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A Omitted Proofs and Additional Theoretical Results

A.1 Proof of Theorem 1 (ctd.)

A.1.1 Proof of Lemma 1

We shall prove that (a) implies (b). Let (xk, pk)Kk=1 be EDU rational. Let δ ∈ (0, 1] and

u : R+ → R be as in the definition of EDU rational data. Then (see, for example, Theorem

28.3 of Rockafellar, 1997), there are numbers λk ≥ 0, k = 1, . . . , K such that if we let

vkt =
λkpkt
δt

,

then vkt ∈ ∂u(xkt ) if xkt > 0, and there is w ∈ ∂u(xkt ) with vkt ≥ w if xkt = 0. In fact, it is easy

to see that λk > 0, and therefore vkt > 0.

By the concavity of u, and the consequent monotonicity of ∂u(xkt ) (see Theorem 24.8

of Rockafellar, 1997), if xkt > xk
′

t′ > 0, vkt ∈ ∂u(xkt ), and vk
′

t′ ∈ ∂u(xk
′

t′ ), then vkt ≤ vk
′

t′ . If

xkt > xk
′

t′ = 0, then w ∈ ∂u(xk
′

t′ ) with vk
′

t′ ≥ w. We thus have vkt ≤ w ≤ vk
′

t′ .

In the second place, we show that (b) implies (a). Suppose that the numbers vkt , λk, δ,

for t ∈ T and k ∈ K, are as in (b).

Enumerate the elements in X in increasing order:

y1 < y2 < . . . < yn.

Let

y
i

= min{vkt : xkt = yi} and ȳi = max{vkt : xkt = yi}.

Let zi = (yi + yi+1)/2, i = 1, . . . , n− 1; z0 = 0, and zn = yn + 1. Let f be a correspondence

defined as follows:

f(z) =


[y
i
, ȳi] if z = yi,

max{ȳi : z < yi} if yn > z and ∀i(z 6= yi),

y
n
/2 if yn < z.

By assumption of the numbers vkt , we have that, when y < y′, v ∈ f(y) and v′ ∈ f(y′), then

v ≤ v′. Then the correspondence f is monotone and there is a concave function u for which

∂u = f (Theorem 24.8 of Rockafellar, 1997). Given that vkt > 0 all the elements in the range
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of f are positive, and therefore u is strictly increasing.

Finally, for all (k, t), λkpkt /δ
t = vkt ∈ ∂u(vkt ) and therefore the first-order conditions to a

maximum choice of x hold at xkt . Since u is concave the first-order conditions are sufficient.

The dataset is therefore EDU rational.

A.1.2 Proof of Lemma 6

For each sequence σ = (xkiti , x
k′i
t′i

)ni=1 that satisfies conditions in SAR-EDU, we define a vector

hσ ∈ N(K×T )2 as follows. To make the notation easier, we identify the pair (xkiti , x
k′i
t′i

) with

((ki, ti), (k
′
i, t
′
i)). Let hσ((k, t), (k′, t′)) be the number of times that the pair (xkt , x

k′

t′ ) appears

in the sequence σ. One can then describe the satisfaction of SAR-EDU by means of the

vectors hσ. Define

H =
{
hσ ∈ N(K×T )2 : σ satisfies conditions in SAR-EDU

}
.

Observe that the set H depends only on (xk)Kk=1 in the dataset (xk, pk)Kk=1. It does not

depend on prices.

For each ((k, t), (k′, t′)) ∈ (K × T )2 such that xkt > xk
′

t′ , define

γ̂((k, t), (k′, t′)) = log

(
pkt
pk
′
t′

)
,

and define γ̂((k, t), (k′, t′)) = 0 when xkt ≤ xk
′

t′ . Then, γ̂ is a (KT )2-dimensional real-valued

vector. If σ = (xkiti , x
k′i
t′i

)ni=1, then

γ̂ · hσ =
∑

((k,t),(k′,t′))∈(K×T )2

γ̂((k, t), (k′, t′))hσ((k, t), (k′, t′)) = log

 n∏
i=1

pkiti

p
k′i
t′i

 .

Therefore, the data satisfy SAR-EDU if and only if γ̂ · h ≤ 0 for all h ∈ H.

Enumerate the elements in X in increasing order:

y1 < y2 < · · · < yN .

Fix an arbitrary ξ ∈ (0, 1). We shall construct by induction a sequence (εkt (n)) for

n = 1, . . . , N , where εkt (n) is defined for all (k, t) with xkt = yn.

By the denseness of the rational numbers, and the continuity of the exponential function,
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for each (k, t) such that xkt = y1, there exists a positive number εkt (1) such that log(pkt ε
k
t (1)) ∈

Q and ξ < εkt (1) < 1. Let ε(1) = min{εkt (1) : xkt = y1}.
In the second place, for each (k, t) such that xkt = y2, there exists a positive number εkt (2)

such that log(pkt ε
k
t (2)) ∈ Q and ξ < εkt (2) < ε(1). Let ε(2) = min{εkt (2) : xkt = y2}.

In the third place, and reasoning by induction, suppose that ε(n) has been defined and

that ξ < ε(n). For each (k, t) such that xkt = yn+1, let εkt (n+1) > 0 be such that log(pkt ε
k
t (n+

1)) ∈ Q, and ξ < εkt (n+ 1) < ε(n). Let ε(n+ 1) = min{εkt (n+ 1) : xkt = yn}.
This defines the sequence (εkt (n)) by induction. Note that εkt (n + 1)/ε(n) < 1 for all n.

Let ξ̄ < 1 be such that εkt (n+ 1)/ε(n) < ξ̄.

For each k ∈ K and t ∈ T , let qkt = pkt ε
k
t (n), where n is such that xkt = yn. We claim that

the data (xk, qk)Kk=1 satisfy SAR-EDU. Let γ∗ be defined from (qk)Kk=1 in the same manner

as γ̂ was defined from (pk)Kk=1.

For each pair ((k, t), (k′, t′)) with xkt > xk
′

t′ , if n and m are such that xkt = yn and xk
′

t′ = ym,

then n > m. By the definition of ε,

εkt (n)

εk
′
t′ (m)

<
εkt (n)

ε(m)
< ξ̄ < 1.

Therefore,

γ∗((k, t), (k′, t′)) = log
pkt ε

k
t (n)

pk
′
t′ ε

k′
t′ (m)

< log
pkt
pk
′
t′

+ log ξ̄ < log
pkt
pk
′
t′

= γ̂(xks , x
k′

t′ ).

Thus, for all h ∈ H, γ∗ · h ≤ γ̂ · h ≤ 0, as h ≥ 0 and the data (xk, pk)Kk=1 satisfies SAR-EDU.

Thus, the data (xk, qk)Kk=1 satisfies SAR-EDU. Finally, note that ξ < εkt (n) < 1 for all n and

each k ∈ K, t ∈ T . Thus, by choosing ξ close enough to 1, we can take the prices (qk)Kk=1 to

be as close to (pk)Kk=1 as desired.

A.1.3 Proof of Lemma 7

Consider the system comprised by (A1), (A2), and (A3) in the proof of Lemma 5. Let A,

B, and E be constructed from the data as in the proof of Lemma 5. The difference with

respect to Lemma 5 is that now the entries of A4 may not be rational. Note that the entries

of E, B, and Ai, i = 1, 2, 3, are rational.

