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Online Appendix 
 

A. Representative Democracy Model with a Continuum of Types.  This part of the appendix is 
largely an adaptation of Proposition 2 and Corollary 1 in Besley and Coate (1997) to the case of 
a continuum of types.  Their central assumption is that the policy preference of every population 
member is known and, if a population member is elected, then that policy will be implemented.  
Their Corollary 1 states roughly that existence of a Condorcet winner among preferred policy 
vectors in the population implies single candidate equilibrium exists for sufficiently low cost of 
becoming a candidate, with the individual having the Condorcet winning policy vector the 
candidate (and winner).  Besley and Coate (BC) assume an integer number of voters, any of 
whom can be a candidate.  Our model assumes a continuum of voters and thus potential 
candidates, indexed by endowed income y, with continuous distribution F(y) and density f(y), the 
latter positive on the support of y.  We make analogous assumptions about preferences and 
equilibrium as do BC.  We next summarize those assumptions and introduce a bit more notation, 
and then report the results of interest.  We provide an additional result about uniqueness of 
equilibrium, but under a strong modification to BC’s model.   
 
 A population member has indirect utility function V = V(p,y), where p is a policy vector.  
In the voucher-model application, a voucher, income tax rate, eligibility threshold, and per 
student level of public expenditure arise in equilibrium, but the policy vector in the indirect 
utility function V is tri-variate as one variable is eliminated by the government balanced-budget 
requirement.  Let p*(y) denote the preferred policy choice of voter y, which we assume is 

unique.  Let P* denote the set of p* values; i.e., * *P {p (y) f (y) 0}.    The results regard the case 

where there is a Condorcet winner pw: 
 
pw is a Condorcet winner if w *p P and V(pw,y) ≥ V(p,y) for at least one-half the measure of 

voters for all *p P .  
 
Let yw satisfy pw = p*(yw).  Income yw may or may not be unique though it is unique in the 
voucher application.  However, we have multiple voters with income yw, consistent with the 
notion that f(y) is positive.  Let Yw denote the set of yw values. 
 
 Equilibrium assumes voters first decide whether to become candidates, followed by 
voting.   Any voter can become a candidate at 0 cost, and voters choose to be candidates or not 
simultaneously.  Given the slate of candidates, assumed non-empty at the moment, voters 
simultaneously and costlessly vote by voting for one candidate, though any voter can abstain.  If 
a voter is indifferent between candidates and votes, then the voter randomizes with equal 
probabilities among them.  The candidate receiving the highest measure of votes is the winner 
and that candidate’s preferred policy is implemented.  If there is a tie among the highest vote 
getters, then a winner is selected among them with equal probabilities.  If no candidate enters the 
race or if a positive measure of votes fails to materialize, then a relatively lousy policy p0 is 

                                                 
1 Part A of this appendix tracks closely part of the on-line appendix for Epple and Romano (2014). 
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implemented, which is worse for everyone than a positive measure of policies *p P . 2  It is also 
assumed that voters never choose a weakly dominated strategy when voting.   
 
 Two preliminary results are: 
 
Result 1:  If two candidates enter from the set whose policies are preferred to p0, then a 
candidate that is majority preferred will win. 
 
Result 2:  If one candidate enters from the set whose policies are preferred to p0, then that 
candidate is elected. 
 
Result 1 is implied by the assumption that voters never choose a weakly dominated strategy.  
Given that it is costless to vote, a voter is never worse off and sometimes better off voting for 
their preferred candidate if there are just two candidates from this set.3  As well, sincere voting is 
implied with two candidates.  Result 1 and the sincerity implication are results in BC.   
 
 Result 2 follows since everyone prefers the election of any candidate from this set to the 
lousy default outcome.  It is not an equilibrium for a zero measure of voters to vote.   
 
 The main result is as follows: 
 
Result 3: Assuming a Condorcet winner among preferred policies: (i) a single candidate 
equilibrium having a candidate yw exists, with that candidate elected; and (ii) a single candidate 
equilibrium must have a yw elected. 
 
Proof of Result 3: (i) If only a yw becomes a candidate, then that candidate will be elected by 
Result 2.4  A yw becoming a singleton candidate is an equilibrium, since, by Result 1, any wy Y
would not be elected and then gains nothing by also entering; nor would another yw entering 
gain since his preferred policy arises anyway.  (ii) It is not an equilibrium for any wy Y to be 
the only entrant, since, by Result 1, a yw would enter and win the election.      ■                 
 
We emphasize that Result 3 is a simple adaptation of BC’s Corollary 1. 
 
