Online Appendices to "Cadet-branch Matching in a Kelso-Crawford Economy"

Ravi Jagadeesan*

May 21, 2019

The online appendices present example that illustrate how DA-equivalence relates to weakened substitutability conditions from the matching literature. Online Appendix 1 presents examples omitted from Section VI.A. Online Appendix 2 discusses the relationship of Section VI.B with the results of Hatfield and Kominers (2019).

1 DA-equivalence and unilateral substitutability: Examples

The following example shows that the law of aggregate demand for \hat{C}^b is necessary in Theorem 4(a).¹ The law of aggregate demand is clearly necessary in Theorem 4(b).

Example 1 (Necessity of the law of aggregate demand in Theorem 4(a)). Let $I = \{i, j\}$, let $B = \{b\}$, and let $X = \{x, x', y\}$ with $\iota(x) = \iota(x') = d$ and $\iota(y) = e$. Let C^b be the choice function associated to the priority order

$$\{x',y\} \succ_b \{x\} \succ_b \{x'\} \succ_b \{y\} \succ_b \varnothing,$$

and let \hat{C}^b be the choice function associated to the priority order

$$\{x\} \widehat{\succ}_b \{x',y\} \widehat{\succ}_b \{x'\} \widehat{\succ}_b \{y\} \widehat{\succ}_b \varnothing.$$

^{*}Harvard Business School; and Department of Economics, Harvard University.

¹Aygün and Sönmez (2012, 2013) showed that substitutability and the law of aggregate demand together imply the irrelevance of rejected contracts condition. Example 1 shows that, even to deduce only unilateral substitutability, the hypothesis that \hat{C}^b satisfy the law of aggregate demand cannot be weakened to require \hat{C}^b to only satisfy the irrelevance of rejected contracts condition.

It is straightforward to verify that C^b and \hat{C}^b are feasible and DA-equivalent, and that \hat{C}^b is substitutable. However, C^b is not unilaterally substitutable because $y \in C^b(\{x, x', y\})$ but $y \notin C^b(\{x, y\})$. Note that \hat{C}^b does not satisfy the law of aggregate demand because $|C^b(\{x, x', y\})| = |\{x\}| = 1$ while $|C^b(\{x', y\})| = |\{x', y\}| = 2$.

The following two examples show that the feasibility of \hat{C}^b is necessary in both parts of Theorem 4. In the language of Section VI.B, the examples show that DA-strategy-proofness and the irrelevance of rejected contracts condition do not imply unilateral substitutability or the law of aggregate demand.

Example 2 shows furthermore that DA-strategy-proofness and the irrelevance of rejected contracts condition do not imply that the deferred acceptance mechanism is stable (see also Footnote 29). By the contrapositive of Theorem 4 in Hatfield and Kojima (2010), DA-strategy-proofness does not imply unilateral substitutability either.²

Example 2 (DA-strategy-proofness + irrelevance of rejected contracts does not imply that deferred acceptance is stable). Let $X = \{x, x', y, y'\}$ with $B = \{b\}$ and $I = \{i, j\}$. Define $\iota(x) = \iota(x') = i$ and $\iota(y) = j$. Define C^b to be the choice function induced by the priority order

$$\{x, y'\} \succ_b \{x', y'\} \succ_b \{y'\} \succ_b \{x'\} \succ_b \{y\} \succ_b \{x\} \succ_b \varnothing.$$

Note that if the preference of i is $x \succ_i x'$ and the preference of j is $y \succ_i y'$, then deferred acceptance with respect to C^b returns the allocation $\{x',y\}$, which is blocked by $\{x\}$. By the contrapositive of Theorem 4 in Hatfield and Kojima (2010), C^b is not unilaterally substitutable. More explicitly, we have that $x \in \{x,y'\} = C^b(\{x,y,y'\})$ but $x \notin \{y\} = C^b(\{x,y\})$, violating unilateral substitutability.

Let \hat{C}^b be the choice function induced by the priority order

$$\{x',y'\} \,\widehat{\succ}_b \, \{y,y'\} \,\widehat{\succ}_b \, \{x,y'\} \,\widehat{\succ}_b \, \{y'\} \,\widehat{\succ}_b \, \{x'\} \,\widehat{\succ}_b \, \{y\} \,\widehat{\succ}_b \, \{x\} \,\widehat{\succ}_b \, \varnothing.$$

Clearly \hat{C}^b and C^b are DA-equivalent and \hat{C}^b is substitutable and satisfies the law of aggregate demand. Hence, C^b is DA-strategy-proof. However, \hat{C}^b is not feasible. Example 3 (DA-strategy-proofness + irrelevance of rejected contracts does not imply the law of aggregate demand). The choice function C^b in this example is taken from

²Example 1 in Kominers and Sönmez (2016) provides another example of the necessity of feasibility in Theorem 4(a), when, as in Example 4, \hat{C}^b is the *substitutable completion* of C^b defined in the proof of Theorem F.1 in Hatfield and Kominers (2019).