Suppose, towards a contradiction, that there is no solution to the system comprised

by (A1), (A2), and (A3). Then, by the argument in the proof of Lemma 5 there is no

solution to system S1. Lemma 3 with F = R implies that there is a real vector (θ, η, π) such
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that

θ · A+ η ·B + π · E = 0 and η ≥ 0, π > 0.

Recall that B4 = 0 and E4 = 1, so we obtain that θ · A4 + π = 0.

Let (qk)Kk=1 be vectors of prices such that the dataset (xk, qk)Kk=1 satisfies SAR-EDU and

log qkt ∈ Q for all k and s. (Such (qk)Kk=1 exists by Lemma 6.) Construct matrices A′, B′,

and E ′ from this dataset in the same way as A, B, and E are constructed in the proof of

Lemma 5. Note that only the prices are different in (xk, qk) compared to (xk, pk). Therefore,

it follows that E ′ = E, B′ = B and A′i = Ai for i = 1, 2, 3. Since only prices qk are different

in this dataset, only A′4 may be different from A4.

By Lemma 6, we can choose prices qk such that |θ · A′4 − θ · A4| < π/2. We have shown

that θ ·A4 = −π, so the choice of prices qk guarantees that θ ·A′4 < 0. Let π′ = −θ ·A′4 > 0.

Note that θ ·A′i+η ·B′i+π′Ei = 0 for i = 1, 2, 3, as (θ, η, π) solves system S2 for matrices

A, B, and E, and A′i = Ai, B
′
i = Bi, and Ei = 0 for i = 1, 2, 3. Finally, B4 = 0 so

θ · A′4 + η ·B′4 + π′E4 = θ · A′4 + π′ = 0.

We also have that η ≥ 0 and π′ > 0. Therefore θ, η, and π′ constitute a solution to system S2

for matrices A′, B′, and E ′.

Lemma 3 then implies that there is no solution to system S1 for matrices A′, B′, and E ′.

Thus, there is no solution to the system comprised by (A1), (A2), and (A3) in the proof of

Lemma 5. However, this contradicts Lemma 5 because the data (xk, qk) satisfies SAR-EDU

and log qkt ∈ Q for all k ∈ K and t ∈ T .

A.2 Proof of Theorem 2

The proofs for QHD and PQHD are similar, so we give a detailed proof for PQHD and then

explain how the proof for QHD is different.

Lemma 8. Let (xk, pk)Kk=1 be a dataset. The following statements are equivalent:

(a) (xk, pk)Kk=1 is PQHD rational.

(b) There are strictly positive numbers vkt , λk, β ≤ 1, and δ ∈ (0, 1], for t = 0, . . . , T and

k = 1, . . . , K, such that

vkt = λkpkt if t = 0, βδtvkt = λkpkt if t > 0, and xkt > xk
′

t′ =⇒ vkt ≤ vk
′

t′ .
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The proof of Lemma 8 is similar to the proof of Lemma 1 and omitted.

A.2.1 Necessity

Lemma 9. If a dataset (xk, pk)Kk=1 is PQHD rational, then it satisfies SAR-PQHD.

Proof. Let (xk, pk)Kk=1 be PQHD rational, and let β ≤ 1, δ ∈ (0, 1], and u : R+ → R be as

in the definition of PQHD rational. By Lemma 8, there exists a strictly positive solution

vkt , λk, β, δ to the system in statement (b) of Lemma 8 with vkt ∈ ∂u(xkt ) when xkt > 0, and

vkt ≥ w ∈ ∂u(xkt ) when xkt = 0. Moreover, vkt = λkpkt /D(t), where D(t) = 1 if t = 0 and

D(t) = βδt if t > 0.

Let (xkiti , x
k′i
t′i

)ni=1 be a sequence satisfying the four conditions in SAR-PQHD: (i)
∑n

i=1 ti ≥∑n
i=1 t

′
i, (ii) #{i : ti > 0} ≥ #{i : t′i > 0}, (iii) each k appears as ki (on the left of the pair)

the same number of times it appears as k′i (on the right), and (iv) xkiti > x
k′i
t′i

for all i.

Suppose that x
k′i
t′i
> 0. Then, vkiti ∈ ∂u(xkiti ) and v

k′i
t′i
∈ ∂u(x

k′i
t′i

). By the concavity of u, it

follows that vkiti ≤ v
k′i
t′i

. Similarly, if x
k′i
t′i

= 0, then vkiti ∈ ∂u(xkiti ) and v
k′i
t′i
≥ w ∈ ∂u(x

k′i
t′i

), so

that vkiti ≤ v
k′i
t′i

. Therefore,

1 ≥
n∏
i=1

λkiD(t′i)p
ki
ti

λk
′
iD(ti)p

k′i
t′i

=
n∏
i=1

D(t′i)p
ki
ti

D(ti)p
k′i
t′i

=
β#{i:t′i>0}−#{i:ti>0}

δ(
∑
ti−

∑
t′i)

n∏
i=1

pkiti

p
k′i
t′i

≥
n∏
i=1

pkiti

p
k′i
t′i

,

where the first equality holds by condition (iii) of SAR-PQHD; and the numbers λk appear

the same number of times in the denominator as in the numerator of this product. Moreover,

the last inequality holds by conditions (i) and (ii) of SAR-PQHD.

A.2.2 Sufficiency

Lemma 10. Let data (xk, pk)kk=1 satisfy SAR-PQHD. Suppose that log(pkt ) ∈ Q for all k

and t. Then there are numbers vkt , λk, β, δ, for t ∈ T and k ∈ K satisfying (b) in Lemma 8.

Lemma 11. Let data (xk, pk)kk=1 satisfy SAR-PQHD. Then for all positive numbers ε, there

exists qkt ∈ [pkt−ε, pkt ] for all t ∈ T and k ∈ K such that log qkt ∈ Q and the dataset (xk, qk)kk=1

satisfy SAR-PQHD.

Lemma 12. Let data (xk, pk)kk=1 satisfy SAR-PQHD. Then there are numbers vkt , λk, β, δ,

for t ∈ T and k ∈ K satisfying (b) in Lemma 8.

Lemma 11 and 12 hold as in the proof for Theorem 1.
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A.2.3 Proof of Lemma 10

We linearize the equation in system (b) of Lemma 8. The result is:

log vkt − log λk − log pkt = 0 if t = 0, (5)

log vkt + log β + t log δ − log λk − log pkt = 0 if t > 0, (6)

xkt > xk
′

t′ =⇒ log vk
′

t′ ≥ log vkt , (7)

log β ≥ 0, (8)

log δ ≤ 0. (9)

In the system comprised by (5), (6), (7), (8), and (9), the unknowns are the real numbers

log β, log δ, log λk, and log vkt for all k = 1, . . . , K and t = 1, . . . , T .

First, we are going to write the system of inequalities from (5) to (9) in a matrix form.

We shall define a matrix A such that there are positive numbers vkt , λk, β, and δ, the logs

of which satisfy equations (5) and (6) if and only if there is a solution w ∈ RK×(T+1)+2+K+1

to the system of equations

A · w = 0,

and for which the last component of w is strictly positive.

Let A be a matrix with K × (T + 1) rows and K × (T + 1) + 2 + K + 1 columns,

defined as follows: We have one row for every pair (k, t), one column for every pair (k, t),

two columns for each k, and two additional columns. Organize the columns so that we first

have the K × (T + 1) columns for the pairs (k, t), then two columns, which we shall refer to

as the β-column and δ-column, respectively, then K columns (one for each k), and finally

one last column. In the row corresponding to (k, t) the matrix has zeroes everywhere with

the following exceptions: it has a 1 in the column for (k, t), it has a 1 if t > 0 and it has a 0

if t = 0 in the β-column, it has a t in the δ-column, it has a −1 in the column for k, and

− log pkt in the very last column.