 We can modify the BC model to generate uniqueness of equilibrium with equilibrium 
policy pw.  Assume two parties that simultaneously offer their party’s candidacy to any voter.  
Only party candidates run.  Once the slate is set, voters simultaneously vote as above.  
Preferences are as above, in particular party affiliation of a candidate does not affect preferences.  
Such a political process might arise if running for election is prohibitively costly for a non-

                                                 
2 The notion is that a lack of leadership if no one is elected results in a worse policy than that advocated preferred by 
some potentially elected households (though this assumption is becoming increasingly difficult to defend).  Note, 
too, that BC assumed, if only one candidate enters, that candidate is automatically the winner (as that candidate 
could vote for himself if no one else votes).  Since we require a positive measure of votes to win given the 
continuum, we must modify the assumption a bit.     
3 If the two candidates are equally preferred by everyone, then everyone still votes in equilibrium to avoid the 
possibility that no one votes and the lousy default policy arises. 
4 The yw candidate must have a policy in the set majority preferred to p0, since pw is majority preferred in P*. 
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affiliated candidate, while the party bears all running costs from exogenous funds for their 
affiliated candidate.  A party wants to win the election.  Under these assumptions and assuming a 
Condorcet winner: 
 
Result 4:5  Equilibrium has each party offer their candidacy to a yw, at least one accepts the 
offer, and the resulting policy is pw. 
 
Obviously, the parties offer a candidacy to a yw.  At least one accepts the candidacy offer to 
avoid the default policy if neither runs.  Whether one or both potential candidates run, voting 
equilibrium obviously implies that pw is implemented. 
 
B. Propositions with Strongly Religious Households. We refer to the strongly religious as just 
religious, and the other households as non-religious.  We assume the same income distributions 
for both types, and that the proportion of religious types equals .  Both types have the same 
utility function (as in the text) if public school is attended.  If private school is attended, school 
quality for religious types equals q, with 1,   where q is per student expenditure in the private 
school attended.   
 
As in the text, the initial analysis here concerns equilibrium effects with religious households 
assuming the superintendent chooses public school.  Note that such a superintendent might be 
religious; the preferred policy choice of a religious and non-religious household is the same if 
public school is attended. 
 
We first establish the analogues of Proposition1-c.  Let R

Ty (t,z,g)  denote the minimum income 
of a religious households that would choose private school given (t,z,g), with z either equal to 0 
or v, assuming eligibility for the voucher in the latter case.  It is obvious that 

R
T Ty (t,z,g) y (t,z,g)  for all relevant policies.  The comparative statics in (1) in the text hold for 
R
Ty (t,z,g) just like for yT(t,z,g).  Just to avoid tedium, we assume policies and an income 

distribution such that religious types will attend both public and private schools, i.e., 
R R

min T T maxy y (t,v,g) y (t,0,g) y ,    where the second inequality is implied by the comparative 
statics.   
 
The elected superintendent will continue to choose (v,ym) to minimize the tax rate given his 
preferred choice of g (i.e., the analogue of Proposition 1b obviously holds).  We can state the 
problem as minimizing t given tY = B(ym,v,g,t), for given g and where B is equilibrium public 
expenditure.  Thus, B must be minimized over (ym,v).  We show the equivalent of Proposition 1-
cii using this streamlined approach.  (As with no religious types, it is convenient to prove part cii 
before part ci. The modified proposition is: 
 
Proposition R1-cii.  Targeting:  Assume equilibrium has a superintendent that chooses public 
school and let g* denote the superintendent’s choice of g.   If  v > 0 is strictly optimal (i.e., 

                                                 
5 Jackson, Mathevet, and Mattes (2007) provide a similar result.  See their Propositions 1 and 2. 
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someone uses the voucher), then *
my  equals either *

Ty ( t,0,g )  or R *
Ty (t,0,g ),which value 

depending on parameters. 
 
Proof of Proposition R1-cii.  To economize on notation, we just write g for g* in this proof.  First 
we argue that v < g  is optimal.  If v = g, then the superintendent saves nothing by providing any 
private school students the voucher, implying v = 0 is also optimal (a contradiction).    To show 
the remaining results, we must consider two cases, delineated by whether 

R
T Ty ( t,0,g ) or y ( t,v,g ).    

