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Appendix D

In this Appendix, we study in depth some issues that we discussed briefly in
the paper.

A. Strategy-Proofness as the Market Size Grows

We now show that if η̄t (the DA-IP matching in a continuum economy) is not
a unique statically stable matching in a static economy F̄t(η̄t−1) for some t ≥ 1
then the fraction of agents who can manipulate the DA-IP mechanism does not
necessarily converge to 0. In this example, we relax some of the assumptions we
used in the paper to simplify the presentation. Specifically, we will not assume
that the agents born in each period are distributed identically in the continuum
economy F̄ = (ν̄, r̄) to which the sequence of finite economies converges. In
addition, the measure of the agents born in each period is not necessarily 1.
Finally, of course in one of the periods the DA-IP matching of that period will
not be a unique statically stable matching.

EXAMPLE 6: There are 4 schools, s1, s2, s3 and s4. Consider the following
continuum economy F̄ = (ν̄, r̄) such that r̄s1 = r̄s2 = r̄s3 = r̄s4 = 0.25, ν̄(Ī0) = 0,
ν̄(Ī1) = 0.5, ν̄(Ī2) = 0.75, ν̄(Ī3) = 0.25 and ν(Īt) = 0, for all t > 3. We
assume that each agent’s preference satisfies strong rankability. In addition, Ī1

is partitioned into Ī1
1 and Ī2

1 where ν(Ī1
1 ) = ν(Ī2

2 ) = 0.25. Furthermore, Ī2 is
partitioned into Ī1

2 , Ī2
2 and Ī3

2 where ν(Ī1
2 ) = ν(Ī2

2 ) = ν(Ī3
2 ) = 0.25. The preference

rankings of the agents satisfies the following conditions:

i ∈ Ī1
1 :(s1, s1)

i ∈ Ī2
1 :(s2, s2)

i ∈ Ī1
2 :(s1, s1) �i (h, h) �i (s4, s4)

i ∈ Ī2
2 :(s4, s4) �i (s2, s2) �i (s3, s3)

i ∈ Ī3
2 :(s3, s3) �i (s2, s2) �i (s4, s4)

i ∈ Ī3 :(s4, s4) �i (s1, s1).

1
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The priority scores are distributed continuously as follows:

i ∈ Ī1
2 :xs4i ∈ [0.75, 0.85) & xs1i ∈ [0.5, 0.75)

i ∈ Ī2
2 :xs3i ∈ [0.75, 1) & xs4i ∈ [0.5, 0.75)

i ∈ Ī3
2 :xs4i ∈ [0.85, 1) & xs3i ∈ [0.5, 0.75)

i ∈ Ī3 :xs4i ∈ [0.85, 1) & xs1i ∈ [0.75, 1)

For this economy, the DA-IP matching, η̄, is given in the following table.

Period 1 Period 2 Period 3

s1 Ī1
1 Ī1

1 Ī3

s2 Ī2
1 Ī2

1 ∅
s3 ∅ Ī3

2 Ī3
2

s4 ∅ Ī2
2 Ī2

2

h ∅ Ī1
2 Ī1

2

Consider now the following matching µ̄:

Period 1 Period 2 Period 3

s1 Ī1
1 Ī1

1 Ī1
2

s2 Ī2
1 Ī2

1 I2
2

s3 ∅ Ī2
2 Ī3

2

s4 ∅ Ī3
2 Ī3

h ∅ Ī1
2 ∅

Clearly, each agent in Ī1
2 prefers µ̄ to the DA-IP matching η. We will show below

that there exists a sequence of finite economies that converges to the continuum
economy F̄ and such that there is a suitable profitable manipulation for any agent
in Ī1

1 . Note that the assumption of market thickness is violated in the example and
also that µ̄t is statically stable matching in economy F̄ (µ̄t−1) for all t = 1, 2, 3 and,
thus, there are multiple statically stable matching in economy F̄ (µ̄1) = F̄ (η̄1).

