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1 Introduction
This online appendix includes some extensions and discussions that were omitted from the

main text for the sake of conciseness and readability. We assume that the reader of this appendix is

well acquainted with the main text and therefore we do not repeat here the definitions and notations

presented there. Section 2 shows formally that the Club Congestion model includes the seminal

Connections model (Jackson and Wolinsky (1996)) as a special case where the size of the clubs is

exogeneously restricted to be equal to two. Section 3 discusses further the notion of the DCV in the

club congestion model. Specifically, we characterize the DCV of the exponential club congestion

functions. We demonstrate its usefulness by analyzing the stability of the Empty environment for

a wide family of club congestion functions. Section 4 discusses the existence of OCS m-Complete

environments in the Club Congestion model. Section 5 attempts to explore further, using analytic

and numerical methods, the condition for the existence of OCS m-Star environments in the club

congestion model. Section 6 provides a numeric demonstration of the stability-efficiency Gap

in the club congestion model. This online appendix also includes two appendices. Appendix A

includes the proofs for the propositions, claims and lemmata stated in the main text while Appendix

B includes the proofs for the results stated in the online appendix itself.

2 The Club Congestion Model and the Connections Model
Jackson and Wolinsky (1996) introduce the connections model in which the utility of Individ-

ual i in the unweighted network g is uJW
i (g) = ∑

j 6=i
δ

di j −ni(g)× c where di j is the geodesic distance

between individuals i and j, δ ∈ (0,1) the depreciation factor, c > 0 is the direct connection cost
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and ni(g) is the number of Individual i’s direct neighbors. Network g is pairwise stable if no single

individual gains by severing any of her links and no pair of unlinked individuals wishes to establish

a link between themselves.

Denote by PS(δ ,c,n) the set of pairwise stable networks in the connections model and de-

note by OCS(h,c,n) the set of OCS environments in the club congestion model (with congestion

function h). For every unweighted network g =< N,E > the corresponding environment Gg =<

N,S,A> is such that for each link {i, j} ∈E there exists a club si j ∈ S that includes only individuals

i and j, and there are no other populated clubs (S = ∪{i, j}∈E{si j}; A = ∪{i, j}∈E
{
{i,si j},{ j,si j}

}
).

Denote the set of all unweighted networks with n individuals by Gn and the set of all corresponding

environments by GGn ⊆ Gn.

Proposition 1. The Connections model is a special case of the Club Congestion model. Specifi-

cally, let the congestion function be h(2) = δ and ∀m > 2 : h(m) = 0.

(i) g ∈ PS(δ ,c,n) if and only if Gg ∈ OCS(h,c,n).

(ii) If G ∈ Gn\GGn then G /∈ OCS(h,c,n).

The concept of pairwise stability is closely related to OCS. Both solution concepts imply

that leaving a club of size two destroys the club and the formation of a new club of size two is

an acceptable deviation. However, OCS also allows for the formation of bigger clubs, for leaving

bigger clubs without destroying them and for deviations in which an individual can join an existing

club. Naturally, when the discussion is limited to clubs of size two, the two concepts coincide.

Letting h(2) = δ and h(m) = 0 for every m > 2 implies that there is no OCS environment with

clubs of size larger than 2.

Obviously, similar reasoning works also for the efficiency analysis. Hence, it is easy to see

that the case of m = 2 of Proposition 2 in the main text, using the congestion function h(2) = δ and

∀m > 2 : h(m) = 0, yields the efficiency result of the Connections model (Proposition 1 in Jackson

and Wolinsky (1996)).

3 DCV and Elasticity

3.1 The DCV of the Exponential Congestion Function

Lemma 1 summarizes the club size that maximizes the DCV for various sets of parameters

of the exponential congestion function. Some technical notations are required: Denote b(δ ,na) =
1

na−2(δ − (na− 1)δ na−1) and let δ ?(na) be the unique δ ∈ (0,1) such that b(δ ,na) = δ (1− 2δ )

and let δ̂ (na) be the unique δ ∈ (0,1) such that b(δ ,na) = 0.
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Figure 1: Lemma 1 for na = 10. Each number lies within the area characterized by the corresponding
statement in the lemma.

Lemma 1. Let na ≥ 4 and let h(m) be an exponential club congestion function.

1. The club size that maximizes the DCV weakly increases with a.

2. If a ∈ [0,min{b(δ ,na),δ (1−2δ )}) then the DCV is maximized at m = 2.

3. If δ ∈ (0,δ ?(na)) and a ∈ (b(δ ,na),1−δ ) then the DCV is maximized at m = na.

4. If δ ∈ (δ ?(na), δ̂ (na)) and a ∈ (max{0,δ (1−2δ )},b(δ ,na)) then the DCV is maximized at

m ∈ {3, . . . ,na−1}.

5. If δ ∈ [1
2 ,1−

1
na−1 ] and a = 0 then the DCV is maximized either at m =

⌊
1− 1

lnδ

⌋
or at

m =
⌈
1− 1

lnδ

⌉
.

6. If δ ∈ (1− 1
na−1 ,1) then the DCV is maximized at m = na.

The case where a = 0 demonstrates the opposing effects of the club size on the DCV. When

the number of individuals in the club increases, congestion increases (for every δ ) but more direct

links are formed in the club (the multiplicative effect). We use Lemma 2 in the main text to show

that when δ < 1
2 the congestion effect is dominant and the DCV is maximized when the club is

small (Part 2). When δ increases the effect of congestion weakens and increasingly larger clubs

maximize the DCV (Parts 5 and 6).