 
Case 1:   R

T Ty (t,0,g) y (t,v,g).   In this case, it must be that: 
R R

min T T T T maxy y (t,v,g) y (t,v,g) y (t,0,g) y (t,v,g) y .       The latter values delineate 5 ranges 
within which ym can fall, and over which B(ym,v,g,t) differs.  We show that B is minimized over ym 
at either Ty (t,0,g)  or R

Ty (t,0,g).   To show this, we write out B for each range and compute its 
derivate with respect to ym.    We have: 
 
Range 1:  R

m min Ty [y ,y (t,v,g)].   Here no one gets a voucher and
R
T T

min min

y ( t ,v,g) y (t ,v,g)

y y
B g f (y)dy (1 )f (y)dy .           Thus, mB/ y 0.     

 
Range 2:  R

m T Ty (y (t,v,g),y (t,v,g)].  Here 
R R

m T T T

R
T min m min

y y ( t ,v,g) y ( t ,0,g ) y ( t ,0,g)

y ( t ,v,g ) y y y
B v f (y)dy g f (y)dy f (y)dy (1 )f (y)dy                    Thus, 

m mB/ y (v g) f(y ) 0,       the inequality since we know v < g. 
 
Range 3:  R

m T Ty (y (t,v,g),y (t,0,g)].  Here  
m m

R
T T

R R
T T T T

min m min m

y y

y (t,v,g) y (t,v,g)

y (t,v,g) y (t ,0,g) y (t ,v,g) y (t,0,g)

y y y y

B v f (y)dy (1 )f (y)dy

g f (y)dy f (y)dy (1 )f (y)dy (1 )f (y)dy .

        
             

 

   
 Thus, 

m mB/ y (v g)f(y ) 0.       
 
Range 4:  R

m T Ty (y (t,0,g),y (t,0,g)].  Here 
m m

R
T T

R
T T T T

min m min m

y y

y (t ,v,g) y (t ,v,g)

y (t ,v,g) y (t,0,g) y (t ,v,g) y (t ,0,g)

y y y y

B v f (y)dy (1 )f (y)dy

g f (y)dy (1 )f (y)dy (1 )f (y)dy (1 )f (y)dy .

        
              

 

   
 Thus, 

m mB/ y [v (1 )g]f(y ),      the sign of which depends on the relative value of v and (1 )g.   
 
Range 5:  m T maxy (y (t,0,g),y ].  

R
m m T T

R
T T min min

y y y ( t ,v,g ) y ( t ,v,g)

y ( t ,v,g) y (t ,v,g) y y
B v f (y)dy (1 )f (y)dy g f (y)dy (1 )f (y)dy .                       Here, 
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m mB/ y vf(y ) 0.     Noting that B is continuous, using the derivatives of B in the 5 ranges it is 

implied that if v g(1 ),   then the minimum is at R
m Ty y (t,0,g);  and if v g(1 ),  then the 

minimum is at m Ty y (t,0,g).  (If v g(1 ),  then any ym between and including the two 
threshold is optimal, but this will not arise generically.)   
 
Case 2:   R

T Ty (t,0,g) y (t,v,g).   In this case, it must be that: 
R R

min T T T T maxy y (t,v,g) y (t,0,g) y (t,v,g) y (t,0,g) y .       Again, there are five ranges into which 
ym might fall, and we proceed as in Case 1.   
 
Range 1:  R

m min Ty [y ,y (t,v,g)].   Here no one gets a voucher and
R
T T

min min

y ( t ,v,g) y (t ,v,g)

y y
B g f (y)dy (1 )f (y)dy .           Thus, mB/ y 0.     

 
Range 2:  R R

m T Ty (y (t,v,g),y (t,0,g)].  Here 
R R

m T T T

R
T min m min

y y ( t ,v,g) y ( t ,0,g ) y ( t ,0,g)

y ( t ,v,g ) y y y
B v f (y)dy g f (y)dy f (y)dy (1 )f (y)dy                    Thus, 

m mB/ y (v g) f(y ) 0,       the inequality since we know v < g. 
 