Now we construct a sequence of economies {Ek} that converges to F̄ . For each
given k = 1, · · · ,∞, economy Ek is as follows: rks1 = rks2 = rks3 = rks4 = k.
In addition, |Ik0 | = 0 , |Ik1 | = 2k, |Ik2 | = 3k, |Ik3 | = k and |Ikt | = 0, for all t > 3.
We assume that each agent’s preference satisfies strong rankability. In addition,
Ik1 is partitioned into Ik1

1 and Ik2
1 where |Ik1

1 | = |Ik2
1 | = k. Furthermore, Ik2 is

partitioned into Īk1
2 , Ik2

2 and Ik3
2 where |Ik1

2 | = |Ik2
2 | = |Ik3

2 | = k. The preference
rankings of the agents mirror those in the continuum economy F̄ specified above.
We set r̃ks1 = r̃ks2 = r̃ks3 = r̃ks4 = 0.25 = k/4k and ṽ({i}) = 1/4k. Furthermore,
we set the priority scores so that (1) no two agents have the same priority score (2)
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Period 1 Period 2 Period 3

s1 Ik1
1 Ik1

1 Ik1
2

s2 Ik2
1 Ik2

1 Ik2
2

s3 ∅ I2
2 I3

2

s4 ∅ I3
2 I3

h ∅ I1
2 ∅

the range of the agents’ priority scores are the same as in continuum economy
F̄ , and (3) ν̃k converges to ν̄ in weak* topology. With these assumptions, Ek

converges to F̄ .
Observe here that the DA-IP matching in economy Ek mirrors the one in the

continuum economy F̄ . However, suppose that an agent in i∗ ∈ Ik1
2 reports a

strongly rankable preference that satisfies

(s1, s1) �i∗ (s4, s4) �i∗ (h, h).

In this case, the DA-IP matching is as follows: As a result of this manipulation,
i∗ definitely improves. Therefore, no matter how high k is, all the agents in Ik1

2

can manipulate the DA-IP mechanism. Clearly, the percentage of the children
who have a manipulation of the DA-IP mechanism stays constant for each k.

Example 6 has a very specific structure in the sense that in period 2 only one
agent’s false preference report leads to a matching that is significantly different
from the DA-IP matching under truth telling. In other words, if the market is
very big this false report leads to a very long chain of rejections and proposals
in the DA algorithm. Indeed, in any randomly generated economy, we suspect
that one agent’s report having such a big impact is very unlikely. In this sense
Examples similar to 6 is unlikely to occur in reality.

B. Algorithm to Find Attainable Matchings

We present the full version of our algorithm that find all the attainable schools.
Recall that we are working with a fixed static economy (J, r) and are investigating
which matchings i induce. All the agents other than i report their (isolated)
preferences truthfully (as given in economy (J, r)).

We now prove Lemma 2 studied in the main text of the paper.
PROOF OF LEMMA 2:

To prove this lemma it suffices to show that the DA mechanism allocates agent i
to the attainable school listed highest in the submitted preference report of agent
i. Let P ∗i be the submitted preference report of agent i. Let s∗ be the highest
ranked attainable school in i’s report. Contrary to the claim, suppose that i is
not allocated to s∗. Clearly, by the definition of the non-attainable schools, i
cannot be allocated to any non-attainable school. Thus, i must be allocated to
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an attainable school that is listed after s∗. However, because s∗ is an attainable
school, the DA must allocate i to s∗ for some report of i∗. As a result, if i’s
true preferences were P ∗i , she would have had a successful manipulation of the
DA mechanism. This contradicts the strategy-proofness of the DA mechanism in
static settings.

We now diverge somewhat from the material in Section 6 where for simplicity
of presentation, we introduced a simpler version of our algorithm.

Fix an attainable school s and we now look for ways to find all the s-attainable
matchings. Fix a set Ss ⊆ SNA. For (s, Ss), we split the non-attainable schools
into two groups: redundant and non-redundant. If we set Ss = ∅, then the current
definition of (s, Ss)-redundant school is equivalent to s-redundant school defined
in Section 6.