When the non-congested component of the exponential congestion function is introduced it

reinforces the multiplicative effect since the aggregate benefit from a > 0 increases with the size of

3



the club. Therefore, the club size that maximizes the DCV weakly increases with a (Part 1). Part

2 shows that for relatively low values of δ and a, the congestion component is still dominant and

the DCV is maximized by the smallest club. But, when the non-congestion component increases

(and δ is still low) the DCV is maximized by the biggest club (Part 3).1 Part 3 also makes use

of the assertion in Part 1 to state that if the DCV is maximized by the biggest club for some a

then it is maximized by the biggest club for any greater a (Part 6 uses the same assertion). If a is

high enough (for δ > 1
2 its any value of a), a club of size two never maximizes the DCV since the

multiplicative effect dominates the congestion component. Parts 4 and 5 show that for these values

of δ , intermediate size clubs can maximize the DCV. Figure 1 demonstrates Lemma 1 for the case

of na = 10.

3.2 The Stability of the Empty Environment

Proposition 2. Let En be the Empty environment with na ≥ 4 individuals.

1. Suppose h(m) is the reciprocal congestion function. En is OCS if and only if c≥ 1.

2. Suppose h(m) is an exponential congestion function.

(a) Suppose a ∈ [0,min{b(δ ,na),δ (1−2δ )}). En is OCS if and only if c≥ a+δ .

(b) Suppose that one of the following conditions hold:

i. δ ∈ (0,δ ?(na)) and a ∈ (b(δ ,na),1−δ ).

ii. δ ∈ (1− 1
na−1 ,1).

En is OCS if and only if c≥ (na−1)(a+δ na−1).

(c) Suppose that δ ∈ [1
2 ,1−

1
na−1 ] and a = 0.

En is OCS if and only if c≥max{kh(
⌊
1− 1

lnδ

⌋
),kh(

⌈
1− 1

lnδ

⌉
)}.

The second part of Proposition 2 is a direct application of Lemma 1. Under the exponential

congestion function, each club size provides its members with different payoffs. The minimal

membership fee for which the Empty environment is OCS is determined by the most attractive

deviation. In the case analyzed in Proposition 2.2a, the congestion component is dominant and

therefore the most attractive deviation is to the smallest club. But, for the same δ , when the

non-congestion component is high enough, the grand club becomes the most attractive deviation

(Proposition 2.2(b)i).

One important implication of this discontinuity is on dynamic models where individuals join

1In the proof we use Lemma B.4 that shows that kh(m) has three parts - increasing, decreasing and increasing
again. Therefore, to determine the club size that globally maximizes the DCV, the closest integer to the local maxima
that separates the first two parts should be compared to the right-hand side limit, na.
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the environment sequentially. Consider a dynamic model where the initial environment is the

Empty environment, the clubs’ rules follow the OCS rules and the membership fee is marginally

high. Then, a tiny difference in the parameters of the congestion function or in the population size

may lead to huge differences in the final environment’s club composition.

4 Existence of OCS m-Complete Environments
The existence of a stable m-Complete environment is not guaranteed. It is possible that the

lower bound may be higher than the upper bound. Claim 1 uses the exponential club congestion

function with strong congestion (low δ ) to demonstrate that even then m-Complete environments

with large clubs may be OCS.

Claim 1. Let h(·) be an exponential club congestion function where δ ∈ (0, 1
2) and a > 0. There

exist two integers m̄ ≤ m̃ such that, ∀m : na > m > m̄ there exists a range of membership fees in

which an m-complete environment is OCS. Moreover, there exists a range of membership fees in

which every m-complete environment where n > m > m̃ is OCS.

When congestion is strong, but there exists a non-congested part to the club congestion func-

tion, if the clubs are large enough (m > m̄) the existence of a membership fee for which an m-

Complete environment is OCS is guaranteed. The second part of Claim 1 shows that there even

exists a range of membership fees for which multiple m-Complete environments are OCS (all those

with m > m̃). This result implies non-monotonicity in the relationship between congestion and the

size of clubs in stable environments: m-complete environments with intermediate size clubs are un-

stable while m-complete environments with either small clubs (wherein each individual maintains

many high quality affiliations) or large clubs (wherein each individual maintains few low quality

affiliations) are open clubwise stable.2

5 Existence of OCS m-Star Environments

5.1 One Analytic Result

Proposition 4 in the main text characterizes the membership fees for which an m-Star envi-

ronment is OCS. However, it does not provide a condition for the existence of such membership

fees since it does not guarantee that the upper bound is indeed greater than the lower bound. Claim

2 identifies one case in which existence is guaranteed.

2Consider the case where h(m) = 1
32 +( 1

4 )
m−1. The All Paired environment is OCS in [0, 3

16 ], for m ∈ {3, . . . ,9}
the m-complete is never OCS and for m≥ 10 every m-complete is OCS in [0.25,0.27].
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Claim 2. Let na > m ≥ 2 and let h(·) be a club congestion function. Denote γ ≡ na−1
m−1 and lh =

min{k ∈ Z|h(k)≤ h2(m)}. Suppose γ < m. If

Jh(m)≥max{ max
γ≥k≥2

FNSh(k,m), max
m≥k>γ

FNIh(k,m,na), max
min{lh,na}>k>m

FNLh(k,m,na)}

then a range of membership fees for which an m-Star environment is OCS exists.

Claim 2 provides a sufficient condition for the existence of membership fees for which an

m-Star environment is OCS in cases where the number of populated clubs is smaller than the size

of the clubs (e.g. a 3-Star environment with 5 individuals). This condition is not vacant. Consider,

for example, the case where na = 13 and h(m) = 0.73+0.21m−1. We are guaranteed that a range

of membership fees for which any 7-Star environment is OCS exists since it can be shown that for

a peripheral individual joining the other club is more attractive than any deviation to form a new

club.