Thus, matrix A looks as follows:



(1,1) ··· (k,t) (k,t′) ··· (K,T ) β δ 1 ··· k ··· K p

...
...

...
...

...
...

...
...

...
...

...

(k,t=0) 0 · · · 1 0 · · · 0 0 t 0 · · · −1 · · · 0 − log pkt

(k,t′>0) 0 · · · 0 1 · · · 0 1 t′ 0 · · · −1 · · · 0 − log pkt′
...

...
...

...
...

...
...

...
...

...
...

.
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Consider the system A ·w = 0. If there are numbers solving Equations (5) and (6), then

these define a solution w ∈ RK×(T+1)+2+K+1 for which the last component is 1. If, on the

other hand, there is a solution w ∈ RK×(T+1)+2+K+1 to the system A · w = 0 in which the

last component is strictly positive, then by dividing through by the last component of w we

obtain numbers that solve equations (5) and (6).

In the second place, we write the system of inequalities (7), (8), and (9) in a matrix form.

Let B be a matrix with K × (T + 1) + 2 +K + 1 columns. Define B as follows: One row for

every pair (k, t) and (k′, t′) with xkt > xk
′

t′ ; in the row corresponding to (k, t) and (k′, t′) we

have zeroes everywhere with the exception of a −1 in the column for (k, t) and a 1 in the

column for (k′, t′). Finally, we have last two rows, where we have zero everywhere with one

exception. In the first row, we have a −1 at (K× (T + 1) + 1)-th column; in the second row,

we have a −1 at (K × (T + 1) + 2)-th column. We shall refer to the first row as the β-row,

which captures (8). We also shall refer to the second row as the δ-row, which captures (9).

For general QHD, we do not have a β-row.

In the third place, we have a matrix E that captures the requirement that the last

component of a solution be strictly positive. The matrix E has a single row and K × (T +

1) + 2 +K + 1 columns. It has zeroes everywhere except for 1 in the last column.

To sum up, there is a solution to system (5), (6), (7), (8), and (9) if and only if there

is a vector w ∈ RK×(T+1)+2+K+1 that solves the system of equations and linear inequalities

(S1) : A · w = 0, B · w ≥ 0, E · w � 0. The argument now follows along the lines of the

proof of Theorem 1. Suppose that there is no solution w and let (θ, η, π) be an integer vector

solving system (S2) : θ · A+ η ·B + π · E = 0, η ≥ 0, π > 0.

The following has the same proof as Claim 1.

Claim 9. (i) θ ·A1 +η ·B1 = 0; (ii) θ ·A2 +η ·B2 = 0; (iii) θ ·A3 +η ·B3 = 0; (iv) θ ·A4 = 0;

and (v) θ · A5 + π · E5 = 0.

We transform the matrices A and B based on the values of θ and η, as we did in the

proof of Theorem 1. Let us define a matrix A∗ from A and B∗ from B, as we did in the proof

of Theorem 1. We can prove the same claims (i.e., Claims 2, 3, 4, 5, and 6) as in the proof

of Theorem 1. The proofs are the same and omitted. In particular, we can show that there

exists a sequence of pairs (xkiti , x
k′i
t′i

)n
∗
i=1 that satisfies a condition in SAR-PQHD, xkiti > x

k′i
t′i

for

all i = 1, . . . , n∗. We shall use the sequence of pairs (xkiti , x
k′i
t′i

)n
∗
i=1 as our candidate violation

of SAR-PQHD.

Claim 10. The sequence (xkiti , x
k′i
t′i

)n
∗
i=1 satisfies conditions (i), (ii), and (iii) in SAR-PQHD.

7



Proof. We first establish condition (i). Note that A∗3 is a vector, and in row r the entry of

A∗3 is as follows. There must be a (k, t) of which r is a copy. Then the component at row r

of A∗3 is t if r is original and −t if r is converted. Now, when r appears as original there is

some i for which t = ti, when r appears as converted there is some i for which t = t′i. Thus,

for each r there is i such that (A∗3)r is either ti or −t′i.
By Claim 9 (iii), θ · A3 + η · B3 = 0. Recall that θ · A3 equals the sum of the rows of

A∗3. Moreover, B3 is a vector that has zeroes everywhere except a −1 in the δ row (i.e.,

(K × (T + 1) + 2)-th row). Therefore, the sum of the rows of A∗3 equals ηK×(T+1)+2, where

ηK×(T+1)+2 is the (K × (T + 1) + 2)-th element of η. Since η ≥ 0, therefore,
∑

i:ti>0 ti −∑
i:t′i>0 t

′
i = ηK×(T+1)+2 ≥ 0, and condition (i) in the axiom is satisfied.

Next, we show condition (ii). By Claim 9 (ii), θ ·A2 +η ·B2 = 0. Recall that θ ·A2 equals

the sum of the rows of A∗2. Moreover, B2 is a vector that has zeroes everywhere except a −1

in the β row (i.e., (K × (T + 1) + 1)-th row). Therefore, the sum of the rows of A∗2 equals

ηK×(T+1)+1, where ηK×(T+1)+1 is the (K×(T +1)+1)-th element of η. Since η ≥ 0, therefore,

#{i : ti > 0} −#{i : t′i > 0} = ηK×(T+1)+1 ≥ 0, and condition (ii) in the axiom is satisfied.

(For general QHD, B2 is a zero vector in the β-row, i.e., (K× (T +1)+1)-th row. Therefore,

#{i : ti > 0} −#{i : t′i > 0} = 0, and condition (ii) in SAR-QHD is satisfied.)

Now we turn to condition (iii). By Claim 9 (iv), the rows of A∗4 add up to zero. Therefore,

the number of times that k appears in an original row equals the number of times that it

appears in a converted row. By Claim 6, then, the number of times k appears as ki equals

the number of times it appears as k′i. Therefore, condition (iii) in the axiom is satisfied. �

Finally, we can show that
∏n∗

i=1 p
ki
ti /p

k′i
t′i
> 1, which finishes the proof of Lemma 5 as the

sequence (xkiti , x
k′i
t′i

)n
∗
i=1 would then exhibit a violation of SAR-PQHD. The proof is the same

as that of the corresponding lemma in the proof of Theorem 1.

A.3 Proof of Theorem 3: M ′ = TSU

The proof that SAR-TSU is equivalent to TSU rationality is similar to the proof of Theo-

rem 1. In the following, we explain the differences.

Lemma 13. Let (xk, pk)Kk=1 be a dataset. The following statements are equivalent:

(a) (xk, pk)Kk=1 is TSU rational.
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(b) There are strictly positive numbers vkt and λk for t = 0, . . . , T and k = 1, . . . , K, such

that

vkt = λkpkt and xkt > xk
′

t =⇒ vkt ≤ vk
′

t .

The proof of Lemma 13 is similar to the proof of Lemma 1 and omitted.

To see that SAR-TSU is necessary, let (xkiti , x
k′i
t′i

)ni=1 be a sequence under the conditions

of the axiom. We present the proof under the assumption that ut is differentiable, but it is

straightforward to use the concavity and the corresponding monotonicity of the superdiffer-

ential of ut, as we did in the proof of Theorem 1. The first-order condition is u′t(x
k
t ) = λkpt.

