. In equilibrium, for all i, there must exist #; > x, such that ;(z;) = d, for all
x; € [z;,3;), there must be a strictly positive probability that all firms make the same discount
d (where d is the largest conceivable discount in equilibrium, see Lemma 2). Suppose not. Let
d; = max,, §;(z;) be the largest bid of firm i (from Lemma 2, we know that d; = §;(x;)) and let
d = max; d; be the maximum conceivable bid in equilibrium. Notice that a firm that bids d can
win if and only if all other firms bid d. However, under our hypothesis, there exists at least one
firm that, with probability one, bids less than d. Hence, at least one of the firms that bid d has
a zero probability of winning the auction, but this cannot occur in equilibrium. Hence, we have
reached a contradiction.



STEP 2. d = 0. To see this, notice that a firm bidding d wins if and only if all other firms bid d
as well, and in this case every firm will win with probability 1/n. However, a downward deviation
would be profitable in any case: by making a lower bid, any firm will win with probability one
when all other participating firms bid d (moreover, with a lower discount). The incentive to make
a lower bid does not bite only when a lower bid is not allowed, only when d = 0.

STEP 3. For all i, 2; = T;. This is an immediate consequence of the fact that equilibrium

bidding functions are weakly decreasing.
O

Consider now the ABL auction. In this case there is a multiplicity of equilibria. This discrep-
ancy with respect to the AB format is not much due to the different way in which the winning
threshold is computed, but rather to the fact that in ABL the winning bid is the one closest from
above (rather than below) to the winning threshold, provided this bid does not exceed A2.

PROPOSITION 1-(%). In the ABL auction, there exists a continuum of equilibria in which all
firms make the same discount d (irrespective of their signals), for all i, §;(x;) = d for all x;, where
d is such that m;(xz;,d,6_;) > 0 for all i and for all x;.

Proof. If all firms make the same bid d, whatever their signal is, every firm will have a 1/n
chance of winning. If firm ¢ (of any type) makes a bid larger than d, then A2 will necessarily be
equal to d and firm i will have a zero probability of winning as her bid exceeds A2. If instead firm
i (of any type) makes a bid below d, then W will necessarily be equal to d and the winner will be
one of the other firms. Again, the probability of winning of firm ¢ will fall to zero. Therefore, d is
the only bid that guarantees a strictly positive probability of winning.

O

Beyond the flat equilibria described above, the ABL auction may possibly have other equilibria.
In any case, these equilibria display a very large degree of pooling on the maximum discount. The
next propositions formalizes this idea.

PROPOSITION 1-(7ii) - FIRST STATEMENT. Consider any equilibrium of the ABL auction: let
d denote the highest conceivable bid in equilibrium, d = max; §;(z;); let K be the set of firms
that bid d with strictly positive probability and let k denote the cardinality of K. Then, in any
equilibrium, k > n — n.

Proof. The proof proceeds by showing that if &k < n — n, any firm € K has a profitable
(downward) deviation.

o k < . In this case, any firm i € K that bidsicf would have a zero probability of winning
the auction (A2 will necessarily be lower than d, hence d cannot be a winning bid); but this
cannot occur in equilibrium.

e 1 < k <n—n. Consider any firm i € K with signal z;. This firm bids d and can win the
auction if and only if A2 = d and the winning threshold W is greater than or equal to the
largest bid lower than d. If this occurs, the winner will be chosen randomly from those firms
that bid d. Hence, the expected profit of firm i, type z; is

TI'Z‘(Q,L.,C?, 5_2) =

Pr(d is winning bid|J = j)Pr(J = j),

Z (1—d)R - Ci(z;, d, 0| = 5)
= j+1
where J denotes the number of firms in K, beyond firm i, that do bid d.

Consider now what happens when firm 4, type x; bids slightly less than d. In this case, her
expected profit would at least be

7r1(£17d — &, 6—1) 2
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[(1-d+¢e)R— Ci(z;,d—¢e,6_i|J = j)]Pr(d — ¢ is winning bid|J = j)Pr(J = j).

I
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In order for d to be the equilibrium bid of firm 4, type x;, it must hold that m;(xz;, d,0_;) >
mi(z,,d —e,d_;), for all ¢ > 0. In the limitﬂ this implies that

k—
Z —m[ (1 —d)R - Cy(z;,d,6_;|J = §)|Pr(d is winning bid|J = j)Pr(J = j) > 0.  (3)

Notice that Pr(d is winning bid|J = j) must be strictly greater than zero for at least some
j (if not, firm 4, type z;, would have a zero probability of winning and would rather deviate
downward or not participate). Hence, if the term between square brackets in is positive
for all j (notice that individual rationality implies that at least one of these terms must
be strictly positive), then the inequality above cannot be satisfied. However, consider the
possibility that the term between square brackets in is positive for some j and strictly
negative for the others. Notice that, because all bidding functions are weakly decreasing,
Ci(z;,d,6_;|J = j) must be weakly decreasing in j. Hence, there must be some 7 such
that the term between square brackets is strictly negative for n < j < 7, and positive for
n < j <k —1. In light of this, inequality can be written as

3 j]?[ci@iﬂ, 6_i|J = j) — (1 — d)R)Pr(d is winning bid|J = 5)Pr(J = j) >
Jj=n
k—1

> ﬁ[(l —d)R — Cy(z;,d, 6—;|J = j)]Pr(d is winning bid|J = j)Pr(J = j).
j=n+1

Notice that the LHS of the inequality above (which now contains only strictly positive terms)
is necessarily lower than

Z " [Ci(z;,d,6_4|T = j) — (1 — d)R|Pr(d is winning bid|J = j)Pr(.J = 5),

I |
3

and the RHS is necessarily strictly greater than

k—1 ~
3 - i -[(1 = R — Ci(e;,d. 64| = j)|Pr(d is winning bid|J = j)Pr(J = j).
j=n+1

But this would imply that m;(z;,d,d_;) < 0, which contradicts the fact that this is an
equilibrium.

O

PROPOSITION 1-(i4i) - SECOND STATEMENT. In any equilibrium of the ABL auction in which
there is at least one firm i € K such that PW,(d,_;) > PW; (d 5 d_;) fore — 0%, the probability

that at least n — 7 — 1 firms do bid d must be larger than 27 A1 J/Zf;é rJ, where r solves
SR (=) i = T, where T = (n—n)n—n-2)/(n—n—1).