5.2 Numerical Analysis

As noted above, Proposition 4 in the main text does not provide a condition for the existence

of membership fees for which a given m-Star environment is OCS. Figure 2 demonstrates the

application of Proposition 4 in the main text to the question of existence of such membership fees

in the case of 13 individuals and an exponential club congestion function. In each of the six sub-

figures, the shaded area presents the pairs of a (horizontal axis) and δ (vertical axis) for which the

corresponding m-Star environment is OCS for some membership fees (since a+ δ < 1 only the

lower left triangle is relevant). In addition, in each sub-figure we indicate, in terms of the size of

the new club, the deviation that determines the envelop of the area where no membership fee exists

for which the corresponding m-Star environment is OCS (restrictive intervals of the deviation are

depicted as continuous while non-restrictive intervals are dotted).3

The upper leftmost sub-figure (the 2-Star environment) summarizes Claim 2(iv) in the main

text. Claim 3(ii) in the main text could be recognized by the intersection of the shaded area with

the Y-axis (a = 0) in the upper middle sub-figure (the 3-Star environment) and Claim 1(iii) in the

main text could be recognized by the intersection of the non-shaded area with the Y-axis in the

lower rightmost sub-figure (the Grand Club environment).

The main insight provided by Figure 2 is that holding δ constant, the effect of a on stability
3For each sub-figure (excluding the one for the Grand Club environment) we first calculated for each k ∈

{2,3, ...,min{lh,13}} and for 1000 values of δ ∈ (0,1) the set of as such that the upper bound is greater than the
corresponding lower bound expression (using FNSh, FNIh or FNLh). Claim 2 guarantees that the calculation of Jh(m)
is unnecessary. Next, we calculated the intersection of all the sets derived in the first stage and presented it by the
shaded area. The curves were derived similarly to the first stage procedure, except that the upper bound was set to
be equal to the lower bound expression. For the Grand Club environment we repeated the same procedure using the
lower bound specified in Claim 1(i) in the main text.
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Figure 2: The existence of membership fees for which m-star environments are OCS when the club con-
gestion function is exponential and na = 13. In each sub-figure, the shaded area presents the
pairs of a (horizontal axis) and δ (vertical axis) for which the corresponding m-Star environ-
ment is OCS for some membership fees. The code and calculations can be found on GitHub:
https://github.com/omri1348/Social-Clubs-and-Social-Networks/tree/master/code.

is non-monotonic. This reflects the complicated lower bound conditions in Proposition 4 in the

main text, where the non-differentiable points denote changes in the effective lower bound. The

cases of the 3-Star, 4-Star and 5-Star environments demonstrate the intuition very nicely. When the

non-congested parameter is low, the effective bound is induced by a deviation of a small coalition

since the effect of congestion is dominant and therefore should be minimized. However, when

the non-congested parameter is high, the effective bound is a deviation of a large coalition, since

congestion is relatively less important than the multiplicative effect introduced by a. Since the

multiplicative effect strengthens with the size of the club, the most attractive deviation is to a

club that includes all peripheral individuals. Note that the first consideration is missing from the

sub-figure of the 2-Star environment since individuals in this environment suffer no congestion.

Similarly, the second consideration is missing from the sub-figure of the Grand Club environment

since the multiplicative effect is maximized (the reasoning is similar for the 7-Star environment).
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Figure 3: Strong efficiency analysis for 5 individuals and the exponential club congestion function. The
code and calculations can be found on GitHub: https://github.com/omri1348/Social-Clubs-and-
Social-Networks/tree/master/code.

6 Demonstration of The Stability-Efficiency Gap
We used our Matlab code package (see Footnote 13 in the main text) to calculate the strongly

efficient 5-individuals environment for various exponential congestion functions and membership

fees.4 Each shape in the graphs in Figure 3 represents the type of the strongly efficient environment

and whether it is OCS. First, note that all the strongly efficient environments are either m-Complete

(All Paired or Grand Club), m-Star (2-Star or 3-Star) or Empty. Second, the unstable strongly effi-

cient environments are all m-Stars (2-Star or 3-Star).

4a ∈ {0,0.1,0.2,0.3,0.4,0.5} and δ ∈ {0,0.05,0.1, . . . ,0.95− a} for the exponential congestion function and
c ∈ {0,0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4,2.7,3} for the membership fee.
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Appendix

A Proofs of Results from the Main Text

Proposition 1

Proof. Suppose na− 1 > c > 0. First, consider the case where G is a Minimally Connected en-

vironment of class K(G) ≥ c. Since G is connected no individual can benefit by joining a club

or by forming a new club. Also, by leaving a club, every individual loses connection to at least

K(G) individuals while gaining the membership fee. Since K(G)≥ c, the individual can not gain

by leaving a club. Therefore, G is OCS.

Next, consider the case where G is not a Minimally Connected environment of class K(G)≥ c.

If G is the Empty environment then consider the deviation where all the individuals form a new

club. The benefit for each individual is na−1−c > 0. Hence, the Empty environment is not OCS.

If G is a non-empty disconnected environment then there must exist a component H that contains

h> 1 individuals. The maximal possible utility of an individual in H is (h−1)−c. If c> h−1 then

every member of this component would like to leave any of her clubs. If c ≤ h−1 then any indi-

vidual that is not in H can improve if she joins one of H’s clubs since she gets h−c > 0. Hence, no

disconnected environment is OCS. If G is connected, but not minimally connected, there is an affil-

iation that can be removed while leaving the induced network connected. Denote this affiliation by

{i,s}. Then, Individual i, by leaving Club s can improve his net utility by c. Hence, no connected,

but not minimally connected, environment is OCS. Finally, suppose that G is a minimally con-

nected network of class K(G) < c. Consider an affiliation {i?,s?} ∈ arg min
{i,s}∈A

n(C−i(G−{i,s})).

Individual i? wishes to leave Club s? since while losing the connection to K(G) individuals she

gains c, and K(G)< c. Hence, if G is not a Minimally Connected environment of class K(G)≥ c

then G is not OCS.