Example 2 in Kominers and Sönmez (2016). Let $X = \{x, x', y\}$ with $B = \{b\}$ and $I = \{i, j\}$. Define $\iota(x) = \iota(x') = i$ and $\iota(y) = j$. Define C^b to be the choice function induced by the priority order

$$\{x\} \succ_b \{x', y\} \succ_b \{y\} \succ_b \{x'\} \succ_b \varnothing.$$

As $|C^b(\{x, x', y\})| = |\{x\}| < |\{x', y\}| = |C^b(\{x', y\})|$, the choice function C^b does not satisfy the law of aggregate demand.

Let \hat{C}^b be the choice function induced by the priority order³

$$\{x, x'\} \widehat{\succ}_b \{x', y\} \widehat{\succ}_b \{x\} \widehat{\succ}_b \{y\} \widehat{\succ}_b \{x'\} \widehat{\succ}_b \varnothing.$$

Clearly \hat{C}^b and C^b are DA-equivalent and \hat{C}^b is substitutable and satisfies the law of aggregate demand. However, \hat{C}^b is not feasible.

The following example shows that one possible converse to Theorem 4 is not true. More precisely, the example shows that feasibility, unilateral substitutability, the law of aggregate demand, and the irrelevance of rejected contracts condition do not together imply DA-equivalence to a feasible, substitutable choice function. This provides a counterexample to a converse to Theorem 4.

Example 4 (Unilateral substitutability + law of aggregate demand does not imply DA-equivalence to a feasible, substitutable choice function). Let $B = \{b\}$, let $I = \{i, j, k\}$, and let $X = \{x, x', y, z\}$ with $\iota(x) = \iota(x') = i$, $\iota(y) = j$, and $\iota(z) = k$. Let C^b be the choice function induced by the priority order

$$\{y, z\} \succ_b \{x', y\} \succ_b \{y\} \succ_b \{x, z\} \succ_b \{x\} \succ_b \{z\} \succ_b \{x'\} \succ_b \varnothing.$$

It is straightforward to verify that C^b is unilaterally substitutable.

However, C^b is not DA-equivalent to a feasible, substitutable choice function that satisfies the irrelevance of rejected contracts condition. Suppose for the sake of deriving a contradiction that C^b is DA-equivalent to \hat{C}^b , where \hat{C}^b is feasible, substitutable, and satisfies the irrelevance of rejected contracts condition. To obtain a contradiction, we divide into cases based on the value of $\hat{C}^b(\{x, x'\})$.

Case 1: $\hat{C}^b(\{x,x'\}) = \{x\}$. Note that $\hat{C}^b(\{x,y\}) = \{y\}$ because \hat{C}^b is DA-equivalent to C^b . As \hat{C}^b is substitutable, it follows that $\hat{C}^b(\{x,x',y\}) \subseteq \{y\}$. By

The choice function \hat{C}^b is the *substitutable completion* of C^b defined in the proof of Theorem F.1 in Hatfield and Kominers (2019).

the irrelevance of rejected contracts condition, we have that $\hat{C}^b(\{x',y\}) \subseteq \{y\}$, contradicting the assumption that \hat{C}^b is DA-equivalent to C^b .

Case 2: $\hat{C}^b(\{x,x'\}) = \{x'\}$. Note that $\hat{C}^b(\{x',z\}) = \{z\}$ because \hat{C}^b is DA-equivalent to C^b . As \hat{C}^b is substitutable, it follows that $\hat{C}^b(\{x,x',z\}) \subseteq \{z\}$. By the irrelevance of rejected contracts condition, we have that $\hat{C}^b(\{x,z\}) \subseteq \{z\}$, contradicting the assumption that \hat{C}^b is DA-equivalent to C^b .

Case 3: $\hat{C}^b(\{x,x'\}) = \emptyset$. By the irrelevance of rejected contracts condition, we have that $\hat{C}^b(\{x\}) = \emptyset$, contradicting the assumption that \hat{C}^b is DA-equivalent to C^b .

As \hat{C}^b was assumed to be feasible, the cases exhaust all possible values of $\hat{C}^b(\{x,x'\})$, and we have therefore produced the desired contradiction. Thus, we can conclude that C^b is not DA-equivalent to a feasible, substitutable choice function that satisfies the irrelevance of rejected contracts condition.

Example 4 and the main result of Kadam (2017) imply that *substitutable completability* (in the sense of Hatfield and Kominers, 2019) does not imply DA-equivalence to a feasible, substitutable choice function either.⁴

2 DA-substitutability and substitutable completability: Examples

Hatfield and Kominers (2019) introduced a notion of completing a (usually feasible) choice function to an unfeasible choice function to restore substitutability. Recall that a choice function \hat{C}^b completes C^b if $\hat{C}^b(Y)$ is unfeasible whenever $\hat{C}^b(Y) \neq C^b(Y)$. A choice function C^b is substitutably completable if C^b has a completion that is substitutable. The existence of a substitutable completion of C^b satisfying the law of aggregate demand for all $b \in B$ implies that \mathcal{DA}_C is stable and strategy-proof (Hatfield and Kominers, 2019).