Jj=1

Proof. Consider firm i, type z;. This firm bids d and wins the auction with probability

"i r(d is winning bid|J = j)Pr(J = j) n kzl Pr(J
— Jj+1 Jj+ 1 ’
= j=n—n—2

1Notlce that, for j <n —f — 1, when € — 0, Pr(d — ¢ is winning bid|J = j) — Pr(d is winning bid|J = j), and
Ci(z;,d—e,0- 1|J*J)_>C($ d5 ilJ = 3).

L



where J is the number of firms in K that do bid d (beyond firm i itself). Notice that, when
J > n —n — 2, the winning threshold W is necessarily equal to d. Suppose that firm ¢, type z;,
bids slightly less than d. Her probability of winning the auction would at least be

n—n—3
PW;(d—¢,6_;) > Z Pr(d — € is winning bid|J = j)Pr(J = )
j=n
+Pr(d — ¢ is winning bid|J =n — 7 — 2)Pr(J = n — i — 2).
Notice that, when J > n — 7 — 2, W will be equal to d and d — e cannot be a winning bid.
By assumption, for sufficiently small ¢, it must be PW;(d, d_;) > PW;(d—¢,_;). In the limit,
this inequality becomes

n—n—3 k—1

Z Pr(d is winning pi:ulj = 7)Pr(J =) n Z Pr(‘,]+:1 7) >
= J jem—m—2
n—mn—3 _
> Pr(d is winning bid|J = j)Pr(J = j) + Pr(J =n — i — 2),
j=n
or, equivalently,
k—1 n—n—3
Pr(J=j) n—n—2 . J S . . .
j:7§71 J 1Pr(J =n—n—-2)> ]:Zﬁ T 1Pr(d is winning bid|J = j)Pr(J = j). (4)

Notice that the RHS of the is positive. Hence, in order for to be satisfied, it must
necessarily hold that

k—1

Pr(J=j) _n—ii-

2
Pr(J =n—f—2). 5
i1l Ca_aoiiW=noA-2) (5)

\g

j=n—n—1
Notice that the LHS of the is lower than
ki Pr(J = j)
, ‘ n—n
j=n—n—1

Hence, in order for to be satisfied, it must necessarily hold that

k—1 _ _
. (n—n)(n—n—2) B .
j:ngﬁilPr(J—j) > P Pr(J=n-n-—2). (6)

Our goal is to find a lower bound to Zf;ll,ﬁ

Notice that the number J of firms that bid d (beyond firm 4) is the number of successes in
k — 1 independent trials, where the probability of success in the I-th trial is p; = Fj(&;); hence, J

is a random variable with Poisson binomial distribution. Now, denote by r; the ratio %.

_, Pr(J = j), knowing that @ must necessarily hold.

Inequality @ can be rewritten as

n—n—1 > 9 (7)

where T = (n—n)(n—n—2)/(n—n—1).
It can easily be shown that, if r; = ¢, then r; 1 > ¢, i.e., r; is increasing in j. Hence, we have
the following constraints:
Tk—1 > Th—2 > ... >T1. (8)



Finally, it must be that Z?;& Pr(J = j) = 1, which can be rewritten as
_ Hzﬂz_lﬁ_l T
= k—1 177 :

1+ Zj:l 1T

k—1
j=n—mn—

Pr(J=n—-n-1)

Our objective is to find a lower bound to > 1 Pr(J = j), i.e., we want to solve

J

k—1
inf Pr(J=n-n-1)]|1+ T
inf  Px( ypr+e > Il

j=n—mni=n—mn

under the constraints , , @

The solution to the above problem is no greater than the solution to the problem

k—1

inf Pr(J=n—n—1) 1+4Z ﬁr

Jj=n—mi=n—n
under the constraints @, @D and under the constraint
Th—1 > Th—2 > ... > T1. (10)

(We are replacing with a looser constraint). It’s easy to show, that, in the solution to the above
problem all constraints and are binding. Hence, the objective function is minimized at

k—(n—n—1)
rN=ro=...=1,—1=7r with Z r =T,
=1

- s k—1 i k—1 5
and the minimum is 3570 - 7/ > 5.

B Proof of Proposition 2

Proposition 2 can be easily obtained as a corollary of the following two lemmas that precisely
characterize the asymptotic (optimal) behavior of level-k firms, k > 1.

LEMMA 3

(i) Consider the AB auction. Let 5,(€n) (z) be the bidding strategy of a level-k firm, type x, for
k > 1, when there are n firms and the other firms’ levels range from 0 to & — 1 (and the

proportion of level-j firms is pj/Zfz_Ol p;). Then, as n — oo, 5,(€n)(x) — A2, for all z,
where:
— A2y = E[do| ALy < do < djg)];
—for j > 1, A2; = (poE[do|AL; < dy < djog)] + Zgzlpi@i,lﬂ[ﬁi_omﬂ)/@o +
2521 piﬂ[ﬁi_pﬁj])%
— Al = E[do|djo) < do < doq)l;
— for j > 1, A1; = (poAlo + 25:1 piﬂi—l)/(zzzopiﬁ

— dpg) and djgg are the 10-th and 90-th percentile of Go(d), Go(djg) = 0.1 and
GO(d[QO]) = 09



(i) Consider the ABL auction. Let 5](6") (z) be the bidding strategy of a level-k firm, for k > 1,
when there are n firms and the other firms’ levels range from 0 to k — 1 (and the proportion

of level-j firms is p;/ Zi:ol pi). Then, as n — oo, 51(!1) () = A3y for all @, where:
— for j > 1, A3; = (A2 + dj10))/2;
— A2 = E[do| ALy < do < djgq);
—for j > 1, A2; = (pE[do[AL; < do < digo)] + X)_y piA3ici s, s,/ (o +
Pl sar,);
— Al = E[do|dj10) < do < djgo)];
— for j > 1, AT; = (poAlo + S0 piA3i1) /(0o pi);

— dpo) and djgg) are the 10-th and 90-th percentile of Go(d), Go(djg) = 0.1 and
Go(d[go}) =0.9.

Proof.

