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B1. Proof of Proposition 8

From the example in section III.C, we see that under independent pricing the
profit is π∗A1(α1) + π∗A2(0) = 2(3+α1

6 )2 + 1
2 for firm A, and π∗B1(α1) = 2( 3−α1

6 )2

for firm B1, π∗B2(0) = 1
2 for firm B2.

In order to find the profit under bundling, we can rely on Proposition 7

and find that Π∗∗2,A(α1/2) =
4F2(y

∗∗
2 (α1/2))

2

f2(y∗∗2 (α1/2))
, Π∗∗2,B1(α1/2) = Π∗∗2,B2(α1/2) =

4(1−F2(y
∗∗
2 (α1/2)))

2

f2(y∗∗2 (α1/2))
, and y∗∗2 (α1/2) is the fixed point of the function Y

α1/2
2 (y) =

1
2 + 1

2
α1

2 +
2−3(1−2(1−y)2)

4(1−y) in the interval ( 1
2 , 1), that is y∗∗2 (α1/2) = 1

20α1 + 9
10 −

1
20

√
α2
1 − 4α1 + 44. Numerical computations show the result. �

B2. Mixed bundling in the baseline model

Here, we consider the baseline model with n = 2 and study the case in
which each firm is allowed to practice mixed bundling. This means that firm
i (= A,B) chooses a price Pi for the bundle of its own products and a price
pi = pij for each single product j = 1, 2. Thus each consumer buys the bundle
of a firm i and pays Pi, or buys one object from each firm and pays pA + pB .
The main result is that when α is sufficiently large, we find the same equilibrium
outcome described by Proposition 2 under pure bundling because for firm A a
pure bundling strategy is superior to any alternative strategy when it has a large
advantage over firm B. Moreover, we show that the same result holds when A
competes with specialists B1 and B2.

Without loss of generality, we assume that Pi ≤ 2pi holds for i = A,B and
that each consumer willing to buy both products of i buys i’s bundle. As a
consequence, each consumer chooses one alternative among AA, AB, BA, BB,
where for instance AB means buying products A1 and B2. In order to describe
the preferred alternative of each type of consumer, we introduce

s′ ≡ 1

2
+
α+ PB − pA − pB

2t
and s′′ ≡ 1

2
+
α+ pA + pB − PA

2t
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where s′ ≤ s′′ holds from PA ≤ 2pA and PB ≤ 2pB .1

We find:

• Type (s1, s2) buys AA if and only if s1 ≤ s′′, s2 ≤ s′′, s1 + s2 ≤ s′ + s′′.

• Type (s1, s2) buys AB if and only if s1 ≤ s′, s2 > s′′.

• Type (s1, s2) buys BA if and only if s1 > s′′, s2 ≤ s′.

• Type (s1, s2) buys BB if and only if s1 > s′, s2 > s′, s1 + s2 > s′ + s′′.

Let Sii′ and µii′ denote, respectively, the set of types who choose ii′ and
the measure of Sii′ for ii′ = AA, AB, BA, BB. Note that µAB = µBA, and
moreover µAB > 0 if 0 < s′ and s′′ < 1;2 µAB = 0 if s′ ≤ 0 and/or s′′ ≥ 1.3 In
either case, the firms’ profits are given by

πA = PAµAA + 2pAµAB ; πB = PBµBB + 2pBµAB .