Since na− 1 > c, the maximal utility an individual can obtain is ui(G) = na− 1− c. In the

Grand Club environment every individual achieves the maximal utility. Therefore, the Grand Club

environment is SE. Moreover, any other environment is either disconnected or it contains at least
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one individual that maintains multiple affiliations. In both cases there is at least one individual

with a utility lower than na−1−c. Therefore, the Grand Club environment is the unique SE envi-

ronment.

Finally, suppose that c > na− 1. Every individual that maintains memberships in a non-

empty environment, wishes to leave any of her clubs. Therefore, every non-empty environment is

not OCS. Moreover, none of the individuals in those environments have positive utility and there is

at least one with negative utility. However, in the Empty environment, no coalition of individuals

is better off by establishing a new club. Therefore, the Empty environment is OCS. Since all the

individuals have zero utility, it is also SE. Hence, the Empty environment is the unique OCS and

SE environment.

Lemma 1

Proof. By the definition of the club congestion function, the weight of each link is determined

by a single club - the smallest club the two end individuals share. Since the benefit part of the

individual’s preferences depends only on the weights in the induced network, there may be at

most na− 1 affiliations that determine the individual’s benefits. Similarly, at most na(na−1)
2 clubs

contribute to the benefits of any individual in the environment. However, all populated clubs

contribute to the costs part of the preferences, since each affiliation is costly (c > 0). Hence, every

G that includes an individual that maintains more than na−1 affiliations is not OCS. Moreover, if

G includes more than na(na−1)
2 populated clubs, there is at least one club that does not contribute to

the benefits of any of its members. Therefore, each one of its members would wish to cancel this

affiliation and G is not OCS.

Lemma 2

Proof. By definition, h(m) is inelastic if and only if ∀m ∈ {2, . . . ,na−1} : ηh(m)>−1. ηh(m)>

−1 if and only if m×h(m+1)
h(m) −m > −1. Therefore, h(m) is inelastic if and only if kh(m+ 1) =

m× h(m+1) > (m− 1)× h(m) = kh(m). Hence, h(m) is inelastic if and only if kh(m) is strictly

increasing. Similar argument proves the case of elastic h(m).

Proposition 2

Proof. Throughout the proof we assume that na−1
m−1 and na(na−1)

m(m−1) are integers. Consider first the

maximal sum of utilities of a connected environment G ∈ G m
n with at most na(na−1)

m(m−1) clubs. By

Proposition 2 in Berge (1989), the minimal number of clubs in a connected m-Uniform environ-

ment is na−1
m−1 . Denote the number of clubs by na(na−1)

m(m−1) ≥ k ≥ na−1
m−1 . The maximal total number

of direct connections across all individuals in the environment is km(m− 1) and their value is

km(m− 1)h(m). Since the induced network is connected, the number of indirect connections is

na(na−1)− km(m−1) and their maximal value is [na(na−1)− km(m−1)]h2(m). The total cost
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of membership in k clubs of size m is kmc. Thus, the maximal sum of utilities of a connected

m-Uniform environment with k clubs is km(m−1)h(m)+ [na(na−1)− km(m−1)]h2(m)− kmc.

An m-Complete environment includes na(na−1)
m(m−1) clubs (each club generates m(m−1)

2 links out of

the na(na−1)
2 possible links and each link is generated exactly once). Therefore, the sum of utilities

of an m-Complete environment is na(na−1)h(m)−na
na−1
m−1

c. The difference between these two

expressions is [km(m−1)−na(na−1)][h(m)−h2(m)− c
m−1

].

Obviously, there must be a k such that the maximal total sum of utilities of a connected

m-Uniform environment is greater than the total sum of utilities of an m-Complete environment.

Therefore, this difference must be non-negative for some k. If c < (m−1)[h(m)−h2(m)], [km(m−
1)−na(na−1)] must be non-negative, meaning that k≥ na(na−1)

m(m−1) . Since na(na−1)
m(m−1) ≥ k≥ na−1

m−1 it must

be that k = na(na−1)
m(m−1) and the difference is zero. Also, if c = (m−1)[h(m)−h2(m)] the difference is

zero. Therefore, the m-Complete environment achieves the maximal sum of utilities of the set of

connected m-Uniform environments with at most na(na−1)
m(m−1) clubs when c≤ (m−1)[h(m)−h2(m)].

Next, let G′ be some m-Uniform environment with k > na(na−1)
m(m−1) populated clubs. Each Indi-

vidual i ∈ {1, . . . ,na} in G′ gets at most (na−1)h(m) (in case she is directly connected to all other

individuals). Therefore, the total benefits in G′ are at most na(na− 1)h(m) while the total mem-

bership fees are kmc > na(na−1)
(m−1) c. Hence, the total sum of utilities of an m-Complete environment

is weakly greater than the total sum of utilities of any m-Uniform environment with k > na(na−1)
m(m−1)

populated clubs. In particular, this means that the m-Complete environment achieves the maximal

sum of utilities of the set of connected m-Uniform environments when c≤ (m−1)[h(m)−h2(m)].

This result implies that an environment that maximizes the sum of utilities from the set of non-

empty m-Uniform environments when c ≤ (m−1)[h(m)−h2(m)] is a collection of m-Complete

components and isolated individuals. Note that the sum of utilities of an m-Complete component

with n individuals (n > 1) is n(n− 1)[h(m)− c
m−1 ]. Since [h(m)− c

m−1 ] is non-negative, the sum

of utilities of an m-Complete component is a weakly increasing and weakly convex function of the

number of individuals in the component. Therefore, if c≤ (m−1)[h(m)−h2(m)] an environment

that achieves the maximum of the sum of utilities from the set of non-empty m-Uniform environ-

ments is the m-Complete environment. Also, when c≤ (m−1)[h(m)−h2(m)], the sum of utilities

of the m-Complete environment is non-negative. Thus, when c ∈ [0,(m− 1)(h(m)− h2(m)] the

m-Complete environment maximizes the sum of utilities within the set of all m-Uniform environ-

ments.