DEFINITION 11: Fix a pair (s, Ss) where s ∈ SA and Ss ⊂ SNA. A school s′ is
(s, Ss)-redundant if (i) s′ ∈ SNA and (ii) the DA mechanism produces the same
matching when i submits any two preference reports, P si and P̃ si , such that

1) both rank s as the highest attainable school

2) the sets of schools ranked higher than s under P si and P̃ si both contain Ss,
and they differ only in that the one under P si does not contain s′ while the

one under P̃ si does.

A school s′ is (s, S′)-non-redundant if s′ is non-attainable and in addition, it is
not (s, S′)-redundant. We use the notations SR(s, S′) and SNR(s, S′) to denote
the (s, S′)-redundant and non-redundant schools, respectively.

Fix any S′ ⊂ SNA and S′′ ⊂ SNA such that S′ ⊆ S′′. From the definition above
it is clear that

(i) If s′ ∈ SR(s, S′), then s′ ∈ SR(s, S′′).

(ii) If s′ ∈ SNR(s, S′′), then s′ ∈ SR(s, S′).

For a pair (s, Ss) with s ∈ SNA and Ss ⊂ SNA, we write P̂ si to denote a
preference report of i in which the set of schools ranked higher than s is Ss. We
also write σ̂s to denote the DA matching when i reports P̂ si .

LEMMA 9: Fix a pair (s, Ss) with s ∈ SNA and Ss ⊂ SNA. A school s′ is
(s, Ss)-redundant if and only if

xs
′
i < min

j∈σ̂s(s′)
{xs′j }

PROOF:
(a) We first prove the if part.

Fix any preference reports, P si or P̃ si , such that
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1) they rank s as their highest attainable school

2) the sets of non-attainable schools ranked higher than s under P si and P̃ si
both contain Ss, and these sets differ only in that one under P si does not

contain s′ while the one under P̃ si does.

We need to prove that the DA mechanism produces the same matching if i sub-
mits either P si or P̃ si . Let σs and σ̃s be the corresponding DA matchings when i

submits P si and P̃ si . We will show that σs = σ̃s.

By Lemma 2, σ̂s(i) = σs(i) = σ̃s(i). Thus, agent i is indifferent between the

three matchings. Let SEs, S̃E
s

and ŜE
s

be the economies which differ from SE
only in that agent i’s preferences are P si , P̃ si and P̂ si respectively. It is well-known
that σs, σ̃s and σ̂s are the agent-optimal or school-worst stable matchings in the
corresponding economies SEs, S̃E

s
and ŜE

s
.

By Lemma 6, σs is stable in economy ŜE
s
. Because σ̂s is the school-worst

stable matching in economy ŜE
s
, we obtain that

min
j∈σ̂s(s′)

{xs′j } ≤ min
j∈σs(s′)

{xs′j .}

Combining the condition above with the condition given in the lemma, we get

(1) xs
′
i < min

j∈σs
t (s′)
{xs′j }.

By Lemma 6, σ̃s is stable in economy SEs. Because σs is the agent-optimal
stable matching in SEs, every agent j weakly prefers σs to σ̃s. If we show the
opposite, i.e., every agent j weakly prefers σ̃s to σs, then we are done. It suffices
to show that σs is stable in economy S̃E

s
because in this economy, matching

σ̃s is the agent-optimal stable matching. Suppose that σs is not stable in S̃E
s
.

Given that the schools’ priorities and each agent j 6= i’s preferences are the same
in S̃E

s
and SEs, no agent j 6= i and any school s̃ can block σs in economy S̃E

s

because σs is stable in economy SEs. Therefore, there must exist s̃ such that i
and s̃ block σs in economy S̃E

s
. Now recall that i is matched to s under both σs

and σ̃s. Thus, to be a part of a blocking pair, s̃ must be ranked higher than s in
P̃ si . By the conditions given in the lemma, if s̃ 6= s′ then s̃ is again ranked higher
than s in P si . Then, i and s′ should have blocked σs in SEs, which contradicts
that σs is stable in SEs. Thus, s̃ = s′. However, due to (1), i and s′ cannot block

σs in economy S̃E
s
. Consequently, σs is stable in economy S̃E

s
.