Given a equilibrium (p∗A, P
∗
A, p

∗
B , P

∗
B) with the corresponding measures, µ∗AA, µ

∗
AB , µ

∗
BB

for SAA, SAB , SBB , we say that it is a mixed bundling equilibrium if µ∗AB > 0
and that it is a pure bundling equilibrium if µ∗AB = 0. It is almost immediate to
see that a pure bundling equilibrium exists for any values of parameters as, for
each firm, pure bundling is a best response to pure bundling.4 The next proposi-
tion establishes that no mixed bundling equilibrium exists when the dominance
of firm A is sufficiently strong. In fact, this result also holds if firm A faces
two specialist opponents B1 and B2, that is in each equilibrium firm A plays a
pure bundling strategy, such that each consumer either buys firm A’s bundle or
products B1 and B2, at least as long as we consider symmetric equilibria such
that pA1 = pA2 and pB1 = pB2. The reason is that when A faces two specialists
such that pB1 = pB2, A’s pricing problem coincides with A’s problem when A
faces a generalist and PB = 2pB . Hence he has the same incentive to avoid
mixed bundling strategies, as we describe immediately after the proposition.

Proposition 9: Consider the mixed bundling game with n = 2. Then both
if firm A faces a generalist opponent or two specialists opponents, we have that

(i) there exists no mixed bundling equilibrium if f(1) > 0 and α ≥ t+ t
f(1) ;

1Precisely, s′ is such that a consumer located at (s1, s2) = (s′, 1) (at (s1, s2) = (1, s′))
is indifferent between the alternatives BB and AB (between the alternatives BB and BA).
Likewise, s′′ is such that a consumer located at (s1, s2) = (s′′, 0) (at (s1, s2) = (0, s′′)) is
indifferent between the alternatives AA and BA (between the alternatives AA and AB).

2The expressions for µAA, µAB , µBB are found in the proof of Proposition 9.
3Precisely, if s′ < 0 then each type of consumer prefers BB to AB (and to BA). If s′′ > 1,

then each type of consumer prefers AA to AB (and to BA).
4Let P ∗2,A, P

∗
2,B be the equilibrium prices from Proposition 2. Under mixed bundling,

(p∗A, P
∗
2,A, p

∗
B , P

∗
2,B) is an equilibrium if p∗A and p∗B are large enough, as for firm A (B) it is

impossible to induce any type of consumer to choose AB or BA since PB = P ∗2,B and a large

pB imply s′ < 0 for any pA ≥ 0, thus SAB = SBA = ∅ (PA = P ∗2,A and a large pA imply

s′′ > 1 for any pB ≥ 0, thus SAB = SBA = ∅).
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(ii) when f is the uniform density, there exists no mixed bundling equilibrium
if α ≥ 9

8 t.

Proposition 9(i) relies on proving that if α is sufficiently large and (pA, PA, pB , PB)
are such that µAB > 0, then s′′ < 1 and it is profitable for A to reduce PA. A
small reduction in PA reduces A’s revenue from inframarginal consumers but at-
tracts some marginal consumers. When α is large, the inequality s′′ < 1 implies
that PA is large. Hence, it follows that the revenue increase (which is propor-
tional to the initial PA) from the marginal consumers dominates the revenue
decrease from inframarginal consumers (which is proportional to the reduction
in PA). This explains why it is profitable to reduce PA until s′′ reaches the
value of 1 to make µAB = 0.5

In the case of the uniform distribution, the lower bound on α from Proposi-
tion 9(i) is t+ t

f(1) = 2t, but Proposition 9(ii) relies on some particular features

of the uniform distribution to establish that no mixed bundling equilibrium
exists if α ≥ 9

8 t.
6 In order to see how this stronger result is obtained, fix

pB , PB arbitrarily and let MA denote the set of (pA, PA) such that µAB > 0.
Whereas Proposition 9(i) is proved by showing that ∂πA

∂PA
is negative at each

(pA, PA) ∈ MA if α ≥ t + t
f(1) = 2t, for the uniform distribution we can show

that if α ∈ [ 98 t, 2t), there exists no (pA, PA) ∈ MA such that ∂πA

∂PA
= 0 and

∂πA

∂pA
= 0 are both satisfied; therefore no mixed bundling strategy is optimal for

firm A when α ∈ [ 98 t, 2t).
It is interesting to notice that a well-established result in the literature is

that mixed bundling reduces profits with respect to independent pricing, at least
for symmetric firms: see Armstrong and Vickers (2010) and references therein.7

Propositions 3(i) and 9(i), conversely, prove that if one firm’s dominance over
the other is strong enough, that is if α ≥ t + t

f(1) and α > ᾱ, then mixed

bundling boils down to pure bundling, and each firm’s profit is larger under
mixed bundling than under independent pricing.