Clearly, a choice function \hat{C}^b is DA-equivalent to C^b if \hat{C}^b completes C^b . Thus, substitutable completability implies DA-substitutability. Similarly, DA-strategy-proofness is implied by the existence of a completion that is substitutable and satisfies the law of aggregate demand. The following example shows that DA-strategy-proofness does not imply substitutable completability, so that DA-strategy-proofness

 $^{^4}$ The main result of Kadam (2017) asserts that unilateral substitutability implies substitutable completability. See also Proposition 2 in Zhang (2016).

(and hence DA-substitutability) is a strictly weaker condition than requiring the existence of a completion that is substitutable and satisfies the law of aggregate demand.

Example 5 (DA-strategy-proofness does not imply substitutable completability). This example is Example 2 in Hatfield et al. (2019). Let $B = \{b\}$, let $I = \{i, j, k\}$, and let $X = \{x, x', y, z, z'\}$ with $\iota(x) = \iota(x') = i$, $\iota(y) = j$, and $\iota(z) = \iota(z') = k$. Let C^b be the choice function induced by the priority order

$$\{x', z\} \succ_b \{z', x\} \succ_b \{z', y\} \succ_b \{x', y\} \succ_b \{x, y\} \succ_b \{z, y\} \succ_b \{x', z'\}$$

 $\succ_b \{x, z\} \succ_b \{y\} \succ_b \{z'\} \succ_b \{x'\} \succ_b \{x\} \succ_b \{z\} \succ_b \varnothing.$

Let \hat{C}^b be the choice function induced by the priority order⁵

$$\{x,z'\} \, \widehat{\succ}_b \, \{x,x'\} \, \widehat{\succ}_b \, \{x,y\} \, \widehat{\succ}_b \, \{x,z'\} \, \widehat{\succ}_b \, \{x\} \, \widehat{\succ}_b \, \{z,z'\} \, \widehat{\succ}_b \, \{x',z\} \, \widehat{\succ}_b \, \{y,z\} \, \widehat{\succ}_b \, \{z\}$$

$$\widehat{\succ}_b \, \{y,z'\} \, \widehat{\succ}_b \, \{x',y\} \, \widehat{\succ}_b \, \{y\} \, \widehat{\succ}_b \, \{x',z'\} \, \widehat{\succ}_b \, \{x'\} \, \widehat{\succ}_b \, \varnothing.$$

It is straightforward to verify that \hat{C}^b is DA-equivalent to C^b , substitutable, and satisfies the law of aggregate demand. Thus, C^b is DA-strategy-proof.

However, as Hatfield et al. (2019) observed, the choice function C^b is not substitutably completable. I review their argument for the sake of completeness. Suppose for the sake of deriving a contradiction that \tilde{C}^b is a substitutable completion of C^b . Clearly \tilde{C}^b is DA-equivalent to C^b . Hence, we have that

$$x' \notin C^b(\{x', y, z\}) \implies x' \notin \tilde{C}^b(\{x', y', z'\})$$
$$z \notin C^b(\{x, y, z\}) \implies z \notin \tilde{C}^b(\{x, y, z\})$$
$$y \notin C^b(\{x', y, z\}) \implies y \notin \tilde{C}^b(\{x', y, z\}).$$

As \tilde{C}^b is substitutable, it follows that $\tilde{C}^b(X) \subseteq \{x, z'\}$, contradicting the assumption that \tilde{C}^b completes C^b .

⁵I could equivalently define \tilde{C}^b by the following iterative process. Given a set of contracts $Y \subseteq X$, apply the following two steps.

[•] Step 1: If one of x, z, y, x' is in Y, accept the first one in the list that is available. Regardless, proceed to the next step.

[•] Step 2: If one of z', x', y, z is in Y and was not selected in the first step, accept the first one in the list that is available. Regardless, terminate the process.

References

- Aygün, O. and T. Sönmez (2012). Matching with contracts: The critical role of irrelevance of rejected contracts. Working paper.
- Aygün, O. and T. Sönmez (2013). Matching with contracts: Comment. *American Economic Review* 103(5), 2050–2051.
- Hatfield, J. W. and F. Kojima (2010). Substitutes and stability for matching with contracts. *Journal of Economic Theory* 145(5), 1704–1723.
- Hatfield, J. W. and S. D. Kominers (2019). Hidden substitutes. Working paper.
- Hatfield, J. W., S. D. Kominers, and A. Westkamp (2019). Stability, strategy-proofness, and cumulative offer mechanisms. Working paper.
- Kadam, S. V. (2017). Unilateral substitutability implies substitutable completability in many-to-one matching with contracts. Games and Economic Behavior 102, 56– 68.
- Kominers, S. D. and T. Sönmez (2016). Matching with slot-specific priorities: Theory. *Theoretical Economics* 11(2), 683–710.
- Zhang, J. (2016). On sufficient conditions for the existence of stable matchings with contracts. *Economics Letters* 145, 230–234.