(b) We now prove the only if part. Suppose that

xs
′
i > min

j∈σ̂s
t (s′)
{xs′j }.
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We show s′ is non-redundant for (s, Ss). On the contrary suppose that s′ is
redundant for (s, Ss). Consider i’s isolated-preference report, P̃ si , in which the
set of schools listed ahead of s is Ss ∪ s′. We would reach a contradiction if we
show that the DA mechanism does not produce σ̂s when i reports P̃ si . Let S̃E

s

be the economy which differs from SE only in that i’s preferences are P̃ si . Given
that the DA produces a stable matching in SEs, all we need to show is that σ̂s

is not stable in S̃E
s
. This is clear because now i and s′ will block σ̂s as i ranks

s′ ahead s and xs
′
i > minj∈σ̂s(s′){xs

′
j }.

We now prove the two Lemmas that are used in the paper.

PROOF OF LEMMA 4:

As usual, for all the preference profiles we consider here, every agent except
i reports truthfully. Let P and P̃ be the preference profiles in which s and h
are the most preferred schools for i respectively. Denote the corresponding DA
matchings under P and P̃ by σ and σ̃. It is well-known that when an agent drops
out of the market, the schools are worse off, i.e, for each s̃ 6= h,

min
j∈σ̃(s̃)

xs̃j ≤ min
j∈σ(s̃)

xs̃j .

Because s′ ∈ SNR(s), we have that

min
j∈σ(s′)

xs
′
j < xs

′
i .

By combining the above two relations with Lemma 3 we prove that s′ is a non-
redundant school for h.

PROOF OF LEMMA 5:

Fix S′ ⊆ SNR(s). In all preference profiles we consider in this proof, every
player’s preferences are the true ones except i’s. Let P 1 and P̃ 1 be the preference
profiles in which i’s report ranks only the members of S and S̃ ahead of s. Sim-
ilarly, let P 2 and P̃ 2 be the preference profiles in which i’s report rank only the
members of S′ ∪ S and S′ ∪ S̃ ahead of s. Denote the matching that results from
P 1 and P̃ 1 by σ. Similarly, let σ2 and σ̃2 be the DA matchings which result from
P 2 and P̃ 2 respectively. We will now show that σ2 = σ̃2. Suppose otherwise.

We first show that σ2 (or σ̃2) is staticly stable under P̃ 1 (P 1 respectively).
Suppose otherwise. From Lemma 6 (in the appendix), we know that σ2 is a stable
matching under P 1. Because P 1 and P̃ 1 differ only in agent i’s preferences, if σ2

is not stable under P̃1, then i must be a part of any blocking pair. In addition,
the schools which are not ranked ahead of s under P̃ 1

i but not under P 1
i are those

in S̃ \ S. Thus, some school s′ in this set and i must block σ2 under P̃1. In other
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words,

s′P̃ 1
i σ

2(i) = s = σ(i)

xs
′
i > xs

′

σ2(s′)

Furthermore, under P1, σ is the agent optimal stable matching while σ2 is a stable
matching. Thus, we find

xs
′
i > xs

′

σ2(s′) > xs
′

σ(s′).

These two relations imply that i and s′ must block σ under P̃ 1. This contradicts
that σ is stable under P̃ 1.

We now show that σ2 (σ̃2) is staticly stable under P̃ 2 (P 2, respectively). We
know that σ2 is stable under P 2. Because P 2 and P̃ 2 only differ in i’s preferences
and the schools which are not ranked ahead of s under P̃ 2

i but not under P 2
i are

those in S̃ \ S. Hence, some s′ in this set and i must block σ2 under P̃ 2. At the
same time, we know that σ2 is stable under P̃ 1. The schools which are not ranked
ahead of s under P̃ 2

i but not under P̃ 1
i are those in S′ \ S̃. Thus, s′ is in S′ \ S̃.