(i) Consider the AB auction. Let Alp_; and A2;_; be the value of A1 and A2 when firms’
levels range from 0 to k — 1 (with frequencies (pO/Zf:_Ol Diy «-ey pk,l/Zf:_Ol pi)), level-0
firms bid according to Go(d) and level-j firms, 0 < j < k — 1, bid their best responses
to their own beliefs. Consider a level-1 firm first. In order to choose her optimal bid,
a level-1 firm has to compute the probability distribution of the winning threshold A2,
which in turn depends on Alg. Now, Alg = 37770, déj)/(n — 21), where d(()]) is the j-
th lowest bid by the level-O firms. Let Y;, ¢ = 1,...n be a sequence of i.i.d. random
variables with distribution Gy (y) = Go(yldpo < do < dpgo}). The crucial thing to show

is that, when n — oo, Aly converges almost surely to Aly = E[Y]. To see this, notice
first that, by the strong law of large numbers, 2?21 déj ) /n 225 E[dg], and, consequently,
A5 22 gy, dSTTTY 22 drgg. Now, let my = min{m € 1,...,n : d™ > dpyg} and
m, =max{m € 1,...,n: d((Jm) < djgo)}. Notice that >0 déj)/(mg —my + 1) converges

almost surely to E[Y] (because the random variables dgl), with [ € [my, m2], have the same
distributions as the Y;’s). Given this, in order to show that Aly = E[Y], it is sufficient
to show that the difference Al — Z;-n:zml déj ) /(mga — my + 1) converges almost surely to 0.
Now, this difference can be written as

m (4) m (4) m (4)
PO oY, L o/ LD Y
n—2n n—2n me —mq+1°

(11)

Notice that, since dy € [d,d] C [0,1], the first two addends in are certainly no greater

than _ ~
|my — a4+ |mg — (n —n) + 1]

)

n—2n

and this term goes to 0 almost surely. The last two terms in can be written as

2 2ms d(()]) ma —my + 1 _q
me —my +1 n—2n ’

Notice that the first fraction converges to E[Y], and that (m2 —mq +1)/(n — 27) goes to 1.
Hence, expression converges to 0 almost surely.

In a similar way, one can show that A2 converges almost surely to A2¢ = E[ddﬂo <dy <
djgg)]. Moreover, notice that, because Go(d) has full support, when n grows to infinity, for
all e > 0, Pr(dy € (A2 — &, A2y)) — 1. Hence, as n increases, to get a positive chance of



(ii)

winning, a level-1 has to make a bid which is closer and closer to the expected value (from
her viewpoint) of the winning threshold A2, 5§") (z) — A2y, for all z.

Consider now a level-2 firm. From her point of view, the winning threshold is A2, which, in
turn, depends on Al;. Reasoning in the same way as before, and given that level-1 firms’ bids
tend to A2y, one show that Al; converges almost surely to A1y = (poAlg+p1A20)/(p1+p2),
and A2; converges almost surely to A2y = (poE[do| ALy < do < djgoj] + p1420)/(po + p1).
As n increases, to get a positive chance of winning, a level-2 has to make a bid which is
closer and closer to the expected value (from her viewpoint) of the winning threshold A2,

Jén)(ac) — A2, for all .

Proceeding recursively, it is easy to show that, for all k > 1, Aly converges almost surely to
Aly = (poAlp + Zle piAQi,l)/(Zfzo p;), and A2y converges almost surely to

- PoE[do|ALx < do < djog)] + Sy PiA2i 115, AT,
k =

k
Po + Zi:l pl]]'[E171 >ﬂk]

Hence, 5,(6")@) — A2, for all 2.

Apart from minor differences, the proof is the same for the ABL auction. Just one point
is worth mentioning: from the point of view of a level-k firm, when n grows to infinity, the
interval from which the winning threshold is drawn converges to [@k,l, Ek,l]. Now, since
every number in this interval has the same probability of being extracted, a level-k firm will
bid closer and closer to the lowest value of this interval, 6](6") () — A3j_1.

O

LEMMA 4

(i) In the AB auction, A2y_1 < A2y, for all k > 1.

(ii) In the ABL auction: if Aly < (dpo) + A20)/2, then A2,y < A2y, for all k > 1; if Al >

(d[m] —l—ﬂo)/l then A2, > A2, forallk > 1; Zfﬂo = (d[m] —|—E0)/2, then A2, = A2,
forallk > 1.

Proof.

()

Notice first that, by construction, for all k, Al, < A2j: in fact, A2} is a weighted average
of numbers that are strictly greater than A2;. Second, for all £ > 1, Al,_; < Al <
A2j,_1: for k = 1, this is fairly obvious; for k¥ > 1, notice that, since Al;_; = (poAlg +
Zf;ll piA2;_1)/ Zf:_ol pi, we have that

k=1 k=1
Zpimkq = poAlo + Zpiﬂz;L
i=0 i=1

Using this and substituting into the expression for Al, we get

Zi:ol Piﬁkq -H%Ekq
- .
Zi:o Di
Herg7 Al El we@ted average of Al;,_, and A2j,_1, but since Al,_; < A2j,_1, it must
be Al,_1 < Al < A2p_1.

We now show, by induction, that, if Ej_l < ﬂj for all j < k, then /IQk <@k+1. So,
assume A2; < A2; forall j <k, k>1;let s=minj=0,...,k— 1Al < A2; and let

Al =



(i)

t=minj=0,...,k[Alx41 < A2;. Notice that, necessarily, it must be s < t; when s < t, we
have

— poB[do[ATy < do < digg)] + iy PiA2i-1
A2, = .
PO+ D imgy1 Pi
_pﬂi[ddmk <dy < d[go]] + ZE:S+1 piﬂi—l + Zf:t+1 piﬂi—l
p— k .
Po + Z:=s+1 pi + Zi=t+1 Di

Hence,
t k t k
(p() + z pi + Z pz)ﬂk - Z piﬂi—l = pOE[d0|ﬁk <dp < d[goﬂ + Z piﬂi_l. (12)
i=s+1 i=t+1 i=s+1 i=t+1

Now, notice that, since Al > Aly, it must be

_ PR

o) 7P0E[d0|A1k+1 <dp < d[go]] + Ziit.l,_l piA2;_1
k+1 = k+1
Do + Zi:tJrl Y23
_ % _
>poE[do|A1k <do < digo)] + S0t piA2iy
k+1 :
Po + Zi:t—l—l pi

Using , the last inequality becomes

(po + ZE:erl pi + Zf:wl pi)A2; — ZZ:erl PiA2i_1 + pry1A2;
Po + Zfitl-i-l pi
(po + Zf:t+1 i + Drr1) A2 + 301 pi(A2, A2, )
po+ it pi
Y a1 Pi(A24 A2 1)

k+1
Do + Zi:t-{-l Di

A2%pq >

=A%, +

>A2;.