An m-Star environment includes na−1
m−1 clubs. Therefore, the sum of utilities of an m-Star

environment is

na−1
m−1

m(m−1)h(m)+ [na(na−1)− na−1
m−1

m(m−1)]h2(m)− na−1
m−1

mc
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The difference between the maximal sum of utilities of a connected m-Uniform environment with

k clubs and an m-Star environment is

[k− na−1
m−1

]m[(m−1)h(m)− (m−1)h2(m)− c]

Again, there must be a k such that the maximal total sum of utilities of a connected m-Uniform

environment is weakly greater than the total sum of utilities of an m-Star environment. There-

fore, this difference must be non-negative for some k. If c > (m− 1)[h(m)− h2(m)], [k− na−1
m−1 ]m

must be non-positive and since k ≥ na−1
m−1 it must be that k = na−1

m−1 and the difference is zero.

Also, if c = (m− 1)[h(m)− h2(m)] the difference is zero. Therefore, the m-Star environment

achieves the maximal sum of utilities of the set of connected m-Uniform environments when

c≥ (m−1)[h(m)−h2(m)].

This result implies that when c ≥ (m−1)[h(m)−h2(m)] an environment that maximizes the

sum of utilities from the set of non-empty m-Uniform environments is a collection of m-Star sub-

environments and isolated individuals. In fact, an environment that maximizes the sum of utilities

from the set of m-Uniform environments is a collection of m-Star sub-environments with non-

negative sum of utilities and isolated individuals.

Suppose that C1 and C2 are two m-Star environments with n1 > 1 and n2 > 1 individuals,

respectively. Let b1 and b2 be the central individuals of C1 and C2, respectively. Consider a new

environment C that includes the clubs of C1 and the clubs of C2 where b2 is replaced by b1. Thus,

C is an m-Star environment with n1+n2−1 individuals with an additional isolated individual. The

utility of the central individual in C is the sum of utilities of b1 and b2 in C1 and C2, respectively.

The utility of all other individuals improves due to the additional free indirect connections. Thus,

uniting two m-stars into one bigger m-Star environment (and an isolate) always increases the sum

of utilities. That is, when c ≥ (m−1)[h(m)−h2(m)], an environment that achieves the maximal

sum of utilities from the set of non-empty m-Uniform environments is an m-Star environment and

some isolated individuals. Thus, if c ≥ (m−1)[h(m)−h2(m)], an environment that achieves the

maximal sum of utilities from the set of non-empty m-Uniform environments is the m-Star envi-

ronment.

To complete the proof notice that the m-Star environment achieves the maximal sum of utili-

ties from the set of all m-Uniform environments if and only if it has a non-negative sum of utilities.

If it has non-positive sum of utilities, the Empty environment achieves the maximal the sum of

utilities from the set of m-Uniform environments. The sum of utilities of the m-Star environment

with na individuals is non-negative if (m−1)h(m)+
(na−m)(m−1)

m
h2(m)≥ c.

Thus, when c ∈ [(m− 1)(h(m)− h2(m)),(m− 1)h(m)+ (na−m)(m−1)
m h2(m)] the m-Star envi-

ronment achieves the maximal sum of utilities from the set of m-Uniform environments. When
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c ≥ (m− 1)h(m) + (na−m)(m−1)
m h2(m) the Empty environment achieves the maximal the sum of

utilities from the set of m-Uniform environments.

Proposition 3

Proof. Throughout the proof we assume that na−1
m−1 and na(na−1)

m(m−1) are integers. Let G be an m-

Complete environment. The utility of Individual i from Environment G is (denote γ ≡ na−1
m−1 ):

ui(G) = (na−1)h(m)− γc.

To calculate the utility of Individual i from aborting any one of her affiliations, suppose that

Individual i leaves Club s which she shares with Individual i′. In addition, suppose she shares

the Club s′ with Individual i′′. By the definition of an m-Complete environment, SG−{i,s}(i)∩
SG−{i,s}(i′)= /0. Thus, the new shortest path between these two individuals must be indirect. Again,

by the definition of m-Complete environments the populated clubs in G−{i,s} are of size m except

Club s which is of size m−1. Therefore, the new shortest path is of length 2 and its weight must

be either h(m− 1)h(m) or h2(m) (any path of length of more than 2 has a lower or equal weight

than h2(m)). Now, let us show that in G−{i,s} there is no shortest path between Individual i and

Individual i′ of the weight h(m−1)h(m). Suppose such a path exists. Then, there is an Individual

j who shares a club with Individual i (denoted by t) and also shares Club s with Individual i′. Thus,

in G, Individual j shared s also with Individual i which implies, however, SG(i)∩SG( j) = {s, t} and

the m-completeness of G is violated. However, a shortest path of weight h2(m) between Individual

i and Individual i′ in G−{i,s} does exist. Recall that Individual i shares Club s′ with individual i′′

and note that Individual i′′ is not a member of Club s (otherwise individuals i and i′′ share two clubs

in G) and that Individual i′ is not a member of Club s′ (otherwise individuals i and i′ share two clubs

in G). Hence, by the definition of an m-complete environment, ∃s′′ ∈ S\{s,s′} : {i′, i′′} ⊆ NG(s′′).