Range 3:  R

m T Ty (y (t,0,g),y (t,v,g)].  Here  
R

m T T

R
T min min

y y ( t ,v,g) y ( t ,0,g )

y ( t ,v,g ) y y
B v f (y)dy g f (y)dy (1 )f (y)dy .                   Thus, m mB/ y v f(y ) 0.       

 
Range 4:  m T Ty (y (t,v,g),y (t,0,g)].  Here 

m m

R
T T

R
T T T

min m min

y y

y (t ,v,g) y (t ,v,g)

y (t ,v,g) y (t ,0,g) y (t ,v,g)

y y y

B v f (y)dy (1 )f (y)dy

g f (y)dy (1 )f (y)dy (1 )f (y)dy .

        
           

 

  
 Thus, 

m mB/ y [v (1 )g]f(y ),      the sign of which depends on the relative value of v and (1 )g.   
 
Range 5:  m T maxy (y (t,0,g),y ].  

R
m m T T

R
T T min min

y y y ( t ,v,g ) y ( t ,v,g)

y ( t ,v,g) y (t ,v,g) y y
B v f (y)dy (1 )f (y)dy g f (y)dy (1 )f (y)dy .                       Here, 

m mB/ y vf(y ) 0.     Noting that B is continuous, using the derivatives of B in the 5 ranges it is 

implied that if v g(1 ),   then the minimum is at R
m Ty y (t,0,g);  and if v g(1 ),  then there 

are two local minima at R
m Ty y (t,0,g) and m Ty y (t,0,g).   Either of the latter might be optimal 

depending on parameters.   
 
Thus, we have shown that one of R

m Ty y (t,0,g) or m Ty y (t,0,g) is optimal in any case, 
completing the proof.   
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We now show the analogue of Proposition 1-ci, beginning with a statement of it (though its 
statement is exactly as for the case with no religious types). 
 
Proposition R1-ci.  Assuming equilibrium has a superintendent that chooses public school, a 
voucher *v ( 0,g ) is optimal. 
 
Proof of Proposition R1-ci  Again, we drop the ‘*’ from g.  We have already shown v < g is 
optimal assuming v > 0.  Thus, we show v = 0 is not optimal, specifically by showing B can be 
decreased with a positive v.  In the vicinity of v = 0 (with non-negative v), only Case 2 in the 
Proof of Proposition 1-ci can arise; i.e., it must be that R

T Ty ( t ,0,g ) y ( t ,v,g ), this since 
R
T Ty ( t,0,g ) y (t,0,g ).  Suppose that the superintendent sets R

m Ty y ( t ,v,g ).  We show that B is 

decreasing in v in the vicinity of v = 0 with the latter choice, implying a positive v is optimal, 
since the alternative potential optimizing choice of ym (from Proposition R1-cii) would imply 
lower yet B if such a ym is optimal.  Then: 

R R
T T T

R
T min min

y ( t ,0 ,g ) y ( t ,v ,g ) y ( t ,0 ,g )

y ( t ,v ,g ) y y
B v f ( y )dy g f ( y )dy ( 1 ) f ( y )dy .               Differentiating with 

respect to v: 
R R
T T

R R
T T

y ( t ,0 ,g ) y ( t ,0 ,g ) R R
T Ty ( t ,v ,g ) y ( t ,v ,g )

B / v f ( y )dy v [ f ( y )dy ] / v g [ y ( t ,v,g ) / v ] f ( y ( t ,v,g )).              

The first two terms in the latter approach 0 as v approaches 0, while the last term is negative 
since R

Ty ( t,v,g ) / v 0.     
 
Next we develop the analogue of Proposition 1-ciii regarding voting coalitions in equilibrium 
with the elected superintendent choosing public school.  First note that those choosing public 
school in equilibrium with the same income have the same local policy and thus voting 
preferences whether religious or not.  However, because religious types have stronger preference 
to attend private school, the sets of income types that choose public school generally differs.  Let 
fpub(y) denote the population density of nonreligious types that attend public school and fpubR(y) 
the same for religious types.  fpub(y) equals (1 )f(y) if public school is chosen by non-religious 

household with income y and 0 otherwise.   fpubR(y) equals f(y) if public school is chosen by 
religious household with income y and 0 otherwise.   The ranges of income where public school 
is chosen vary with parameters and are implicit in the Proof of Proposition R1-ci. Those that 
choose private school and receive no voucher prefer lower t (and care not about g and v) whether 
religious or not.  These income sets can differ, too, but we need not provide notation for this.  
The sign of (4) in the text again determines the local voting preferences of those that choose 
private school and receive a voucher.  The equilibrium income sets for which this is positive or 
negative will in general differ between religious and non-religious types, both because Uq will 
differ and because those that choose private school (and get a voucher) can differ.  Let Y+ denote 
the nonreligious income set that obtain a voucher and for which Uv’ > 0 and let Y+R the 
analogous set of religious households.   
 