When s = ¢, the whole derivation above goes through with the only difference that all terms
involving Z::Hl are absent. To complete the proof, we have to show that A2, < A2y,

which is fairly obvious, since A2; = (poE[do|Al; < dy < dioq]] + p1420)/(po + p1), is a
wighted average of A2 and a number (E[do|A1; < do < djgp)]) strictly greater than AZ2.

The proof for the ABL auction follows exactly the same procedure as the previous one, but
with one caveat: if A1y < A3g, we have that the sequence of A3}’s is strictly increasing; if,
instead, A1y > A3p, the sequence of A3}’s is strictly decreasing (in the proof, all inequalities
are reversed); of course, it is in principle possible that A1y = A3y, in which case the sequence
of A3}’s is constant. (Typically, we expect Alg > A3g: in fact, A3 is the average between
dpo) and A2y, and the latter is no greater than djgo); hence, if Gg is symmetric, A3y is
necessarily below the mean of Go(d). To have Aly < A3, Go(d) must be heavily skewed.)

O

The previous result immediately implies Proposition 2, that, for convenience, is reported below.

PROPOSITION 2. In the AB auction, in the limit, the (expected) distance of a firm’s bid from A2
is strictly decreasing in her level of sophistication. In the ABL auction, in the limit, the (expected)
distance of a firm’s bid from A3 is strictly decreasing in her level of sophisticationEI

2To be precise, this proposition holds only when Aly # A3g; when Alp # A3g, the (expected) distance of a
firm’s bid from A2 is constant in her level of sophistication.
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Proof. Take the AB auction. If we denote by k™%* the highest level of sophistication in
the population of firms, then: if k™%* is finite, the expected value of A2, when n — oo, is
simply A2jmas1; if not, the expected value of A2, when n — oo, is limg_, A2;. In any case,
A2, < E[A2], for all k. This, together with the fact that the sequence of A2;’s is strictly increasing,
implies that the distance between A2j (which is the optimal bid of a level-k + 1 firm) and E[A2)]
is strictly decreasing in k.

For the ABL auction, the proof is analogous.

C Numerical simulations

In this section, we present the results of some simulation exercises from a CH model of bidding
behavior in AB and ABL. The purpose of this exercise is twofold: on the one hand, it shows that
the main prediction of the CH model — the distance of a firm’s bid from A2 in AB, from A3 in
ABL, is strictly decreasing in her level of sophistication — does not hold only asymptotically (as
was proved in Proposition 2), but also for finite n; on the other hand, it provides support to the
additional empirical evidence presented in Subsection IV.C.

The simulations are run under the following assumptions and parametrization: we fix the
reserve price to 100 and assume that firms’ costs are private and independently and identically
distributed according to a uniform distribution on the interval [¢ = 50, = 70], with increments of
0.2. We assume that firms’ levels of sophistication range from 0 to ﬂ and that they are distributed
according to a truncated Poisson with parameter A[f] Level-0 firms are assumed to draw their bids
from a uniform distribution over the interval [0,0.3]. This assumption is roughly consistent with
our evidence (the minimum and maximum discounts observed in our sample are 0 and 0.421 in AB
and 0.016 and 0.317 in ABL) and ensures that level-0 firms will never play dominated Strategiesﬂ
Level-1 firms choose their bids to maximize their expected payoffs under the belief that all other
firms are level-0, while level-2 firms choose their bids to maximize their expected payoffs under
the belief that other firms are a mixture of level-0 and level-1. Given the behavior of level-0,
level-1 and level-2 firms, we compute the expected value of A2 (for the AB auction) or A3 (for
the ABL auction), and, for each level, the expected value and the variance (in square brackets) of
the distance between their bids and A2 or A3. Since our objective is to check the consistency of
the results of the simulations with real data, we must allow for errors. Hence, the distance from
A2 or A3 is computed supposing that level-1 and level-2 firms’ bids are subject to logistic errors:
every bid is played with positive probability but the probability that a level-l firm (I = 1,2) with
cost ¢ bids d is exp(nIL;(d;c))/ Yoaexp(nIl;(d; ¢)), where II;(d; ¢) is the expected payoff of a level-1
firm when her cost is ¢ and she bids d, and where 1 denotes the error parameter (with n = 0
meaning random behavior and 1 — oo meaning no errors). We also computed the truly optimal
bid, i.e., the bid that would maximize the expected payoff of a firm who has fully correct beliefs
about the behavior of other firms. Proposition 2 showed that, when n — oo, this truly optimal bid
converges to A2 in AB, to A3 in ABL, but for finite n, it may be different. Hence, it is important
to verify whether A2 and A3 are indeed good proxies for the optimal bid. The results of the
simulations are reported in Tables for different values of the parameter of the distribution

3We consider only level-1 and level-2 firms because experimental evidence has shown that the majority of subjects
performs no more than 2 levels of iteration (see, e.g., Crawford, Costa-Gomes and Iriberri 2013).

4This is the usual assumption adopted in this literature for the distribution of levels. The parameter X is the
expected value (and also the variance) of the distribution. Hence, a higher A means that firms are, on average,
more sophisticated.

5In this sense, level-0 firms have at least a minimum degree of rationality. Their random behavior could be
interpreted as the consequence of a total absence of any precise beliefs about the behavior of others. The assumption
that level-0 players do not play dominated strategies represents a small departure from the standard CH-literature.
However, we believe that this represents a reasonable assumption in real world applications: all firms, also the
most naive ones, should easily realize that it is not a good idea to offer a discount that would not allow it to cover
the cost of realizing the work. In a similar vain, Goldfarb and Xiao (2011), in their estimated CH-model of entry
decisions by firms, endow level-0 firms with a minimum degree of rationality.
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of levels (A = 0.5,1,2), of the number of firms (n = 25,50, 100) and of the parameter of the error
distribution (n = 0.5, 1, 2).