Proof of Proposition 9 (i)
In the case that 0 < s′ and s′′ < 1, each of the sets SAA, SAB , SBB has a

5Proposition 9(i) is linked to a result in Menicucci, Hurkens and Jeon (2015) (MHJ hence-
forth) about the optimality of pure bundling for a two-product monopolist. See Daskalakis,
Deckelbaum and Tzamos (2017) for a similar resut in a monopoly context. In our duopoly
setting, given (pB , PB) chosen by firm B, the problem of maximizing A’s profit with respect
to (pA, PA) is equivalent to the problem of maximizing the profit of a two-product monopolist
facing a consumer with suitably distributed valuations and such that the consumer enjoys a
synergy of 2pB −PB ≥ 0 if she consumes both objects. Since MHJ do not allow for synergies,
strictly speaking Proposition 9(i) is not a corollary of the results in MHJ.

6Numeric analysis suggests that (i) no mixed bundling NE exists as long as α ≥ 0.72t;
(ii) when a mixed bundling NE exists, the firms’ equilibrium profits are lower than under
independent pricing.

7Armstrong and Vickers (2010) explain this result by referring to firms’ incentives to com-
pete fiercely for the consumers which choose to buy both products from the same firm. This
is closely related to the strong demand elasticity effect we find when α = 0, that is when the
firms are symmetric.
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positive measure as follows:

µAA = F (s′)F (s′′) +

∫ s′′

s′
F (s′ + s′′ − s1)f(s1)ds1 (1a)

µAB = F (s′)[1− F (s′′)]; (1b)

µBB = [1− F (s′)][1− F (s′′)] +

∫ s′′

s′
[1− F (s′ + s′′ − s1)]f(s1)ds1. (1c)

Therefore, given πA = PAµAA + 2pAµAB , we find

∂π

∂PA
= µAA + PA[2F (s′)f(s′′) +

∫ s′′

s′
F (s′ + s′′ − s1)f(s1)ds1](− 1

2t
)− 2pAF (s′)f(s′′)(− 1

2t
)

= F (s′)f(s′′)

[
F (s′′)

f(s′′)
− PA

t
+
pA
t

]
+

∫ s′′

s′
f(s1)f(s′ + s′′ − s1)

[
F (s′ + s′′ − s1)

f(s′ + s′′ − s1)
− PA

2t

]
ds1

and we prove that ∂π
∂PA

< 0, given s′′ < 1

• First, we prove that F (s′′)
f(s′′) −

PA

t + pA
t < 0. Since f is log-concave, it follows

that F
f is increasing and F (s′′)

f(s′′) −
PA

t + pA
t is decreasing in PA. Since the

inequality s′′ < 1 is equivalent to pA + pB − t + α < PA, it follows that
F (s′′)
f(s′′) −

PA

t + pA
t < 1

f(1) + t−pB−α
t , and the latter expression is negative

given α ≥ t+ t
f(1) .

• Now we prove that F (s′+s′′−s1)
f(s′+s′′−s1) −

PA

2t < 0 for each s1 ∈ [s′, s′′]. Since f is

log-concave, it follows that F (s′+s′′−s1)
f(s′+s′′−s1) is decreasing in s1, and at s1 = s′

we obtain the value F (s′′)
f(s′′) −

PA

2t , which is negative since it is smaller than
F (s′′)
f(s′′) −

PA

t + pA
t < 0, given 2pA ≥ PA.