Thus, Individual i has a link of weight h(m) with Individual i′′ (Club s′) and Individual i′′ has

a link of weight h(m) with Individual i′ (Club s′′). Therefore, there is a path of weight h2(m)

between Individual i and Individual i′ in Environment G−{i,s}. Thus, the utility of Individual

i from Environment G−{i,s} is ui(G−{i,s}) = (na−m)h(m) + (m− 1)h2(m)− (γ − 1)c and

ui(G−{i,s})−ui(G) = (m−1)h2(m)− (m−1)h(m)+ c. Individual i does not wish to leave any

of her clubs if and only if ui(G−{i,s}) ≤ ui(G), meaning that she does not wish to leave any of

her clubs if and only if (m− 1)[h(m)− h2(m)] ≥ c. Thus, (m− 1)[h(m)− h2(m)] ≥ c guarantees

that the “No Leaving” condition holds.

Next, let us calculate the utility of Individual i from joining an existing Club s. Since G is

m-complete, ∀i′ ∈ NG(s) : |SG+{i,s}(i)∩SG+{i,s}(i′)|= 2. Moreover, since ∀i′ ∈ NG(s) : w(i, i′,G) =

h(m), nG+{i,s}(s) = m+1 and h(m)≥ h(m+1), Individual i does not improve any of her shortest

paths by joining Club s. However, she pays c as membership fee. Therefore, c≥ 0 guarantees that

the “No Joining” condition holds.
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Next, let us calculate the utility of Individual i from the formation of a new club by the group

K (i ∈ K,K ⊆ N) and let |K| = k. Note that c ≥ 0 guarantees the “No New Club Formation”

condition for the case of k ≥ m due to similar considerations to those used in the case of the

“No Joining” condition above. For m > k ≥ 2, the utility of Individual i from the Environment

G+K is ui(G+K) = (na− k)h(m)+(k−1)h(k)− (γ +1)c (indirect connections cannot improve

on direct connections). Since ui(G+K)− ui(G) = (k− 1)h(k)− (k− 1)h(m)− c we get that if

c≥ (k−1)[h(k)−h(m)] then ui(G+K)≤ ui(G). Thus, Individual i refuses to establish a new club

as part of Group K if and only if c ≥ (k−1)[h(k)−h(m)]. However, in order to ensure that Indi-

vidual i refuses to establish a new club with any subset of individuals it must be that this condition

holds ∀k ∈ {2, . . . ,m−1}. Therefore, c≥ max
k∈{2,...,m−1}

(k−1)[h(k)−h(m)] guarantees that the “No

New Club Formation” condition holds for k < m. Since ∀k ∈ {2, . . . ,m} : (k−1)[h(k)−h(m)]≥ 0,

this condition also ensures that the “No Joining” condition holds.

Next, denote k? = min{argmaxk∈{2,...,m−1} (k−1)[h(k)−h(m)]}. Note that the condition

above can be rewritten as maxk∈{2,...,m−1} [kh(k)− (k−1)h(m)]. Let k′ ∈ {k̂ + 1, . . . ,na}. By

the definition of k̂, we get kh(k̂) ≥ kh(k′). In addition, since given an m-Complete environment

h(m) is fixed, we get (k̂− 1)h(m) ≤ (k′− 1)h(m). Hence, for every k′ ∈ {k̂+ 1, . . . ,na}, we have

kh(k̂)− (k̂−1)h(m) ≥ kh(k′)− (k′−1)h(m). Therefore, k? ≤ k̂. This implies that the “No New

Club Formation” and the “No Joining” conditions hold if c≥ max
k∈{2,...,min{m−1,k̂}}

(k−1)[h(k)−h(m)].

Claim 1

Lemma A.1. Let h(·) be an exponential club congestion function where δ ∈ (0, 1
2). Then,

maxk∈{2,...,m−1} (k−1)[h(k)−h(m)] = h(2)−h(m).

Proof. Note that

∀l ∈ {2, . . . ,m−2},∀k ∈ {0, . . . ,m− l−1} :
h(l + k)−h(l + k+1)

h(l)−h(l +1)
= δ

k

Thus,

∀l ∈ {2, . . . ,m−2} :
m−l−1

∑
k=0

δ
k =

m−l−1

∑
k=0

h(l + k)−h(l + k+1)
h(l)−h(l +1)

=
h(l)−h(m)

h(l)−h(l +1)

Since δ ∈ (0, 1
2), we get

∀l ∈ {2, . . . ,m−2} :
h(l)−h(m)

h(l)−h(l +1)
=

1−δ m−l

1−δ
<

1
1−δ

< 2
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Therefore, ∀l ∈ {2, . . . ,m−2} : h(l)−h(m)< 2[h(l)−h(l +1)] and since h(·) is non-increasing

∀l ∈ {2, . . . ,m−2} : l[h(l +1)−h(m)]< (l−1)[h(l)−h(m)] which immediately implies the re-

quired: maxk∈{2,...,m−1} (k−1)[h(k)−h(m)] = h(2)−h(m).

Proof of Claim 1

Proof. For the first part G includes one club that consists of all the individuals in the environment.

Note that the considerations stated in the proof of Proposition 3 of the main text for the lower

bound hold also here. Thus, if c≥ max
k∈{2,...,min{na−1,k̂}}

(k−1)[h(k)−h(na)] the “No Joining” and

the “No New Club Formation” conditions hold. However, the “No Leaving” condition is different

since if an individual decides to leave the club her utility is zero. The utility of the individuals

from G is ui(G) = (na− 1)h(na)− c. Therefore, an individual will not leave the club as long as

(na− 1)h(na) ≥ c. Thus, (na− 1)h(na) ≥ c guarantees that the “No Leaving” condition holds.