Table C1 — Simulation results for the AB auction with n = 0.5.

distance from A2 opt. distance from opt. bid

n A A2 level 0 | level I ] level 2 bid level 0 | level 1 | level 2
0.5 20.3 8.5 [2.4 5.2 [0.9 4.2 [0.6 20.4 8.5 [2.4 5.3 [0.9 4.3 [0.6

25 1 20.1 8.4 2.4 5.2 0.9 4.0 [0.5 19.5 8.2 [2.3 5.1 [0.9 3.6 [0.4
19.8 8.3 [2.3 5.1 [0.9 1.6 [0.1 19.5 8.2 [2.3 5.1 0.9 1.3 0.1

0.5 21.0 8.8 [2.6 6.7 [1.5 5.9 (1.2 20.1-21.3 8.5 (2.4 6.6 [1.4 5.8 [1.1

50 1 20.7 || 8.6 [2.5 6.6 [1.5 5.9 [1.2 20.4 8.5 [2.4 6.6 [1.4 5.8 [1.1
20.6 8.6 (2.5 6.6 [1.5 2.6 (0.2 20.4 8.5 (2.4 6.6 [1.4 2.4 10.2

0.5 21.0 8.8 [2.6 7.7 [2.0] 7.1 [1.7] 20.4 8.5 (2.4 7.5 (1.9 7.0 [1.6

100 1 20.7 || 8.6 [2.5 7.6 [1.93] | 7.5 [1.8§] 20.4 8.5 [2.4 7.5 (1.9 7.4 1.8
2 (206 || 8625 | 7.6 [1.9] | 4.2[0.6 204 8524 | 75[1.9] | 41[05

Table C2 — Simulation results for the AB auction with n = 1.

distance from A2 opt. distance from opt. bid
n A A2 level 0 | level 1 | level 2 bid level 0 | level 1 [ level 2
0.5 20.3 8.5 (2.4 2.7 (0.2 1.1 [0.0 20.4 8.5 2.4 2.7 0.2 1.2 [0.0
25 1 20.1 8.4 [2.4 2.6 (0.2 1.5 0.1 19.5 8.2 2.3 2.6 (0.2 0.9 [0.0
2 19.8 8.3 (2.3 2.6 (0.2 0.6 (0.0 19.5 8.2 2.3 2.6 (0.2 0.3 [0.0
0.5 21.0 8.8 [2.6 4.2 (0.6 2.1 (0.1 20.1-21.3 8.5 2.4 4.1 (0.6 2.4 (0.2
50 1 20.7 8.6 [2.5 4.1 [0.6 2.4 0.2 20.4 8.5 (2.4 4.0 [0.5 2.2 (0.2
2 20.6 8.6 (2.5 4.1 [0.6 0.5 (0.0 20.4 8.5 2.4 4.0 [0.5 0.3 [0.0
0.5 21.0 8.8 [2.6 6.0 [1.2 3.3 (0.4 20.4 8.5 2.4 5.9 [1.2 3.6 (0.4
100 1 20.7 8.6 [2.5 6.0 [1.2 4.7 0.7 20.4 8.5 (2.4 5.9 [1.2 4.5 (0.7
2 20.6 8.6 (2.5 6.0 [1.2 0.9 (0.0 20.4 8.5 2.4 5.9 (1.2 0.7 [0.0
Table C3 — Simulation results for the AB auction with = 2.
distance from A2 opt. distance from opt. bid
n A A2 level 0 | level 1T | level 2 bid level 0 ] level 1T | level 2
0.5 20.3 8.5 [2.4 1.1 [0.03 0.2 [0.00 20.4 8.5 2.4 1.1 [0.04 0.3 [0.00
25 1 20.1 8.4 (2.4 1.0 [0.03 0.8 [0.02 19.5 8.2 2.3 1.0 [0.03 0.3 [0.00
2 19.8 8.3 [2.3 1.0 [0.03 0.4 [0.00 19.5 8.2 2.3 1.0 [0.03 0.1 [0.00
0.5 21.0 8.8 [2.6 1.5 [0.08 0.2 [0.00 20.1-21.3 8.5 2.4 1.5 [0.07 0.9 [0.03
50 1 20.7 8.6 [2.5 1.4 [0.06 0.5 [0.01 20.4 8.5 (2.4 1.4 [0.06 0.3 [0.00
2 20.6 8.6 [2.5 1.4 [0.06 0.3 [0.00 20.4 8.5 2.4 1.4 [0.06 0.0 [0.00
0.5 21.0 8.8 [2.6 2.8 [0.26 0.5 [0.01 20.4 8.5 2.4 2.8 [0.26 1.0 [0.03
100 1 20.7 8.6 [2.5 2.7 [0.25 1.2 [0.05 20.4 8.5 [2.4 2.8 [0.26 1.0 [0.03
2 20.6 8.6 [2.5 2.7 10.25 0.2 [0.00 20.4 8.5 2.4 2.8 10.26 0.0 [0.00
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Table C4 — Simulation results for the ABL auction with n = 0.5.

distance from A3 opt. distance from opt. bid
n A A3 level 0 | level 1 [ level 2 bid level 0 ] level 1 [ level 2
0.5 13.5 7.7 [2.0 5.6 [1.1 4.5 (0.7 15.0 7.6 [1.9 5.0 [0.8 4.1 [0.5
25 1 14.5 7.6 1.9 5.2 0.9 3.2 0.4 15.3 7.6 1.9 4.9 0.8 3.1 0.3
2 15.6 7.6 (1.9 4.9 (0.8 2.11[0.1 15.3 7.6 [1.9 4.9 0.8 2.0[0.1
0.5 12.7 7.8 [2.0 6.8 [1.6 6.0 [1.2 13.5 7.6 [1.9 6.6 [1.4 5.7 [1.1
50 1 13.5 7.7 2.0 6.6 1.4 5.0 [0.8 15.0 7.6 [1.9 6.3 [1.3 4.7 0.7
2 15.3 7.6 (1.9 6.2 [1.3 3.3 0.4 15.3 7.6 [1.9 6.2 [1.3 3.3 0.4
0.5 12.7 7.8 [2.0 7.3 [1.8 6.9 [1.6 15.6 7.6 [1.9 6.9 [1.6 6.6 [1.5
100 1 13.1 7.7 12.0 7.2 1.7 6.5 [1.4 14.1 7.6 [1.9 7.0 [1.6 6.4 (1.4
2 14.3 7.6 1.9 7.0 1.6 5.4 (1.0 14.1 7.6 1.9 7.0 1.6 5.4 (1.0