Proof of Proposition 9(ii)
Given b1 ≡ PB − pB + α, b2 ≡ pB + α ≥ b1, we say that firm A plays

a pure bundling strategy if and only if pA ≥ b1 + t and/or PA ≤ b2 − t + pA
becauseµAB = 0 in either of these cases.8 Given b1, b2, we define MA as the set
of (pA, PA) such that µAB > 0, that is

MA = {(pA, PA) : pA < b1 + t, b2 − t+ pA < PA ≤ 2pA}.

We say that A plays a mixed bundling strategy if (pA, PA) ∈ MA. Notice that
MA is non-empty if and only if b1 > −t and b2 < 2t + b1: see Figure 3 of this
online appendix.

Using (1), for each (pA, PA) ∈MA we have

πA =
1

8t2

(
P 3
A + 4p3A − 2 (b1 + b2 + 2t)P 2

A − 6p2APA − 4 (b1 − b2 + 2t) p2A + 8 (b1 + t)PApA
+(2t2 + 4tb2 + b22 + 2b1b2 − b21)PA − 4(b2 − t)(t+ b1)pA

)
8Precisely, s′ ≤ 0 if and only if pA ≥ b1 + t; s′′ ≥ 1 if and only if PA ≤ b2 − t+ pA.
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t+ b1

b2 − t

b1 + b2

2t+ 2b1

PA = 2pA

PA = b2 − t+ pA

MA

2b2 − 2t

b2 − t

PA

pA

Figure 3: Mixed bundling strategies for firm A.

and

∂πA
∂pA

=
1

8t2
(
12p2A − 4 (3PA + 4t− 2b2 + 2b1) pA + 8 (b1 + t)PA − 4(b2 − t)(t+ b1)

)
∂πA
∂PA

=
1

8t2
(
3P 2

A − 4 (2t+ b1 + b2)PA − 6p2A + 8 (b1 + t) pA + 2t2 + 4tb2 + b22 + 2b2b1 − b21
)
.

Since α ≥ 9
8 t implies b1 >

9
8 t, we consider the following set B of possible

values for (b1, b2): B = {(b1, b2) : 9
8 t < b1 ≤ b2 < 2t + b1}. We prove that for

each (b1, b2) ∈ B it is never a best reply for firm A to play (pA, PA) in MA, that
is the best reply of firm A is a pure bundling strategy. The proof is organized
in three steps. In Step 1 we prove that for firm A playing independent pricing
(that is, PA = 2pA) in MA is suboptimal. A mixed bundling strategy for firm
A can thus be optimal only if it lies in the interior of MA, which implies that
the first (and second) order conditions must be satisfied. However, in Step 2 we
show that if (pA, PA) ∈MA is such that ∂πA

∂pA
= 0, then PA must be larger than

a suitable P̄A, while in Step 3 we show that ∂πA

∂PA
= 0 implies that PA must be

smaller than P̄A. Hence, it must be optimal for firm A to play a pure bundling
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strategy whenever b2 ≥ 9
8 t.

Step 1 Suppose that (b1, b2) ∈ B. Playing (pA, PA) ∈ MA such that PA =
2pA is not a best reply for firm A because either ∂πA

∂pA
> 0 and/or ∂πA

∂PA
< 0.

We start by evaluating ∂πA

∂pA
and ∂πA

∂PA
at PA = 2pA and we find

∂πA
∂pA

=
1

t2

(
−3

2
p2A + (b2 + b1)pA −

1

2
(b2 − t) (t+ b1)

)
≡ z(pA),

∂πA
∂PA

=
1

t2

(
3

4
p2A − (t+ b2)pA +

1

8

(
2b2b1 + b22 + 4tb2 + 2t2 − b21

))
≡ Z(pA).