Since ti = t′i for each i, we obtain

1 ≥
n∏
i=1

u′ti(x
ki
ti )

u′ti(x
k′i
ti )

=
n∏
i=1

λkipkiti

λk
′
ip
k′i
ti

=
n∏
i=1

λki

λk
′
i

n∏
i=1

pkiti

p
k′i
ti

=
n∏
i=1

pkiti

p
k′i
ti

,

where the last equality holds because each k appears as k′i the same number of times it

appears as ki.

In the following, we prove the sufficiency. The outline of the proof is the same as in the

proof of Theorem 1.

Lemma 14. Let data (xk, pk)kk=1 satisfy SAR-TSU. Suppose that log(pkt ) ∈ Q for all k and t.

Then there are numbers vkt , λk, β, δ, for t ∈ T and k ∈ K satisfying (b) in Lemma 13.

Proof. We linearize the equation in System (b) of Lemma 13. The result is:

log vkt − log λk − log pkt = 0, (10)

xkt > xk
′

t =⇒ log vk
′

t ≥ log vkt . (11)

In the system comprised by (10) and (11), the unknowns are the real numbers λk and log vkt

for all k = 1, . . . , K and t = 1, . . . , T .

We shall define a matrix A such that there are positive numbers vkt and λk, the logs of

which satisfy equation (10) if and only if there is a solution w ∈ RK×(T+1)+K+1 to the system

of equations

A · w = 0,

and for which the last component of u is strictly positive.
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Let A be a matrix with K × (T + 1) rows and K × (T + 1) +K + 1 columns. The matrix

A is similar to the matrix A defined in the proof of Theorem 1, only the difference here is

that we no longer have the δ-column. Thus, matrix A looks as follows:


(1,0) ··· (k,t) ··· (K,T ) 1 ··· k ··· K p

...
...

...
...

...
...

...
...

(k,t) 0 · · · 1 · · · 0 0 · · · −1 · · · 0 − log pkt
...

...
...

...
...

...
...

...

.
Consider the system A · w = 0. If there are numbers solving equation (10), then these

define a solution w ∈ RK×(T+1)+K+1 for which the last component is 1. If, on the other hand,

there is a solution w ∈ RK×(T+1)+K+1 to the system A · w = 0 in which the last component

is strictly positive, then by dividing through by the last component of w we obtain numbers

that solve equation (10).

In the second place, we write the system of inequalities (11) in a matrix form. Let B be

a matrix with K × (T + 1) + K + 1 columns. Define B as follows: One row for every pair

(k, t) and (k′, t) with xkt > xk
′
t ; in the row corresponding to (k, t) and (k′, t) we have zeroes

everywhere with the exception of a −1 in the column for (k, t) and a 1 in the column for

(k′, t).

In the third place, we have a matrix E that captures the requirement that the last

component of a solution be strictly positive. The matrix E has a single row and K × (T +

1) +K + 1 columns. It has zeroes everywhere except for 1 in the last column.

To sum up, there is a solution to system (10) and (11) if and only if there is a vector

w ∈ RK×(T+1)+K+1 that solves the system of equations and linear inequalities

(S1) : A · w = 0, B · w ≥ 0, E · w � 0.

The entries of A, B, and E are integer numbers, with the exception of the last column of

A. Under the hypothesis of the lemma we are proving, the last column consists of rational

numbers.

By Lemma 4, then, there is such a solution w to system S1 if and only if there is no

vector (θ, η, π) that solves the system of equations and linear inequalities

(S2) : θ · A+ η ·B + π · E = 0, η ≥ 0, π > 0.

10



In the following, we shall prove that the non-existence of a solution w implies that the

data must violate SAR-TSU. Suppose then that there is no solution w and let (θ, η, π) be a

rational vector as above, solving system S2.

By multiplying (θ, η, π) by any positive integer we obtain new vectors that solve sys-

tem S2, so we can take (θ, η, π) to be integer vectors.

For convenience, we transform the matrices A and B using θ and η. We now transform

the matrices A and B based on the values of θ and η, as we did in the proof of Theorem 1.

Let us define a matrix A∗ from A and B∗ from B, as we did in the proof of Theorem 1. We

can prove the same claims (i.e., Claims 2, 3, 4, 5, and 6) as in the proof of Theorem 1. The

proofs are the same and omitted. In particular, we can show that there exists a sequence

of pairs (xkiti , x
k′i
t′i

)n
∗
i=1 that satisfies xkiti > x

k′i
t′i

for all i = 1, . . . , n∗. Moreover, by the definition

of B matrix, we have ti = t′i because in matrix B we have z >i z′ if there exist t ∈ T and

k, k′ ∈ T such that there exist xkt = z and xk
′
t = z′. Moreover, as in Claim 7, we can show

that in the sequence (xkiti , x
k′i
t′i

)n
∗
i=1, each k appears ki the same number of times it appears as

k′i. Finally, we can show that
∏n∗

i=1 p
ki
ti /p

k′i
t′i
> 1, which finishes the proof of Lemma 14 as the

sequence (xkiti , x
k′i
t′i

)n
∗
i=1 would then exhibit a violation of SAR-TSU. The proof is the same as

in the proof of Theorem 1 and omitted.

Lemma 15. Let data (xk, pk)kk=1 satisfy SAR-TSU. Then for all positive numbers ε, there

exists qkt ∈ [pkt−ε, pkt ] for all t ∈ T and k ∈ K such that log qkt ∈ Q and the dataset (xk, qk)kk=1

satisfy SAR-TSU.

Lemma 16. Let data (xk, pk)kk=1 satisfy SAR-TSU. Then there are numbers vkt and λk for

all t ∈ T and k ∈ K satisfying ((b)) in Lemma 13.

Lemma 15 and 16 hold as in the proof of Theorem 1.

A.4 Observational Equivalence between Models

A.4.1 Proof of Proposition 2

The equivalence between (ii) and (iii) are by Proposition 1. We will show the equivalence

between (i) and (ii). Obviously (ii) implies (i). So we will show the converse.

To show the converse, suppose that a dataset is not EDU rational with δ = 1. Then, by

11



Proposition 1, there must be a balanced sequence of pairs (xmi
si
, x

m′i
s′i

)Mi=1 such that

M∏
i=1

pmi
si

p
m′i
s′i

> 1.

Since the data is not strictly impatient, there exists a balanced sequence (xkiti , x
k′i
t′i

)ni=1 of pairs

such that xkiti > x
k′i
t′i

for all i,
∑n

i=1 ti >
∑n

i=1 t
′
i, and

n∏
i=1

pkiti

p
k′i
t′i

≥ 1.

Now we can consider a balanced sequence of pairs by including (xmi
si
, x

m′i
s′i

)Mi=1 and enough

copies of (xkiti , x
k′i
t′i

)ni=1 such that the sum of t on the left of the pair is greater than the sum

of t on the right. This is possible because
∑n

i=1 ti >
∑n

i=1 t
′
i. The resulting product of ratios

of prices is still equal to
n∏
i=1

pmi
si

p
m′i
s′i

> 1.

Thus the dataset is not EDU rational.

A.4.2 Proof of Proposition 3

Of course, if the data is EDU rational then it is PQHD rational. Let us prove the converse.

Choose a sequence (xkiti , x
k′i
t′i

)ni=1 such that (i) xkiti > x
k′i
t′i

for all i ∈ {1, . . . , n}, (ii)
∑n

i=1 ti ≥∑n
i=1 t

′
i, and (iii) each k appears as ki the same number of times as k′i.