Table C5 — Simulation results for the ABL auction with n = 1.

distance from A3 opt. distance from opt. bid
n A A3 level 0 | level 1 | level 2 bid level 0 | Tevel 1 | level 2
0.5 13.5 7.7 (2.0 4.2 [0.6 2.3 0.2 15.0 7.6 [1.9 3.1 0.3 1.5 [0.1
25 1 14.5 7.6 [1.9 3.4 [0.4 1.2 [0.0 15.3 7.6 [1.9 3.0 [0.3 0.9 [0.0
2 15.6 7.6 [1.9 2.8 10.3 0.5 [0.0 15.3 7.6 [1.9 3.0 [0.3 0.5 0.0
0.5 12.7 7.8 [2.0 5.8 [1.1 4.1 [0.5 13.5 7.6 [1.9 5.4 (1.0 3.6 (0.4
50 1 13.5 7.7 [2.0 5.4 [1.0 2.6 [0.2 15.0 7.6 [1.9 4.8 [0.8 2.0[0.1
2 15.3 7.6 [1.9 4.8 0.8 0.9 [0.0 15.3 7.6 [1.9 4.8 10.8 0.9 10.0
0.5 12.7 7.8 [2.0 6.8 [1.5 6.0 [1.2 15.6 7.6 [1.9 6.2 [1.3 5.5 [1.0
100 1 13.1 7.7 [2.0 6.6 [1.4 5.2 [0.9 14.1 7.6 [1.9 6.3 [1.3 4.9 [0.8
2 14.3 7.6 1.9 6.3 [1.3 3.0 [0.3 14.1 7.6 1.9 6.3 [1.3 3.1 (0.3

Table C6 — Simulation results for the ABL auction with n = 2.

distance from A3 opt. distance from opt. bid
n A A3 level 0 | level 1 | level 2 bid level 0 | Tevel 1 | level 2
0.5 13.5 7.7 [2.0 3.3 0.4 1.7 [0.1 15.0 7.6 [1.9 1.9 [0.1 0.5 [0.0
25 1 14.5 7.6 (1.9 2.4 (0.2 0.9 [0.0 15.3 7.6 [1.9 1.7 0.1 0.4 [0.0
2 15.6 7.6 (1.9 1.5 0.1 0.2 0.0 15.3 7.6 [1.9 1.7 [0.1 0.3 (0.0
0.5 12.7 7.8 2.0 4.5 [0.7 2.3 10.2 13.5 7.6 [1.9 3.9 0.5 1.7 [0.1
50 1 13.5 7.7 2.0 3.9 [0.5 1.6 0.1 15.0 7.6 [1.9 2.910.3 0.6 [0.0
2 15.3 7.6 [1.9 2.8 (0.3 0.3 (0.0 15.3 7.6 [1.9 2.710.3 0.3 (0.0
0.5 12.7 7.8 2.0 5.7 [1.1 4.2 [0.6 15.6 7.6 [1.9 4.6 [0.7 3.41[0.4
100 1 13.1 7.7 2.0 5.4 (1.0 3.0 [0.3 14.1 7.6 [1.9 5.0 [0.8 2.6 0.2
2 14.3 7.6 [1.9 4.9 [0.8 0.9 (0.0 14.1 7.6 [1.9 5.0 [0.8 1.0 [0.0

Looking at the results of these numerical simulations, we detect some regularities,

summarize below.

that we

(a) For all values of n, A, and 7, the optimal bid (i.e., the bid that maximizes the expected
payoff of a firm that has fully correct beliefs about the behavior of all other firms) is essen-
tially unaffected by the private cost. In fact, of the 54 possible combinations of parameters
considered, there are only two cases in which the optimal bid is not constant in the private
cost: in AB, with n = 0.5, n = 50, A = 0.5 and in AB, with n = 1, n = 50, A = 0.5.
Moreover, in these two cases, the range of the optimal bidding function is pretty narrow
(about 1 percent). This supports the intuition that, in these auctions, costs do not matter
much for bidding.

For all values of n, A, and 7, the optimal bid is extremely close to the expected value of A2
in AB, of A3 in ABL. This supports the intuition that, in these auctions, A2 and A3 are
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good proxies for the optimal bid, even when n is finite.

For all values of n, A, and 7, the distance of a firm’s bid from the expected value of A2 in
AB, of A3 in ABL, is decreasing in her level of sophistication. Hence, the main theoretical
prediction of the asymptotic CH model (Proposition 2) seem to hold also when n is finite.

For given n, A, and 7, level-1 and level-2 firms’ bids are, on average, lower in ABL than in
AB. This fact is consistent with the empirical evidence discussed in Subsection IV.C.

In either auction, for all values of n, A, and 7, the variance of the distance from A2 or A3 is
decreasing in the sophistication level of the firm. This fact is consistent with the empirical
evidence discussed in Subsection IV.C.

For given A\ and 7, the optimal bid and the expected value of A2 are increasing in n in
AB, the optimal bid and the expected value of A3 are decreasing in n in ABL. This fact is
consistent with the empirical evidence discussed in Subsection IV.C.