Proposition R1-ciii.  Assuming equilibrium has a superintendent that chooses public school, yw 
must satisfy:  (i) 

w R

pub pubR

y y Y Y
[ f ( y ) f ( y )]dy ( 1 ) f ( y )dy f ( y )dy .5; 

 
        and  
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(ii) Households in (i) other than yw prefer a candidate with marginally higher income and the 
remaining households prefer a candidate with marginally lower income. 
 
The proof is exactly as for Proposition 1-ciii and is omitted.  The specifics of the voting 
coalitions are of interest, but vary with policy characteristics as noted above.  An example is that 
in Figure 3 in the text. 
 
Proposition 2 in the text describes the set of potential optima for all candidates, which is 
necessary to confirm existence of equilibrium.  To provide the analogue of Proposition 2 when 
there are religious types, the following lemma is useful. 
 
Lemma R1.  An elected superintendent with income ys that would choose private school and set v 
= g > 0, would choose R

m s Ty Max [ y , y ( t ,0,g )].   

 
Proof of Lemma R1.  Given v = g, the superintendent’s objective is to minimize the tax rate while 
making sure to be eligible himself for the voucher.  Minimizing the tax rate corresponds to 
maximizing the measure of households that attend private school with no voucher since the 
public cost of all those who take a voucher or attend private school with a voucher is the same.  
Only religious types with R

Ty y ( t ,0,g ) and non-religious types with Ty y ( t ,0,g )  will attend 

private school with no voucher.  Given the own-eligibility constraint and that R
T Ty y ,  the 

choice of ym then maximizes the measure of households that attend private school with no 
voucher.  If R

s Ty y ,  then the superintendent maintains his own eligibility and maximizes the 

measure of households that attend private school with no voucher with any R
m s Ty [ y , y ],  but 

then chooses R
m Ty y  due to the benevolence assumption (A8) because this allows more 

households to get a voucher and subsidize it rather than attend public school.   
 
With Lemma R1 in hand, the analogue of Proposition 2 is very similar. 
 
Proposition R2: A household that chooses the policy vector and itself chooses public school 
follows the policy described in Propositions R1-ci and R1-cii  A household y that chooses the 
policy vector and itself chooses private school either: (i) chooses t=g=v=0 with optimal private 
consumption; or (ii) sets v = g > 0, with ym = R

TMax [ y, y ( t ,0,g ], t satisfying: 

 

(B.1) 
R
T T

min min

Max[ y ,y ] Max[ y ,y ]

y y
f ( y )dy ( 1 ) f ( y )dy tY     ,  

and with v solving: m

R
v,t ,y ,g

R
m T

Max U ( v )

s.t. y Max[ y, y ( t,0,g )];( B.1); and v g. 
  Assuming a household 

choosing private school faces a strictly quasi-concave optimization problem, policy type (i) [(ii)] 
is optimal if y > [<] Y/F(y). 
 
The proof parallels that of Proposition 2 and is omitted, though we make a few comments.    In 
addition to the difference in the eligibility threshold as compared to the case with no religious 
types (Lemma 1), the budget constraint for a superintendent that chooses policy (i) is modified to 
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account for the alternative schooling choices of religious and non-religious types.  A difference 
that is not apparent from comparing the two versions of the proposition is that the threshold 
income where an elected superintendent is indifferent to choosing public school and private 
school, each with the superintendent setting policy, is lower for religious than non-religious 
households.  This is very intuitive and seen in the example developed in the text.6  What is 
perhaps surprising is that the income level where an elected superintendent choosing private 
school transitions to the 0-tax policy does not differ between religious and non-religious types, 
i.e., satisfies y = Y/F(y).  The intuition is that the decision as to whether to employ taxes to fund 
private consumption is purely a fiscal one, dependent on income but not on the demand for 
private consumption.    
 
C. Computational Program Summary. 
 
Overview: We first summarize the computational strategy for the case when there only non-
religious households. We then explain how the strategy is extended to incorporate preferences of 
religious households.  
 