But there is no common element in S̃ \ S and S′ \ S̃. Thus, σ2 (σ̃2) is staticly
stable under P̃ 2 (P 2, respectively).

Finally, because σ2 is stable and σ̃2 is the agent optimal stable matching under
P̃ 2, each agent prefers σ̃2 to σ2. At the same time, under P 2, this relation is
reversed. Consequently, σ2 = σ̃2.

Now we are ready to present our algorithm to find all the attainable matchings
under which i is allocated to the same attainable school.

The Algorithm to Find the Attainable Matchings

Fix an attainable school s.
Round 0. Fix a preference report of i in which s is ranked first. Find the DA

matching when i submits this preference report andM(s) be the set that consists
of this matching. Find all the redundant and non-redundant schools for (s, ∅).
Let S(s) be the set of all subsets of SNR(s, ∅). Call S1(s) = {S′ ∈ S(s) : |S′| = 1}.

Round 1. Sequentially consider sets in S1(s). For each S′ ∈ S1(s), fix a
preference report of i in which s is the highest ranked attainable school and in
which the set of schools that are ranked higher than s is S′. If the DA matching
corresponding to this report is already found, then eliminate all the sets containing
S′ from S(s). If not, add the DA matching to M(s). If school s′ ∈ SNA is
redundant for (s, S′) where S′ ∈ S1(s), then we eliminate each S′′ ⊇ {S′ ∪ s′}
from S0(s). Once all the members of S1(s) are considered, set S2(s) = {S′ ∈
S(s) : |S′| = 2}.
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Round k. Sequentially consider sets in Sk(s). For each S′ ∈ Sk(s), fix a
preference report of i in which s is the highest ranked attainable school and in
which the set of schools that are ranked higher than s is S′. If the DA matching
corresponding to this report is already found, then eliminate all the sets containing
S′ from S(s). If not, add the DA matching to M(s). If school s′ ∈ SNA is
redundant for (s, S′) where S′ ∈ S1(s), then we eliminate each S′′ ⊇ {S′ ∪ s′}
from S0(s). Once all the members of Sk(s) are considered, set Sk+1(s) = {S′ ∈
S(s) : |S′| = k + 1}.

The algorithm stops at step k̄ where Sk̄+1(s) = ∅ and the set of the DA match-
ings M(s) is the one found in the last round.

We now show that M(s) resulting from the above algorithm is the set of at-
tainable matchings under which i is matched to s.

PROPOSITION 3: Fix s ∈ SA. The algorithm above yields all the s-attainable
matchings.

PROOF:
This proposition is a direct consequence of Lemmas 9 and 5.
The algorithm above is more elaborate than the one in the main text of the

paper but is potentially much faster. Secondly, by running the above algorithm
for each attainable school, we find all the matchings that the DA mechanism
delivers for various reports of i. As we noted in the paper, if there is only one h-
attainable match, then all the attainable matchings can be found without running
the above algorithm.

C. Simulation Result

In this subsection, we report our simulation results for two cases: (i) there are
twice as many agents as the total number of seats at schools and (ii) homecare is
the worst option for every agent.

First, to increase competition we consider markets in which the number of
agents is twice as large as the total number of seats. Otherwise, the current
simulation exercise is identical to the one considered in Table 2.

Under priorities satisfying IPA, the manipulation percentage drops significantly.
There are two reasons for this: (i) competition decreases one’s chance of getting
into a better school significantly in the next period and (ii) half of the agents
from period 1 is forced to stay home in period 0. Both of these forces reduce one’s
chances of manipulating. Under Danish priorities however there are two opposing
forces: competition means that agents are being allocated to lower ranked schools
on average, which suggests that by staying home improves one’s priorities in the
following period. Hence, manipulation is more likely to be successful. On the
other hand, competition in unbalanced markets also forces many students out of
school under truthtelling. These students will not be able to manipulate under
Danish priorities. In addition, those who manipulate by staying home do not
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Priorities Satisfying IPA Danish Priorities
Schools’ Capacity 10 schools 50 schools 100 schools 10 schools 50 schools 100 schools