Notice that if (pA, PA) ∈MA, then pA ∈ (b2−t, b1+t). Let p∗A denote the larger

solution to z(pA) = 0, that is p∗A = 1
3 (b1+b2+

√
(b2 − t)2 + (b1 + t) (2t+ b1 − b2)),

and b2 − t < p∗A < b1 + t since z(b2 − t) = 1
2t2 (b2 − t) (b1 − b2 + 2t) > 0 and

z(b1+t) = − 1
2t2 (b1 + t) (b1−b2+2t) < 0 in B. In fact, from z(b2−t) > 0 = z(p∗A)

we infer that z(pA) > 0 for pA ∈ (b2 − t, p∗A). This implies that (pA, PA) such
that PA = 2pA and pA ∈ (b2−t, p∗A) is not a best reply for A since it is profitable
to increase pA.
For pA ∈ [p∗A, b1 + t) we prove that Z(pA) < 0. This implies that (pA, PA) such
that PA = 2pA and pA ∈ [p∗A, b1+t) is not a best reply for A since it is profitable
to reduce PA. We find Z(b1 + t) = − 1

8t2 (b2 − b1) (2t+ b1 − b2 + 2t+ 4b1) ≤ 0
in B and

Z(p∗A) = −
(2t+ b2 − b1)

(
b2 + b1 + 4

√
(b2 − t)2 + (b1 + t) (2t+ b1 − b2)

)
− 12t2

24t2

which now we prove to be negative in B. Precisely, we define ξ1(b1, b2) ≡
(2t+ b2 − b1) (b2 + b1 + 4

√
(b2 − t)2 + (b1 + t) (2t+ b1 − b2)) and show that

ξ1(b1, b2) > 12t2 for any (b1, b2) ∈ B. (2)

To this purpose we prove below that ∂ξ1
∂b2

> 0 in B, and ξ1(b1, b1) = 4t(b1 +

2
√
b21 + 3t2) > 12t2 for any b1 > t implies (2). Precisely, ∂ξ1

∂b2
= 2b2 + 2t +

6b21+8b22−10b2b1+14b1t−10tb2√
(b2−t)2+(b1+t)(2t+b1−b2)

and ∂ξ1
∂b2

> 0 in B since ξ2(b1, b2) ≡ 6b21+8b22−10b2b1+

14b1t− 10tb2 > 0 in B.9 �

Step 2 Suppose that (b1, b2) ∈ B. If (pA, PA) ∈ MA is such that ∂πA

∂pA
= 0,

then PA ≥ P̄A, for a suitable P̄A.
For the equation ∂πA

∂pA
= 0 in the unknown pA, there exists at least a real

solution if and only if PA ≤ 2
3 (b1 + b2 −

√
(b1 + t)(b2 − t)) or PA ≥ 2

3 (b1 + b2 +√
(b1 + t)(b2 − t)) ≡ P̄A. We now prove that if (pA, PA) is such that ∂πA

∂pA
= 0

and PA ≤ 2
3 (b1+b2−

√
(b1 + t)(b2 − t)), then (pA, PA) /∈MA; therefore ∂πA

∂pA
= 0

implies PA ≥ P̄A.

9Minimizing ξ2 over the closure of B yields the minimum point b1 = t, b2 = 5
4
t, with

ξ2(t, 5
4
t) = 15

2
t2 > 0.
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First notice that 2
3 (b1 + b2 −

√
(b1 + t) (b2 − t)) is smaller than b1 + b2 and in

fact it is sometimes smaller than 2b2 − 2t for some (b1, b2) ∈ B. If 2
3 (b1 + b2 −√

(b1 + t) (b2 − t)) > 2b2−2t, then the line PA = 2
3 (b1 + b2−

√
(b1 + t) (b2 − t))

has a non-empty intersection with MA, and we find that (i) at pA = PA− b2 + t
(i.e., along the south-east boundary of MA) ∂πA