By (i), xkiti > 0 for all i ∈ {1, . . . , n}. Since xk0 = 0 for all k ∈ K, we obtain ti > 0 for

all i ∈ {1, . . . , n}. Therefore, #{i ∈ {1, . . . , n} : ti > 0} = #{i ∈ {1, . . . , n}} ≥ #{i ∈
{1, . . . , n} : t′i > 0}. Therefore, the sequence satisfies all of the conditions in SAR-PQHD.

Since the dataset is PQHD rational, Theorem 2 shows that

n∏
i=1

pkiti
pkit′i

≤ 1. (12)

Therefore, conditions (i), (ii), and (iii) imply (12), which is SAR-EDU. Therefore, by Theo-

rem 1, the dataset must be EDU rational.

12



A.4.3 Corner Choices and EDU Rationality

Section 4.3 discusses one condition on the data for which EDU and QHD are observationally

equivalent. The condition is very common in AS’s dataset. Here we discuss the same

condition and relate it to the pass rate for the EDU test. The condition can be stated

and analyzed for datasets obtained from any CTB experimental design. We show that,

in CTB experiments, if a subject does not consume a positive amount on the sooner date

whenever the price for the sooner consumption is more expensive than the price for the later

consumption, then the subject must be EDU rational.

We first formalize the notion of a CTB dataset. We say that a dataset (xk, pk)k∈K is

CTB if for each k ∈ K, there exist l(k), s(k) ∈ T such that l(k) > s(k),

xkt = 0 for all t ∈ T \ {l(k), s(k)}, (13)

and

min
t∈T\{l(k),s(k)}

pkt > pks(k) ≥ pkl(k). (14)

In a CTB dataset, an agent can choose positive consumptions only on the two specified dates

l(k) and s(k). The date l(k) is a later date and s(k) is a sooner date (see also Section 4.1).

Proposition 4. Suppose that a dataset (xk, pk)k∈K is CTB. Moreover, for each k ∈ K,

pks(k) > pkl(k) =⇒ xks(k) = 0. (15)

Then, the dataset is EDU rational.

Proof. Choose a sequence (xkiti , x
k′i
t′i

)ni=1 such that (i) xkiti > x
k′i
t′i

for all i ∈ {1, . . . , n}, (ii)∑n
i=1 ti ≥

∑n
i=1 t

′
i, and (iii) each k appears as ki the same number of times as k′i. By

conditions (i) and (iii), we can arrange the sequence to obtain a new sequence (ykiti , y
k′i
t′i

) such

that ykiti > 0, ki = k′i for all i ∈ {1, . . . , n}, {ykiti }
n
i=1 = {xkiti }

n
i=1, and {yk

′
i

t′i
}ni=1 = {xk

′
i

t′i
}ni=1.

Define a subset K ′ of K by K ′ = {k ∈ K : pks(k) > pkl(k)}. Choose any i ∈ {1, . . . , n}. We

will show that pkiti /p
ki
t′i
≤ 1.

Consider the case where ki ∈ K ′. Then, by conditions (13) and (15), ti = l(ki) because

xkiti > 0. So t′i = s(ki) or t′i 6∈ {s(ki), l(ki)}. Therefore,

pkiti
pkit′i

=
pkil(ki)

pkit′i

≤ max

{
pkil(ki)

pkis(ki)
,

pkil(ki)

mint∈T\{l(ki),s(ki)}{p
ki
t }

}
≤ 1,
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where the first inequality holds by (14) and the second inequality holds because ki ∈ K ′.
Consider the case where ki 6∈ K ′. By (14), we have pkis(ki) = pkil(ki). By (13), we have

ti = l(ki) or ti = s(ki) because xkiti > 0. Then,

pkiti
pkit′i

≤ max

{
pkil(ki)

pkis(ki)
,
pkis(ki)

pkil(ki)
,

pkis(ki)

mint∈T\{l(ki),s(ki)}{p
ki
t }

,
pkil(ki)

mint∈T\{l(ki),s(ki)}{p
ki
t }

}
≤ 1.

The proposition is important because condition (15) is satisfied by 82.8% (24 out of 29)

of EDU rational subjects in AS dataset. Note that the condition does not require anything

when pkl(k) = pks(k).

A.4.4 Observational equivalence between EDU and TSU

One consequence of Theorems 1 and 3 is that, under certain circumstances, EDU and TSU

are observationally equivalent.

Proposition 5. Suppose that for any k, k′ ∈ K, xkt > xk
′

t′ when t < t′. Then (xk, pk)Kk=1 is

TSU rational if and only if it is EDU rational.

Proof. EDU implies TSU. We will show that TSU implies EDU. Choose a sequence (xkiti , x
k′i
t′i

)ni=1

such that (i) xkiti > x
k′i
t′i

for all i ∈ {1, . . . , n}, (ii)
∑n

i=1 ti ≥
∑n

i=1 t
′
i, and (iii) each k appears

as ki the same number of times as k′i.

Suppose that tj 6= t′j for some j, then by the condition, tj < t′j. Moreover, by the

condition for all i, ti ≤ t′i.

Thus,
∑n

i=1 ti <
∑

i=1 t
′
i. This is a contradiction. Therefore, ti = t′i for all i. Since the

dataset is TSU rational, Theorem 3 shows that

n∏
i=1

pkiti
pkit′i

≤ 1. (16)

Therefore, conditions (i), (ii), and (iii) imply (16), which is SAR-EDU. Therefore, by Theo-

rem 1, the dataset must be EDU rational.

The condition means that, independently of k, the agents consume more in an earlier

period than in a later period.
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B Implementation of Revealed-Preference Tests

This section presents a method to implement the revealed-preference tests for time discount-

ing models using Matlab R2018a (MathWorks). We use Andreoni and Sprenger’s (2012)

experimental choice data as the model case, but our method is applicable to other empiri-

cal/experimental data sets.

Dataset. Subjects in the Andreoni and Sprenger’s (2012) experiment completed 45 in-

tertemporal decisions with varying starting dates τ , delay lengths d, and gross interest rates

aτ+d/aτ and, in particular, they complete 5 decision problems for each pair of (τ, d). See

Figure B.1 for an illustration of budgets. For each subject, the decision in every trial is char-

acterized by a tuple (τ, d, aτ , aτ+d, cτ ) where cτ is the number of tokens allocated to sooner

payment.

The following figure illustrates the budgets faced by the subjects in AS’s experiment,

fixing one time frame at (τ, d).
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Figure B.1: An illustration of the CTB design in Andreoni and Sprenger (2012). Budget sets are
represented in blue lines, fixing one time frame at (τ, d) = (0, 35).

In order to rewrite our data in price-consumption format as in the theory, we set prices

pτ = 1 + r = aτ+d/aτ and pτ+d = 1 (normalization), and define consumptions xτ = cτ · aτ
and xτ+d = (100− cτ ) · aτ+d. This gives us a dataset (xk, pk)45

k=1.

As we explained in the main body of the paper, we implicitly set prices of consumption in

periods that were not offered to a subject as very high in order to ensure that consumption

is zero. The idea is as follows. Think of EDU for concreteness. We use first-order conditions,

so that we are looking for a rationalizing u and δ such that δtu′(xkt ) = λkpkt if xkt > 0 and

δtu′(xkt ) ≤ λkpkt if xkt = 0. In setting up such a system of equations we can ignore the t that
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was not offered to the agents in trial k. Then whatever u we construct will have a finite

derivative u′(0) at zero. Therefore, we can set pkt to be high enough so that the agent finds it

optimal to consume xkt = 0. By this argument is it clear that one can ignore the (zero) con-

sumption in the periods that were not offered in trial k, as we think of consumption in those

periods as prohibitively expensive. This is of course consistent with the fact that AS did not

offer subjects any consumption in those periods; consumption in those periods is infeasible.