1 0.19% 0.04% 0.04% 9.14% 14.63% 16.39%
5 0.08% 0.00% 0.00% 13.45% 16.67% 17.78%
10 0.04% 0.00% 0.00% 13.82% 17.30% 18.02%
15 0.02% 0.00% 0.00% 14.15% 16.93% 18.30%
20 0.0% 0.00% 0.00% 14.45% 16.83% 18.07%

Table 3—The percentage of markets in which an agent can manipulate the DA-IP Mechanism

and the number of agents is twice as large as the total number of seats at schools.

get better priority than those who are forced to stay home. This again reduces
the possibility of manipulation under Danish prioirities. The opposing two forces
explain why the manipulation percentages under Danish priorities in Table 3 are
almost half of those in Table 2.

In the simulations considered in Table 2, any agent’s payoff from staying home
is drawn according to a uniform distribution on the [0, 1] interval. Consequently,
many agents rank home ahead of some schools, which could be somewhat re-
strictive and affect the manipulation percentage. Thus, we repeat our simulation
exercise by assuming that each agent’s payoff from staying home is 0. For each
combination of the number of schools and capacity, we randomly generate 10,000
markets and report the results in Table 4.

Priorities Satisfying IPA Danish Priorities
Schools’ Capacity 10 schools 50 schools 100 schools 10 schools 50 schools 100 schools

1 1.41% 2.93% 3.59% 3.58% 2.74% 3.45%
5 0.55% 1.13% 1.08% 1.02% 1.10% 1.22%
10 0.36% 0.56% 0.58% 0.75% 0.63% 0.84%
15 0.29% 0.41% 0.48% 0.5% 0.42% 0.45%
20 0.20% 0.26% 0.31% 0.38% 0.25% 0.31%

Table 4—(Homecare as Worst Option) The percentage of markets in which an agent can

manipulate the DA-IP Mechanism where the home is the worst option.

The percentage of markets in which an agent can manipulate indeed increased
significantly under priorities satisfying IPA. The main reason behind this result
is that when each agent ranks home as the worst option, the number of possible
matchings an agent can induce by misreporting her preferences increases signifi-
cantly. When a child ranks a school ahead of the school she obtains under truth
telling, it generally leads to a sequence of rejections and new applications in the
DA algorithm. When home is not the worst option, the chance that this sequence
ends with some agent choosing home increases greatly. Therefore, an increase
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of the manipulable markets is expected under the current simulations. However,
the manipulation percentage still converges to 0 as the capacities of schools in-
creases. In fact, already when the schools’ capacities reach 20, the manipulation
percentage is negligible.

Under Danish priorities, the manipulation percentage is higher when there are
10 schools compared to those under priorities satisfying IPA. On the other hand,
these numbers are comparable when there are 50 or 100 schools. The main reason
is the following: As we discussed earlier whether the gain in terms of the period
2 payoffs exceeds the loss in terms of the period 1 payoff determines if the agent
has a successful manipulation or not. Here the cost is sizable because staying
home brings one the payoff of 0. From Pittel (1988), we know that when there
are n schools and n agents, the average rank of schools agents obtain under
the DA-IP matching is lnn. Consequently, as n increases, the loss in terms of
the period 1 payoff being low decreases significantly. Hence, staying home is
a successful manipulation more frequently when there are 10 schools. In our
simulations with 50 or 100 schools, the payoff from truth telling exceeded 1 for
agent 1 without exception which means that staying home was never profitable
for agent 1. As a result, the manipulation percentage stays comparable under
both priority structures when the number of schools 50 or 100.

Based on Tables 2 and 4, we can conclude that (i) the Danish priorities leads
to more manipulations in general, (ii) This increase is more pronounced when
the cost of staying home is low and (iii) The Danish priorities do not lead to
additional manipulations when the number of schools is relatively big and the
cost of staying home is severe.