The program calculates a feasible set of policy alternatives, S, that includes the most-preferred 
policy of each citizen. The set of most preferred policies, s, is then selected from S.  This is the 
set of citizen-candidate proposals. The Condorcet winner, if any, is then obtained by finding the 
policy from s that defeats all other policies in s in pairwise voting.  
 
As detailed in Section 2, a citizen candidate’s policy proposal is a tuple comprised of the tax rate, 
voucher, expenditure per student in public school, and highest income eligible for the voucher: 
t,v,g,ym. The approach of the program is to consider a policy triple (t,v,g) while exploiting 
Proposition 1 of Section 3 to determine ym. From Proposition 1, a citizen candidate who proposes 
a positive voucher will propose a targeted voucher with the income-eligibility limit set equal to 
the income of the individual indifferent between public and private when not receiving a 
voucher: ym=yT(t,0,g). It is also useful in the describing the computations to refer to the income, 
denoted ya in the program, of the lowest-income individual indifferent who will take up the 
voucher. This is the individual eligible for the voucher who is indifferent between public school 
with no voucher and private school with the voucher: ya = yT(t,v,g).  
 
As demonstrated in Section 3, there are three possible regime types: 
 
1. (t,v,g) with g>v≥0 
2. (t,v,v) with v>0 
3. (0,0,0) 

An individual who would attend public school under his/her most-preferred policy will propose a 
Regime 1 policy. An individual who would attend private school with a voucher under his/her 

                                                 
6 The argument is this.  For given income, the optimal policy choice and utility level for religious and non-religious 
types are the same conditional on choosing public school.  However, for given income and optimal policy choices 
utility is higher for religious types than non-religious types if private school is chosen.  The latter is implied by the 
fact that religious types value private schooling more and would therefore have higher utility even if choosing the 
same policy values as is optimal for a non-religious type in private school.  Thus, the range of income where the 
private alternative is preferred by an elected superintendent must be wider.    
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most-preferred policy will propose a Regime 2 policy. In Regimes 1 and 2, the income eligibility 
limit, ym, is determined by Proposition 1 as described above. An individual who would attend 
private school without a voucher under his/her most-preferred policy will propose the Regime 3 
policy, with ym=ymin.  
 
Citizen Candidates: Discretize the income distribution by selecting an equally spaced grid of 
values of incomes spanning the support of the income distribution [ymin,ymax]. Denote these 
incomes yj for j=1,…,J,. This is the set of citizen-candidates in the model. In the program, the 
space between points on this grid is $1,000.  
 
Feasible Policies: We next describe the strategy for calculating the set S that will contain s as a 
proper subset. Let a citizen-candidate with income yj be named yj.  
 
Regime 1: Calculate the (t,v,g) allocation most preferred by yj assuming yj attends public school 
(even if yj does not prefer public school under his most-preferred policy). Do this calculation for 
each yj for j=1,…,J,. Let (tj,vj,gj) be j’s policy from this calculation. This calculation also 
provides the incomes,ya,j = yT(tj,vj,gj) and ym,j = yT(tj,0,gj).  These income boundaries are used in 
the calculation of votes. Hence, for each yj, the program saves the row vector (tj,vj,gj, ya,j, ym,j). 
These row vectors are “stacked” vertically to obtain a matrix of dimension JX5. 
Calculation of (tj,vj,gj) for yj for Regime 1 proceeds as follows. The citizen-candidate choosing a 
most-preferred Regime 1 policy faces the following constraints: 
 
1) Government budget constraint. 
2) Boundary-indifference condition for ya,j 
3) First-order condition for private school expenditure, ea,j if ya,j attends private school 
4) Boundary-indifference condition for ym,j 
5) First-order condition for em,j if ym,j attends private school 
 
The computational approach entails solving a system of 17 nonlinear simultaneous equations. 
The five constraints implicitly express five variables as functions of g and v: t(g, v), ea(g, v), 
ya(g, v), em(g, v), ym(g, v). Differentiate each of the five constraints with respect to g to obtain 
the derivatives of the preceding five functions with respect to g. Differentiate each of the five 
constraints with respect to v to obtain the derivatives of the preceding five functions with respect 
to v. Together, this yields 15 equations for the constraints and their derivatives. The two 
additional equations are the first-order conditions for the citizen-candidate’s most-preferred g 
and v. These are obtained by differentiating the citizen-candidate’s utility function with respect 
to g and with respect to v. (Note that the derivative of the citizen-candidate’s utility function 
yields dt(g,v))/dv=0.) For each citizen candidate, yj, this system of 17 nonlinear simultaneous 
equations is solved.  
 