Hence, the Grand Club environment is OCS if and only if

c ∈
[

max
k∈{2,...,min{na−1,k̂}}

(k−1)[h(k)−h(na)],(na−1)h(na)
]

Therefore, there exists a range of membership fees in which the Grand Club environment is

OCS if and only if max
k∈{2,...,min{na−1,k̂}}

(k−1)[h(k)−h(na)]≤ (na−1)h(na). Alternatively, such a

range exists if and only if

∀k ∈ {2, . . . ,min{na−1, k̂}} : (k−1)[h(k)−h(na)]≤ (na−1)h(na)

Such a range exists if and only if

∀k ∈ {2, . . . ,min{na−1, k̂}} : kh(k)− (k−1)h(na)≤ kh(na)

Equivalently, there exists a range of membership fees in which the Grand Club environment is OCS

if and only if ∀k ∈ {2, . . . ,min{na−1, k̂}} : kh(k)−
k−1
na−1

kh(na)≤ kh(na). Thus, there exists a

range of membership fees in which the Grand Club environment is OCS if and only if

∀k ∈ {2, . . . ,min{na−1, k̂}} :
na−1

na + k−2
× kh(k)≤ kh(na)

Since for every k ∈ {2, . . . ,min{na−1, k̂}}we have na−1
na+k−2 < 1, if the DCV is increasing then

the inequality is satisfied. By Lemma 2 in the main text, if the club congestion function is inelastic

the DCV is strictly increasing, and therefore if the club congestion function is inelastic, a range of

membership fees in which the Grand Club environment is OCS exists.
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Finally, by Lemma A.1, the lower bound of the range of membership fees in which the Grand

Club environment is OCS becomes h(2)− h(na) = δ − δ na−1. When a = 0, the upper bound

is (na− 1)h(na) = (na− 1)δ na−1. Since na ≥ 4 we can write na ≤ 2na−2 or 1
na
≥ 1

2na−2 . Using

δ ∈ (0, 1
2) we have 1

na
> δ na−2 or 1 > naδ na−2 or δ > naδ na−1. Hence, δ −δ na−1 > (na−1)δ na−1,

that is the lower bound is greater than the upper bound. Thus, for a = 0, δ ∈ (0, 1
2) and na ≥ 4

the Grand Club environment is never OCS. For the case of a > 0, a range of membership fees for

which the Grand Club environment is OCS exists if and only if δ −δ na−1 ≤ (na−1)(a+δ na−1).

That is, there exists a range of membership fees for which the Grand Club environment is OCS

if and only if (na− 1)a+ naδ na−1 ≥ δ . Let n̄a =
δ

a + 1. Then, (n̄a− 1)a = δ , and therefore, for

every na > n̄a there exists a range of membership fees for which the Grand Club environment is

OCS.

Proposition 4

Proof. Let G =< N,S,A > be an m-Star environment where na > m≥ 2 and denote the number of

populated clubs in G by γ ≡ na−1
m−1 (we assume that γ is an integer). For simplicity, we refer to the

central Individual as individual b and to the other individuals as individuals i, i′, etc.

We begin with an upper bound on the range of membership fee where G is OCS. The upper

bound is set by the membership fees above which individuals would wish to wave any of their affil-

iations. The utility of the central individual from Environment G is ub(G,h,c) = (na−1)h(m)−γc.

Consider Club s. Since all non-central club members have no other affiliations, no path ex-

ists between Individual b and these individuals once Individual b leaves Club s. Also, Individ-

ual b have no indirect connections through these individuals. Therefore, for every {b,s} ∈ A,

ub(G−{b,s},h,c) = (na−m)h(m)− (γ − 1)c. Therefore, Individual b has no incentive to leave

any of her affiliations if and only if (m− 1)h(m) ≥ c. The utility of a non-central Individual i

from Environment G is ui(G,h,c) = (m−1)h(m)+(na−m)h2(m)− c. Consider Club s such that

{i,s} ∈ A. The utility of Individual i after aborting her affiliation with Club s is zero. Therefore,

Individual i has no incentive leave the club if and only if (m−1)h(m)+(na−m)h2(m)≥ c. Thus,

no individual has an incentive to leave a club in G if and only if (m−1)h(m)≥ c or kh(m)≥ c.

We continue with the lower bound on the range of membership fees where G is OCS. The

lower bound is set by the membership fee below which individuals would wish to form new affili-

ations either by joining a new club or by forming a new club.

We begin by considering the benefits for a subset of individuals (K ⊆ N, k = |K|) from form-

ing a new club (r). Denote by Ks = NG+K(s)∩NG+K(r) the set of individuals that share Club s in

G and are affiliated with the new Club r and denote its magnitude by ks. Denote the set of clubs

represented in K by Q = {s ∈ S : ks > 0} and its magnitude by q.

We first consider the case where the new club is no larger than the existing clubs, k≤m. Each
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individual in K gets a benefit from the direct connections with the other members in K. These

connections replace either a link with a weight of h(m) (if they share a club in G) or a path with

a weight of h2(m) (if they do not share a club in G). Obviously, an improvement on an indirect

connection is larger than an improvement on a direct connection (h(k)− h2(m) ≥ h(k)−h(m)).

Therefore, non-central individuals get the same benefit as the central individual on links with indi-

viduals they already share a club with in G and higher benefit than the central individual on links

with individuals they do not share a club with in G. Thus, in the case where b ∈ K, since the utility

from environment G+K to Individual b is ub(G+K,h,c) = (k−1)h(k)+(na−k)h(m)− (γ +1)c

we get that c≥maxm≥k≥2 (k−1)(h(k)−h(m)) prevents the formation of K since it does not ben-

efit individual b. For the case where b /∈ K we begin by considering the case where the size of

the new club is not greater than the original club size and the original number of clubs (m≥ k and

γ ≥ k). Note that on top of the improved direct connections that each individual in K gets, the

partners with whom she did not share a club with in G supply her with improved indirect paths to

the individuals in their original clubs that do not participate in K. These paths are better than the

paths supplied in G by the central individual, since the new club is small (k ≤ m). The utility from

Environment G+K for Individual i such that {i,s} ∈ A, b /∈ K and i ∈ K is

ui(G+K,h,c) =(k−1)h(k)+(m− ks)h(m)+((q−1)(m−1)− (k− ks))h(k)h(m)