∂pA
= 1

2 (b2 − t) (b1 + b2 − PA),

which is positive given PA ≤ 2
3 (b1+b2−

√
(b1 + t) (b2 − t)); (ii) ∂πA

∂pA
is decreasing

with respect to pA for pA ≤ 1
2PA + 1

3 (b1 − b2) + 2
3 t, and PA − b2 + t < 1

2PA +
1
3 (b1 − b2) + 2

3 t given PA ≤ 2
3 (b1 + b2 −

√
(b1 + t)(b2 − t)). Therefore ∂πA

∂pA
> 0

for each (pA, PA) ∈ MA such that PA ≤ 2
3 (b1 + b2 −

√
(b1 + t)(b2 − t)), and in

fact for each (pA, PA) ∈MA such that PA < P̄A. �

Step 3 Suppose that (b1, b2) ∈ B and that b2 ≥ 9
8 t. If (pA, PA) ∈ MA is a

best reply for firm A, then PA < P̄A.
The equation ∂πA

∂PA
= 0 is quadratic and convex in PA. In order to satisfy the

second order condition, the best reply for firm A must be such that PA is equal
to the smaller solution of ∂πA

∂PA
= 0. We now show that ∂πA

∂PA
< 0 at PA = P̄A,

which implies that the smaller solution to ∂πA

∂PA
= 0 is smaller than P̄A. We find

∂πA
∂PA

= − 3

4t2
p2A+

b1 + t

t2
pA+

2b2b1 − 7b21 − b22 − 20tb1 + 2t2 − 16t
√

(b2 − t) (b1 + t)

24t2
≡W (pA)

and notice that P̄A < b1 +b2; therefore W is defined for pA ∈ ( 1
2 P̄A, P̄A−b2 + t).

We prove that W (pA) < 0 for each pA ∈ ( 1
2 P̄A, P̄A− b2 + t), and to this purpose

we notice that W is maximized with respect to pA at

pA =

{
2
3 t+ 2

3b1 if b2 ≤ 3−
√
5

2 b1 + 5−
√
5

2 t
1
2 P̄A if b2 >

3−
√
5

2 b1 + 5−
√
5

2 t

• If b2 ≤ 3−
√
5

2 b1 + 5−
√
5

2 t, then b1 ≤
√

5t in order to satisfy b1 ≤ b2, and

W ( 2
3 t+

2
3b1) = 1

12t2 (5t2−2b1t− 1
2b

2
2 + b2b1 + 1

2b
2
1−8t

√
(b1 + t) (b2 − t)) ≡

ξ3(b1, b2), which is decreasing in b2 and ξ3(b1, b1) = 1
12t2 (5t2 − 2tb1 + b21 −

8t
√
b21 − t2) is negative for b1 ∈ [ 98 t,

√
5t].

• If b2 >
3−
√
5

2 b1 + 5−
√
5

2 t, then we evaluate W ( 1
2 P̄A) = 1

24t2 (4t2 − 10tb1 +

6tb2 − b21 − 3b22 + 4b1b2 − 4 (2t− b1 + b2)
√

(b1 + t)(b2 − t)), and we prove
it is negative. Precisely, we show that

ξ4(b1, b2) ≡ 4 (2t− b1 + b2)
√

(b2 − t) (b1 + t)−4t2+10tb1−6tb2+b21+3b22−4b1b2

is positive, and from b1+t > b2−t we obtain ξ4(b1, b2) > 4 (2t− b1 + b2) (b2 − t)−
4t2+10tb1−6tb2+b21+3b22−4b1b2 = b21+7b22−8b1b2−12t2+14tb1−2tb2 ≡
ξ5(b1, b2). It is immediate that ξ5 is increasing with respect to b2, and

ξ5(b1,
3−
√
5

2 b1 + 5−
√
5

2 t) = − 1
2 (13
√

5− 27)b21 + (61− 23
√

5)tb1− 1
2 (33
√

5−
71)t2 > 0 for b1 ∈ ( 9

8 t,
√

5t); ξ5(b1, b1) = 12t (b1 − t) > 0. �
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