The set of time periods we are looking at is thus T = {0, 7, 35, 42, 70, 77, 98, 105, 133}.
We are able to check whether a given dataset is consistent with TSU, QHD, PQHD, or

EDU, by solving the corresponding linear programming problem. The construction of linear

programming problems closely follows the argument in the proofs of Theorem 1, 2, and 3. In

particular, the key to this procedure is to set up a system of linear inequalities of the form:

S :


A · u = 0

B · u ≥ 0

E · u > 0

,

which, in the case of EDU for example, is a matrix form of the linearized system:

log v(xkt ) + t log δ − log λk − log pkt = 0,

x > x′ =⇒ log v(x′) ≥ log v(x),

log δ ≤ 0.

A system of linear inequalities. We now construct three key ingredients of the system,

matrices A, B, and E, starting from those necessary for testing EDU. The first matrix A

looks as follows:


(1,0) ··· (k,t) ··· (45,133) δ 1 ··· k ··· 45 p

...
...

...
...

...
...

...
...

...

(k,t) 0 · · · 1 · · · 0 t 0 · · · −1 · · · 0 − log pkt
...

...
...

...
...

...
...

...
...

.
Since we can ignore the t that was not offered to the agents in trial k, the matrix has

45× 2 = 90 rows and 45× 2 + 1 + 45 + 1 = 137 columns. In the row corresponding to (k, t)

the matrix has zeroes everywhere with the following exceptions: it has a 1 in the column for

(k, t); it has a t in the δ column; it has a −1 in the column for k; and − log pkt in the very
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last column. This finalizes the construction of A.

Next, we construct matrix B that has 137 columns and there is one row for every pair

(k, t) and (k′, t′) with xkt > xk
′

t′ . In the row corresponding to (k, t) and (k′, t′) we have zeroes

everywhere with the exception of a −1 in the column for (k, t) and a 1 in the column for

(k′, t′). Finally, in the last row, we have zero everywhere with the exception of a −1 at 91st

column. We shall refer to this last row as the δ-row.

Finally, we prepare a matrix that captures the requirement that the last component of a

solution be strictly positive. The matrix E has a single row and 137 columns. It has zeroes

everywhere except for 1 in the last column.

Constructing matrices for other tests. In order to test models other than EDU, we

need to modify matrices A, B, and E appropriately.

For the QHD test, we insert another column capturing the present/future bias parameter

β, which we shall refer to the β-column. Therefore, three matrices A, B, and E have

45× 2 + 1 + 1 + 45 + 1 = 138 columns. In the row corresponding to (k, t) of the matrix A,

the β-column has a 1 if t > 0 and a 0 if t = 0, indicating “now” or “future”.



(1,1) ··· (k,t) (k,t′) ··· (45,133) β δ 1 ··· k ··· K p

...
...

...
...

...
...

...
...

...
...

...

(k,t=0) 0 · · · 1 0 · · · 0 0 t 0 · · · −1 · · · 0 − log pkt

(k,t′>0) 0 · · · 0 1 · · · 0 1 t′ 0 · · · −1 · · · 0 − log pkt′
...

...
...

...
...

...
...

...
...

...
...

.

The construction of matrix B for testing general QHD is the same as above (although the

size is now different). For the PQHD test, we add β-row which has 0 everywhere except −1

in the β-column to capture β ≤ 1.

For the MTD and GTD tests, we have nine columns capturing discount factors D(t)’s.


(1,0) ··· x̃` ··· (45,133) ··· D(t) ··· 1 ··· k ··· 45 p

...
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

...

(k,t) 0 · · · 1 · · · 0 · · · 1 · · · 0 · · · −1 · · · 0 − log pkt
...

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
...

.
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In the matrix B, we add rows


(1,0) ··· (k,t) ··· (45,133) ··· D(t) D(t+1) ··· 1 ··· k ··· 45 p

...
. . .

...
. . .

...
. . .

...
...

. . .
...

. . .
...

. . .
...

...

0 · · · 0 · · · 0 · · · 1 −1 · · · 0 · · · 0 · · · 0 0
...

. . .
...

. . .
...

. . .
...

...
. . .

...
. . .

...
. . .

...
...


in testing MTD to impose the monotonicity restriction on D(t)’s.

The matrix A for testing TSU is similar to that appears in testing EDU. The difference

is that we no longer have the δ-column.


(1,0) ··· (k,t) ··· (K,T ) 1 ··· k ··· K p

...
...

...
...

...
...

...
...

(k,t) 0 · · · 1 · · · 0 0 · · · −1 · · · 0 − log pkt
...

...
...

...
...

...
...

...


Next, we construct B as follows: One row for every pair (k, t) and (k′, t) with xkt > xk

′
t ; in

the row corresponding to (k, t) and (k′, t) we have zeroes everywhere with the exception of

a −1 in the column for (k, t) and a 1 in the column for (k′, t).

Solve the system. Our task is to check if there is a vector w that solves the following

system of linear inequalities corresponding to a model M ′

SM ′ :


A · w = 0

B · w ≥ 0

E · w > 0

.

If there is a solution w to this system, we say that the dataset is M ′-rational.

We use the function linprog in the Optimization Toolbox of Matlab to find a solution.

More precisely, we translate the systems of linear inequalities SM ′ into constraints in a linear
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programming problem and solve

LPM ′ :



min z · w

s.t. A · w = 0

−B · w ≤ 0

−E · w < 0

,

where z is a zero vector.

It is not possible, however, to specify strict inequality constraints in linprog. As an

alternative, we find a solution w that has 1 in the last element, i.e., wp = 1. In other words,

we solve a normalized version of the problem,

LP ′M ′ :



min z · w

s.t. A · w = 0

−B · w ≤ 0

wp = 1

,

where z is a zero vector as above. Here, the constraint E · w > 0 is omitted since it is

automatically satisfied by our normalization wp = 1.

If the given dataset is EDU rational, we can recover upper and lower bounds of the daily

discount factor consistent with the observed choice data. Remember that we include the

δ-row in B. The constraint B · u ≥ 0 then implies that the 91st element of any solution w∗

of LP ′M ′ , called u∗δ , captures the daily discount factor. To be more precise, we can recover

the daily discount factor δ by exp(w∗δ) since we normalize w∗p to be 1. Therefore, a solution

(if any) of LP ′M ′ in which the 91st element of z is 1 and 0 elsewhere suggests an lower bound

of δ and a solution (if any) of LP ′M ′ in which the 91st element of z is −1 and 0 elsewhere

suggests an upper bound of δ. In a similar manner, we can recover bounds of present/future

bias β.
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C Power of the Tests

In this section, we discuss the power of our tests. The low power of GARP is well doc-

umented. As a result, it is common to assess the power of a test by comparing the pass

rates (the fraction of choices that pass the relevant revealed preference axiom) from purely

random choices.1 Here we report the results from such an assessment using our tests and

the experimental design of AS. We find no evidence of low power.