Regime 2: All feasible policies satisfying v=g are calculated regardless of whether they are 
preferred policy of any candidate. The computations proceed similarly to those for Regime 1, by 
solving a system of nonlinear simultaneous equations while invoking the g=v constraint.  This 
calculation also provides the income, ya,j, of the individual indifferent between attending public 
school with spending gj = vj and attending private school with a voucher vj. For each yj, the 
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program saves the row vector (tj,vj,vj,ya,j,ym,j). These are stacked vertically to obtain a matrix of 
dimension Jx5. 
 
Regime 3: For regime three, there is a single policy (0,0,0). Hence this policy yields the vector 
(0,0,0,ymin,ymin) where ymin is the lower bound of the support of the income distribution. 
 
The set S: The union of the above three sets of policies yields set S. In the program, the union of 
these policies is obtained by vertically stacking the above to obtain a matrix of dimension 
(2J+1)x5. Let K=2J +1. Hence, S has dimension Kx5. 
 
Proposals: Calculate the utility of candidate yj for each every policy in S. The policy that 
maximizes the utility of yj is then the proposal of candidate yj.  This calculation for each 
candidate yj then yields the set of policy proposals s.  
 
Voting: A random sample (e.g., 100,000) of incomes is drawn from the income distribution. 
These are voters. A guess is made of the income of the winning candidate, and this income is the 
contender, yc, against which others are paired. The proposal of yc is voted against the proposal of 
the lowest-income individual, y1, and the fraction of voters favoring the proposal of yc is 
calculated. If the fraction exceeds .5, the proposal of yc is voted against the proposal of the next-
highest income, y2. If the proposal of yc is not defeated by any alternative, yc this step of the 
computations is completed. If the proposal of yc is defeated by the proposal of some candidate, 
say, yi, then yi becomes the new contender, i.e. yc=yi. The proposal of the new yc is voted 
successively against the proposal of yi+1, yi+2, etc until either yc defeats all remaining alternatives 
or yc is replaced by a new contender. This process continues until the reigning yc is paired 
against all proposals through that of yJ. Winning this series of votes is a necessary condition to 
be a Condorcet winner. Let yw denote the income of this winner. The proposal of yw is then 
paired against every other proposal. If yw defeats all alternatives, then yw is the Condorcet 
winner. If the proposal of some other candidate defeats yw, there is no Condorcet winner, and no 
citizen-candidate equilibrium exists.  
 
Religious Candidates: When there are both religious and non-religious types, there are again the 
same three regime types. Now, however, the system of nonlinear equations for Regime 1 must 
take account of the fact that there are different income thresholds for take-up of the voucher, i.e., 
yT(t,v,g) differs between religious and non-religious types. Similarly, the income thresholds for 
attending of private school when not eligible for a voucher also differ. In addition, the most-
preferred Regime 1 policy alternative for a given yj differs between religious and non-religious 
types. Hence, the number of equations that need to be solved to obtain an element of S for 
Regime 1 is roughly double that for the case with only non-religious types. In addition, this 
system of equations needs to be solved twice as many times to obtain the most preferred policy 
for each yj for each religious type. Similar generalization is required to solve for elements of S 
for Regime 2. In total, S then contains (4*J+1) elements. The elements of s then are then chosen, 
each element being a most-preferred alternative of either a religious or a non-religious individual 
on the grid of incomes. Voting to select the winner, if any, proceeds as before with utility for the 
elements of s differing by income and by religious type.  
 
References 



11 
 

Besley, Timothy and Stephen Coate, “An Economic Model of Representative Democracy,” 
Quarterly Journal of Economics, 112, February 1997, 85-114. 
 
Epple, Dennis and Richard Romano, “On the Political Economy of Educational Vouchers,” 
Journal of Public Economics, 120, December 2014, 62-73. 
 
Jackson, Matthew, Laurent Mathevet, and Kyle Mattes, “Nomination Processes and Policy 
Outcomes,” Quarterly Journal of Political Science, 2, 2007, 67-94. 
 

 