Additional empirical evidence

This Section presents additional empirical evidence, both descriptive and inferential, recalled and
commented in Sections III and IV of the paper. In particular:

Figures [DI] [D2] and [D3] report descriptive evidence about the distribution of the sophistica-
tion index over time and by firm size;

Table[D1] columns (1) and (5), show that our main empirical result does not change when we
amend our baseline model (equation (2) in the paper) including in the estimation those firms
with a sophistication index equal to 0 (replacing log(BidderSoph) with log(14 BidderSoph));

Table columns (2) and (6), show that our main empirical result does not change when
we amend our baseline model (equation (2) in the paper) adopting a log-linear specification
instead of a log-log one;

Table columns (3) and (7), show that our main empirical result does not change when
we amend our baseline model (equation (2) in the paper) adding the number of bidders as
a control variable;

Table columns (4) and (8), show that our main empirical result does not change when
we amend our baseline model (equation (2) in the paper) replacing auction controls with
auction-fixed effects;

Table columns (1)-(4), show, for the AB auctions, that our main empirical result does
not change when we adopt a two-step Heckman model to control for selection bias problems;

Table columns (5)-(10), show, for the AB auctions, that our main empirical result does
not change when the sophistication index is category-specific: when a firm participates in
auction j, only her performances in past auctions of the same format and of the same category
of work as j are considered in the computation of her sophistication level;

Table columns (1)-(3), show, for the AB sample, the estimation results when firm- and
firm-year-fixed effects are not included in the models discussed in Subsection II1.E;

Table columns (4)-(7), show, for the AB sample, the estimation results when firm-year-
fixed effects are replaced by firm-fixed effects in the models discussed in Subsection IIL.E;

Table column (8), shows, for the AB sample, additional estimation results with firm-
year-fixed effects in the model discussed in Subsection I1I.E;
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Table [D4] shows, for the ABL sample, the estimation results of the models discussed in
Subsection II1.E;

Table [D5| shows that our main empirical result does not change when we amend our baseline
model (equation (2) in the paper) replacing firm- or firm-year-fixed effects with firm-semester
or firm-category of work- or firm-category of work-semester- or firm-category of work-year-
fixed effects;

Table [Df] shows the estimation results of a model in which the dependent variable is the
level of bids;

Table [D7] shows the estimation results of quantile regression models in which the dependent
variable is the level of bids;

Table D§|shows that our main empirical result does not change when we control for potential
cartels in AB;

Table[D9|shows that our main empirical result does not change when we control for potential
cartels in ABL;

Table columns (1) and (2), show that bids are, on average, lower in ABL than in AB;

Table column (3), shows that A2 in AB increases with the number of participating
firms;

Table column (4), shows that A3 in ABL decreases with the number of participating

firms;

Table columns (5)-(10), show that the standard deviation of the average distance
between bids and A2 [A3] in an AB [ABL] auction is decreasing in the average sophistication
level of the firms participating in that auction;

Table[DI1]shows that our main empirical result does not change when we use some potential
instruments to proxy bidders’ sophistication.
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Figure D1 — Distribution of the sophistication index in AB.
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Figure D2 — Distribution of the sophistication index in ABL.
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Figure D3 — Distribution of the sophistication index in AB by firm size.
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Table D1 — Robustness checks on the baseline model specification.

Dependent variable:

log | Distance]

Auction format AB AB AB AB ABL ABL ABL ABL

1) (2) (3) 4) (5) (6) (7N (®)
log(1+BidderSoph) -0.240%%* -0.568%**

(0.048) (0.083)
BidderSoph -0.020%** -0.113%**
(0.003) (0.021)
log(BidderSoph) -0.241%**%  -0.140%** -0.440***  -0.293%**
(0.041) (0.023) (0.072) (0.050)

Auction controls YES YES YES NO YES YES YES NO
Firm controls NO NO NO YES NO NO NO YES
Firm-year FE YES YES YES NO YES YES YES NO
Auction-FE NO NO NO YES NO NO NO YES
Firm-Auction controls YES YES YES YES YES YES YES YES
Observations 8,965 8,965 8,573 8,924 1,591 1,591 1,266 1,501
R-squared 0.361 0.361 0.356 0.379 0.524 0.516 0.506 0.361

OLS estimations. Robust standard errors clustered at firm-level in parentheses.
Awuction controls include: the auction’s reserve price, the expected duration of the work, dummy variables for the type
of work, dummy variables for the year of the auction, and, in columns (3) and (7), the number of bidders. Firm controls
include: dummy variables for the size of the firm, and the distance between the firm and the CA. Firm-Auction controls
include: a dummy variable for the firm’s subcontracting position (mandatory or optional), and a measure of the firm’s

backlog.

Inference: (¥**) = p < 0.01, (**) = p < 0.05, (*) = p < 0.1.

Table D2 — Learning dynamics: further results for AB auctions.

Dependent variable

log | Distance]

Auction format AB
M £) 6) @ @) © @) ®
log(PastPart) -0.139%%* -0.212%** -0.220%%* -0.366%**
(0.024) (0.041) (0.041) (0.044)
log(PastPerf) 0.126
(0.130)
log(1 4+ PastWins) -0.075 -0.027 0.217%%* 0.192%*
(0.056) (0.056) (0.079) (0.076)
log(1 4+ PastDefeats) -0.141%** -0.310%**
(0.030) (0.048)
log(BidderSoph) -0.166*** -0.186%**
(0.025) (0.039)
Auction controls YES YES YES YES YES YES YES YES
Firm controls YES YES YES NO NO NO NO NO
Firm-FE NO NO NO YES YES YES YES NO
Firm-year-FE NO NO NO NO NO NO NO YES
Firm-Auction controls YES YES YES YES YES YES YES YES
Observations 8,927 8,927 8,927 8,838 8,838 8,838 8,838 8,573
R-squared 0.188 0.188 0.192 0.267 0.267 0.269 0.267 0.354

OLS estimations. Robust standard errors clustered at firm-level in parentheses.
Awuction controls include: the auction’s reserve price, the expected duration of the work, dummy variables for the type of
work, dummy variables for the year of the auction. Firm controls include: dummy variables for the size of the firm, and
the distance between the firm and the CA. Firm-Auction controls include: a dummy variable for the firm’s subcontracting
position (mandatory or optional), and a measure of the firm’s backlog.
Inference: (***) = p < 0.01, (**) = p < 0.05, (*) =p < 0.1.
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Table D5 — Further results: firm-category of work-fixed effects and firm-semester fixed effects.