We generate 10,000 datasets in which choices are made at random and uniformly dis-

tributed on the frontier of the budget set (Method 1 of Bronars, 1987). Datasets generated

in this way always fail our tests (Table C.1 shows pass rates). Next, we apply the simple

bootstrap method to look at the power from an ex-post perspective, as originally introduced

in Andreoni and Miller (2002). For each of the 45 budget sets, we randomly pick one choice

from the set of choices observed in the entire experiment (i.e., 97 observations for each bud-

get). We generate 10,000 such datasets and apply our revealed-preference tests. We again

observe high percentages of violation.

Table C.1: Power measures.

AS design CMW design

Sampling EDU QHD TSU EDU QHD TSU

Uniform random 0.00 0.00 0.00 0.00 0.00 0.00
Simple Bootstrap 0.00 0.00 0.00 0.00 0.00 0.00

The conclusion is that our tests seem to have good power against the (admittedly crude)

alternative of random choices. This is a credit to the design of AS.

We apply the same method to CMW version of CTB design (a total of 12 budgets and

1,060 observations for each budget). We again find no evidence of low power.

1The idea of using random choices as a benchmark is first applied to revealed preference theory by Bronars
(1987). This approach is the most popular in empirical application: see, among other studies, Adams et al.
(2014), Andreoni and Miller (2002), Beatty and Crawford (2011), Choi et al. (2007), Crawford (2010), Dean
and Martin (2016), Fisman et al. (2007). For overview of power calculation, see discussions in Andreoni
et al. (2013) and Crawford and De Rock (2014).
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D Additional Empirical Results

D.1 Definition of the “Present” Period in QHD

A clear distinction between “the present” (t = 0) and “future” (t > 0) plays a key role in

the QHD model. Experimental studies typically treat reward that is delivered within the

day of the experiment as an immediate reward. We followed this approach in our empirical

application (Section 4), but the question, how soon is “now”, is one of the topics actively

debated in the literature (Balakrishnan et al., forthcoming; DellaVigna, 2018; Ericson and

Laibson, 2019).

We consider a version of QHD in which the present can last more than one time period and

hence the β discount factor applies after a number of initial periods. Since our methodology

forces us to choose the number of initial periods, for any given τ̄ we can analyze and test for

the model
τ̄∑
t=0

δtu(xt) + β
T∑

t=τ̄+1

δtu(xt). (17)

In order to determine the boundary between the present and future time periods empir-

ically, we run the QHD test for different candidate values of τ̄ ∈ T . The set of time periods

is T = {0, 7, 35, 42, 70, 77, 98, 105, 133} (days) in AS data and T = {0, 4, 8, 12} (weeks) in

CMW data. We can now look at the “present” revealed through choice. More precisely, we

find the smallest τ̄ ∈ T under which a subject is strictly QHD rational (Table D.1). Note

that the QHD test with τ̄ = 0 corresponds to the original QHD test, while the test with

τ̄ = maxT corresponds to the EDU test.

Table D.1: Revealed “present” for strictly QHD-rational subjects.

τ̄ (days)

AS 0 7 35 42 70 77 98 105

PQHD (β ≤ 1) 0 2 1 2 0 1 0 0
FQHD (β ≥ 1) 0 1 1 1 3 0 0 0

τ̄ (weeks)

CMW 0 4 8

PQHD (β ≤ 1) 6 4 5
FQHD (β ≥ 1) 6 7 61

In Section 4, we argue that the scope of QHD is limited since there are no subjects who

are not EDU rational but QHD rational in AS data. However, when we allow subjects to

treat all t ≤ 7 as the present, three subjects become strictly QHD rational. We observe a

similar pattern in CMW data.
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D.2 Diminishing Impatience

Following Halevy (2008) and Chakraborty et al. (forthcoming), we define the agent’s one-

period impatience at t by D(t)/D(t + 1), and consider the following two properties of the

discount function D : T → R+.

Definition 6. A monotonically decreasing discount function D : T → R+ exhibits dimin-

ishing impatience (DI) if
D(0)

D(1)
>

D(t)

D(t+ 1)
(18)

for every t ≥ 1, and strong diminishing impatience (SDI) if

D(t)

D(t+ 1)
>
D(t+ 1)

D(t+ 2)
(19)

for every t ≥ 1.

The definitions of DI and SDI respectively capture the essence of PQHD and hyper-

bolic discounting. It is easy to see that the discounting functions of PQHD and hyperbolic

discounting respectively satisfy DI and SDI.

We can test DI and SDI by adding additional rows capturing (log-linearized version of)

condition (18) or (19) to matrix B for the test of MTD.2 Table D.2 presents the result. It

is interesting to see that the pass rates for the test of DI are strictly larger than those of

PQHD. This suggests that the limited scope of PQHD (beyond EDU) could result from the

particular functional form of the PQHD model.

Table D.2: Pass rates.

Data # subjects # choices EDU PQHD SDI DI MTD

AS 97 45 0.299 0.299 0.330 0.371 0.392
CMW 1,060 12 0.210 0.216 0.264 0.266 0.278

2Since Matlab cannot handle strict inequalities, we impose constraints

logD(0)− logD(1) ≥ logD(t)− logD(t+ 1) + ε

in DI test and
logD(t)− logD(t+ 1) ≥ logD(t+ 1)− logD(t+ 2) + ε

in SDI test, where ε is a small slack term. Table D.2 presents pass rates when ε = 10−12.
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E Ground Truth Analysis

We assess the basic performance of our revealed-preference tests using simulated choices. As

in Andreoni and Sprenger (2012), we assume a decision maker has a utility function (CRRA

with quasi-hyperbolic discounting) of the form:

U(x0, . . . , xT ) =
1

α
xα0 + β

∑
t∈T\{0}

1

α
δtxαt .

We simulate synthetic subjects’ choice data in Andreoni and Sprenger’s (2012) environment

(i.e., time frames and budgets are identical to those actual subjects faced in their experiment)

under all combinations of parameters α ∈ {0.8, 0.82, . . . , 1}, δ ∈ {0.95, 0.951, . . . , 1}, and

β ∈ {0.8, 0.82, . . . , 1.2}, resulting the total of 11,781 such synthetic subjects. We then

perform our revealed-preference tests, in particular, tests for EDU and QHD rationality, and

ask following questions: (i) do our tests correctly identify EDU or QHD rational datasets,

and (ii) can our tests recover “true” underlying model parameters?

A few remarks are in order. First, for some parameter specifications, it is possible that

the slope of (linear) indifference curves coincide with those of budget lines. This happens 21

times when (α, δ) = (1, 1).3 If the slope of the indifference curve coincides with the budget

line (i.e., every point on the budget yields the same level of utility), we randomly pick one

point from the budget as the optimal choice as a tie-breaking rule. Second, in order to avoid

the rounding issue in Matlab, we treat numbers less than 10−6 to be 0. In other words, if

the predicted allocation is sufficiently close to a corner, we treat it as a corner choice. Third,

unlike Andreoni and Sprenger’s (2012) original experiment where subjects made choices

from “discrete” budget sets by allocating 100 tokens, we allow simulated choices to be at

any point on the continuous budget lines. We also prepare another set of simulated choices

(with the same set of parameters) which mimic behavior of the Andreoni and Sprenger’s

(2012) experimental subjects for the purpose of comparison.