Dependent variable log | Distance]
Auction format AB AB ABL ABL ABL ABL
1) (2) (3) 4) (5) (6)
log(BidderSoph) -0.166%*%  _0.124%* -0.089 -0.476%F¥F  _0.507FF* 0.132
(0.040) (0.052) (0.117) (0.076) (0.102) (0.164)
Auction controls YES YES YES YES YES YES
Firm-semester-FE NO NO YES NO NO NO
Firm-category of work-FE YES NO NO YES NO NO
Firm-category of work-semester-FE NO YES NO NO NO YES
Firm-category of work-year-FE NO NO NO NO YES NO
Firm-Auction controls YES YES YES YES YES YES
Observations 8,642 7,463 1,154 1,287 1,053 838
R-squared 0.303 0.478 0.580 0.528 0.584 0.691

OLS estimations. Robust standard errors clustered at firm-level in parentheses.

Awuction controls include: the auction’s reserve price, the expected duration of the work,dummy variables for
the type of work, dummy variables for the year of the auction. Firm-Auction controls include: a dummy
variable for the firm’s subcontracting position (mandatory or optional), and a measure of the firm’s backlog.

Inference: (***) = p < 0.01, (**) = p < 0.05, (*) = p < 0.1.

Table D6 — Sophistication and bid levels: overall sample.

Dependent variable log(Discount) Discount Discountlog(Dtscount) Discount log(Discount) Discount
Auction format AB AB AB ABL ABL ABL ABL
€3] () (3) (4) (5) (6) (M
log(BidderSoph) 0.006 0.083 -0.247* -0.014 -0.367 -0.015 -0.390
(0.010) (0.117)  (0.142) (0.022) (0.239) (0.024) (0.260)
Auction controls YES YES YES YES YES YES YES
Firm-FE YES YES NO YES YES NO NO
Firm-year-FE NO NO YES NO NO YES YES
Firm-Auction controls YES YES YES YES YES YES YES
Observations 8,838 8,838 8,573 1,410 1,410 1,266 1,266
R-squared 0.348 0.530 0.590 0.525 0.678 0.583 0.715

OLS estimations. Robust standard errors clustered at firm-level in parentheses.

Awuction controls include: the auction’s reserve price, the expected duration of the work,dummy variables for
the type of work, dummy variables for the year of the auction. Firm-Auction controls include: a dummy
variable for the firm’s subcontracting position (mandatory or optional), and a measure of the firm’s backlog.

Inference: (***) = p < 0.01, (**) = p < 0.05, (*) = p < 0.1.
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Table D8 — Controlling for potential cartels in AB auctions.

Dependent variable log | Distance]
Auction format
1) (2) (3) “4) () (6) (7
log(BidderSoph) -0.163%%* -0.163%%* -0.193%** -0.189%** -0.282%%* -0.153%%* -0.198%**
(0.023) (0.023) (0.037) (0.037) (0.042) (0.031) (0.053)
log(GroupMembers) -0.169*** 0.031 -0.246*** -0.208* -0.252%*
(0.032) (0.068) (0.046) (0.109) (0.132)
log(GroupMembers)
x ShareGroupMembers -0.416%** -0.797*** -0.526%*
(0.120) (0.248) (0.274)
ShareGroupMembers 0.153 1.425%* 1.019
(0.095) (0.551) (0.663)
Auction controls YES YES YES YES YES YES YES
Firm controls YES YES NO NO NO YES NO
Firm-FE NO NO YES YES NO NO YES
Firm-year-FE NO NO NO NO YES NO NO
Firm-Auction controls YES YES YES YES YES YES YES
Observations 8,037 8,037 7,993 7,993 7,794 3,861 3,834
R-squared 0.202 0.203 0.263 0.264 0.343 0.181 0.300

OLS estimations. Robust standard errors clustered at firm-level in parentheses.

ShareGroupMembers is the fraction of the members of a potential cartel actually bidding in that auction. In
columns (6)-(7), samples include only firms with no connection with any other firm participating in that auction.
Awuction controls include: the auction’s reserve price, the expected duration of the work,dummy variables for the
type of work, dummy variables for the year of the auction. Firm controls include: dummy variables for the size of
the firm, and the distance between the firm and the CA. Firm-Auction controls include: a dummy variable for the
firm’s subcontracting position (mandatory or optional), and a measure of the firm’s backlog.

Inference: (***) = p < 0.01, (**) = p < 0.05, (*) = p < 0.1.

Table D9 — Controlling for potential cartels in ABL auctions.

Dependent variable log | Distance]
Auction format ABL
1) (2) (3) 4) (5) (6) (7) (8) 9)
log(BidderSoph) -0.369%** _0.356%*%* -0.430%** -0.428%** _(0.489*** _(.484*** _(0.270*** -0.365*** -0.421 ¥**
(0.049)  (0.051) (0.065) (0.066) (0.073) (0.074) (0.071) (0.100) (0.113)
log(GroupMembers) 0.029  0.301** -0.141 0.157 -0.170 0.105
(0.056) (0.120) (0.121) (0.434) (0.139) (0.560)
log(GroupMembers)
X ShareGroupMembers -0.528** -0.458 -0.466
(0.243) (0.443) (0.510)
ShareGroupMembers 0.315 0.100 0.157
(0.263) (1.355) (1.727)
Auction controls YES YES YES YES YES YES YES YES YES
Firm controls YES YES NO NO NO NO YES NO NO
Firm-FE NO NO YES YES NO NO NO YES NO
Firm-year-FE NO NO NO NO YES YES NO NO YES
Firm-Auction controls YES YES YES YES YES YES YES YES YES
Observations 1,316 1,316 1,258 1,258 1,131 1,131 578 543 472
R-squared 0.264 0.268 0.439 0.440 0.479 0.480 0.240 0.570 0.635

OLS estimations. Robust standard errors clustered at firm-level in parentheses.

ShareGroupMembers is the fraction of the members of a potential cartel actually bidding in that auction. In
columns (7)-(9), samples include only firms with no connection with any other firm participating in that auction.
Awuction controls include: the auction’s reserve price, the expected duration of the work,dummy variables for the
type of work, dummy variables for the year of the auction. Firm controls include: dummy variables for the size of
the firm, and the distance between the firm and the CA. Firm-Auction controls include: a dummy variable for the
firm’s subcontracting position (mandatory or optional), and a measure of the firm’s backlog.

Inference: (***) = p < 0.01, (**) = p < 0.05, (*) = p < 0.1.
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