Test results. The results are presented in Table E.1. We first look at our baseline sim-

ulation in which choices were made from continuous budget sets. Of the 11,781 synthetic

3For example, consider the case when (α, δ, β) = (1, 1, 0.8) and (1, 1, 0.9). Since the utility function has
the form xτ + βxτ+d when τ = 0, indifference curve coincides with budget line when prices are 1.11 or 1.25.
Another possibility is in the time frame (τ, d) = (7, 70), where the price of 1 (tokens allocated to sooner
and later payments have the same exchange rate) is offered. In this case, indifference curve coincides with
budget line as long as (α, δ) = (1, 1).
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Table E.1: Test results using simulated choice data from continuous budgets (top panel) and
discrete budgets (bottom panel).

Parameters

α = 1 α < 1 α < 1
Continuous budget β = 1 β 6= 1 Total

No interior choice 1,050 38 700 1,788
Pass EDU 939 510 2,501 3,950
Pass QHD 1,071 510 10,200 11,781

Sample size 1,071 510 10,200 11,781

Parameters

α = 1 α < 1 α < 1
Discrete budget β = 1 β 6= 1 Total

No interior choice 1,050 252 4,746 6,048
Pass EDU 939 510 6,913 8,362
Pass QHD 1,071 510 10,160 11,741

Sample size 1,071 510 10,200 11,781

subjects, 3,950 (33.5%) passed the EDU test and 11,781 (100%) passed the QHD test.

We then split the sample into three groups. The first group of subjects have the linear

utility function (α = 1). They made no interior choices (except for the knife edge case

described above), and 939 of them passed the EDU test. The second group of subjects have

nonlinear utility and no present/future bias (α < 1, β = 1). They all passed the EDU test

(and hence the QHD test, too), as expected. The third group of subjects have nonlinear

utility and present/future bias (α < 1, β 6= 1). We find that 2,501 of them passed the EDU

test, even though their underlying preferences were strictly present/future biased.

The bottom panel of Table E.1 presents the results with simulated data when choices are

assumed to be on the discrete points on the budget lines. As one can imagine, the number

of synthetic subjects who make no interior choices increases and accordingly the pass rate

for the EDU test increases from 33.5% to 71.0%. We also find that “perturbations” induced

by discretization of budget sets is powerful enough for some of the subjects to become QHD

non-rational.
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F Jittering: Perturbing Choices

We look at the robustness of the results from our revealed-preference tests. We “jitter the

data by adding white noise to the observed choices, following the idea introduced by Andreoni

et al. (2013).

Assume a QHD model

U(x0, . . . , xT ) =
1

α
xα0 + β

T∑
t=1

δt
1

α
xαt

as in AS. For each budget in the AS experiment (there are 45 of those), the model predicts

demand for sooner payment, x(p, τ, d;α, δ, β). We then add “jitters” to these predicted

demands so that we observe x̂(p, τ, d;α, δ, β, σ) = x(p, τ, d;α, δ, β)+ε. Jitters are assumed to

be drawn from a normal distribution, but we ensure that the jittered demand x̂(p, τ, d)’s are

on the budget line. In other words, jitters are drawn from a truncated normal distribution.4

In this exercise, we take parameters from AS aggregate estimates: α = 0.897, δ =

0.999. For the present bias parameter, we take AS aggregate estimate β = 1.007 together

with other “reasonable” values such as 0.974 (aggregate estimate from Augenblick et al.,

2015), 0.995, 1, and 1.05. As for standard deviation of the normal distribution, we use

σ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}.
For each set of parameters and standard deviation of white noise (α, δ, β, σ), we simulate

1,000 sets of observations {x̂(pb, τb, db;α, δ, β, σ)}45
b=1. We then perform our EDU and QHD

tests.

Table F.1 reports pass rates for the QHD test for each set of parameters and standard

deviation. When the standard deviation is σ = 0.001, the simulated dataset always pass the

QHD test. As the standard deviation increases, pass rates decrease at the speed depending

on the parameter configuration.5

Table F.2 reports the same statistics for the EDU test. A notable feature in this simula-

tion is that the dataset generated by non-EDU preferences (i.e., β = 0.995 and 1.007) pass

the EDU test in many occasions. As in the case of the QHD test, pass rates decrease at the

speed depending on the parameter configuration.

This exercise has demonstrated that our revealed-preference tests detect irregularities

4Andreoni et al. (2013) note that “truncating is known to bias the frequency of corner solutions down-
ward”. An alternative approach is “censoring,” which would have a bias in the opposite direction.

5We also confirm that predicted choices indeed pass the QHD test in the absence of jittering (4th column
in the table).
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Table F.1: QHD test pass rates.

Parameters Standard deviation (σ)

# α δ β 0 0.001 0.005 0.010 0.050 0.100 0.500 1.000

1 0.897 0.999 0.974 1.00 1.00 0.98 0.84 0.21 0.01 0.00 0.00
2 0.897 0.999 0.995 1.00 1.00 1.00 1.00 0.43 0.17 0.00 0.00
3 0.897 0.999 1.000 1.00 1.00 1.00 1.00 0.49 0.17 0.00 0.00
4 0.897 0.999 1.007 1.00 1.00 1.00 0.98 0.30 0.08 0.00 0.00
5 0.897 0.999 1.050 1.00 1.00 1.00 0.91 0.19 0.05 0.00 0.00

Table F.2: EDU test pass rates.

Parameters Standard deviation (σ)

# α δ β 0 0.001 0.005 0.010 0.050 0.100 0.500 1.000

1 0.897 0.999 0.974 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.897 0.999 0.995 1.00 1.00 1.00 1.00 0.43 0.17 0.00 0.00
3 0.897 0.999 1.000 1.00 1.00 1.00 1.00 0.49 0.17 0.00 0.00
4 0.897 0.999 1.007 1.00 1.00 1.00 0.96 0.25 0.08 0.00 0.00
5 0.897 0.999 1.050 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

induced by white noise, but we cannot provide a definitive answer to whether the degree of

irregularities necessary to violate EDU/QHD rationality is big or small (in other words, how

sensitive our tests are) because we do not have a clear benchmark to compare with.

As provide standard deviation of NLS error in the aggregate estimate (corresponding to

parameter set #4), which is 6.13.

Alternatively, one can use variations observed in the actual experimental data to compare

with standard deviations used in this exercise. Let xi(pb, τb, db) denote subject i’s demand

for sooner payment in budget b. Then, we calculate the root mean squared error (RMSE)

vi =

√√√√ 1

45

45∑
b=1

(
xi(pb, τb, db)− x(pb, τb, db;α, δ, β)

)2

for each subject i. Table F.3 reports summary statistics for the distribution of vi’s. It is

clear that the variation of the observed data measured by RMSE is much higher than the

standard deviation of white noise at which we achieve 50% pass rate for the QHD test. This

may suggest that about 50% of the subjects are not rationalized by QHD model because

of structural irregularities rather than trembling on their choices. However, we emphasize
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Table F.3: Distributions of vi’s.

Parameters Percentile

# α δ β 5-th 10-th 25-th 50-th 75-th 90-th 95-th

1 0.897 0.999 0.974 3.00 3.76 4.68 5.93 6.33 7.83 10.50
2 0.897 0.999 0.995 2.91 3.66 4.60 5.93 6.17 7.94 10.61
3 0.897 0.999 1.000 2.93 3.68 4.63 5.94 6.15 7.97 10.64
4 0.897 0.999 1.007 2.95 3.71 4.62 5.91 6.18 8.02 10.67
5 0.897 0.999 1.050 3.10 3.58 4.48 5.61 6.13 8.28 10.92

again that we do not have clear guidance for the benchmark: we demonstrate the case of

vi’s but this may not be the right one to compare with.
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