+(γ−q)(m−1)h2(m)−2c

For every Individual i and every m, h(·), c, q and k, ui(G+K,h,c) is maximized if ks = 1.5

Thus, the utility of Individual i from K is maximized if no other member in this club shares her

original club in G. The utility of Individual i ((i,s) ∈ A) from G+K when K includes no other

individual from Club s is

ui(G+K,h,c) =(k−1)h(k)+(m−1)h(m)+((q−1)(m−1)− (k−1))h(k)h(m)

+(γ−q)(m−1)h2(m)−2c

5 ∂ui(G+K,h,c)
∂ks

=−h(m)+h(k)h(m) =−h(m)(1−h(k))≤ 0. Since q and k are held fixed, increasing ks by 1 means
that Individual j′ of Club s′ (ks′ > 1 since q is fixed) is replaced in K by a member j of Club s ( j /∈{i,b}). The gain from
this change is the improved path to Individual j (h(k)−h(m)) while the loss is the longer path to j′ (h(k)h(m)−h(k)).
Thus, the net benefit is −h(m)+h(k)h(m).
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In addition, to maximize ui(G+K,h,c) given m, h(·), c and k, q should be as high as possible.6

Thus, the utility of Individual i from a new club where q = k (no pair of individuals in the new club

share a club in G) is

ui(G+K,h,c) =(k−1)h(k)+(m−1)h(m)+((k−1)(m−1)− (k−1))h(k)h(m)

+(γ− k)(m−1)h2(m)−2c

Therefore, the non-central individuals have no incentive to form a new club of size min{m,γ}≥
k if

c≥ max
min(γ,m)≥k≥2

(k−1)[h(k)+(m−2)h(k)h(m)− (m−1)h2(m)]

To complete the case of k≤m, we consider the case of a new club of size m≥ k > γ that does

not include the central individual. Suppose q < γ . Then, there is a non-empty Club s in G such that

ks = 0. In this case, in G+K, ∀i ∈ K there are some indirect paths with weight h(k)h(m) and some

indirect paths with weight h2(m). Alternatively, suppose q = γ . For every no non-empty club s in

G, ks > 0. Then, ∀i ∈ K the direct links are the same as in the previous case, but all the indirect

paths are of weight h(k)h(m). Clearly, for each individual, the incentives to form a new club are

weakly stronger when q = γ .

The utility from Environment G+K to Individual i who participates in Club s and in Group

K where q = γ and b /∈ K is

ui(G+K,h,c) = (k−1)h(k)+(m− ks)h(m)+(na−m− (k− ks))h(k)h(m)−2c

Given m, h(·) and c, ui(G+K,h,c) increases when ks decreases (see Footnote 5). Thus, the most

attractive K is the one that minimizes the maximal ks (over all s ∈ S) where q = γ . In this new

optimal club maxs,s′∈S |ks− ks′| ≤ 1 and the individuals that belong to the original clubs with the

higher ks have lower utility. Denote the optimal ks by ηk ≡ d k
γ
e. Then, the utility of i ∈ K that

belongs to the original Club s ∈ {s ∈ S|∀s′ ∈ S,ks ≥ ks′} is

ui(G+K) = (k−1)h(k)+(m−ηk)h(m)+(na−m− (k−ηk))h(k)h(m)−2c

6 ∂ui(G+K,h,c)
∂q = (m− 1)h(k)h(m)− (m− 1)h2(m) ≥ 0 (equality is achieved if and only if k = m). Since k is held

fixed, increasing q by 1 means that Individual j′ of Club s′ (ks′ > 1) is replaced in K by a member j of Club s that
was not represented in K. The gain from this change is the paths to Individual j and her club members (h(k) +
(m− 2)h(k)h(m)− (m− 1)h2(m)) while the loss is the longer path to j′ (h(k)h(m)− h(k)). Thus, the net benefit is
(m−1)(h(k)h(m)−h2(m)).
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Thus, the membership fee required to prevent the formation of a new club of size γ < k ≤ m

is

c≥ max
m≥k>γ

(k−1)h(k)− (ηk−1)h(m)+(na−m− (k−ηk))h(k)h(m)− (na−m)h2(m)

It is easy to see that the membership fee required to prevent the formation of a new club of size

k ≤ m are higher when the central individual is not included in the group. Denote the membership

fee required to prevent a deviation to a club of size k when m≥ k and γ ≥ k by,

FNSh(k,m) = (k−1)[h(k)+(m−2)h(k)h(m)− (m−1)h2(m)]

and the membership fee required to prevent a deviation to a club of size k when m ≥ k and

k > γ ,

FNIh(k,m,na) = (k−1)h(k)− (ηk−1)h(m)+(na−m− (k−ηk))h(m)h(k)

− (na−m)h2(m)

Therefore, we can conclude that the minimal membership fee required to prevent the for-

mation of a new club that is no larger than the existing clubs, k ≤ m, depends on the relation

between m and γ . If m > γ then c≥max{ max
γ≥k≥2

FNSh(k,m), max
m≥k>γ

FNIh(k,m,na)} while if γ ≥ m

then c≥ max
m≥k≥2

FNSh(k,m). Note that when k > m there are no gains to the members of the new

club from shorter indirect paths. In addition, they have no gains from the members of the new

club with whom they already share a club in G (therefore the central individual can never bene-

fit from participating in clubs of size k > m). Moreover, if h2(m) ≥ h(k) there are no gains also

from the other members of the new club. Thus, no new club of size k ≥ lh are formed where

lh = min{k ∈ Z|h(k) ≤ h2(m)}. However, the net gains for a non-central Individual i, that be-

longs to Club s in Environment G, from establishing a new club of size min{lh,na}> k > m are

(k−ks)(h(k)−h2(m))−c. Since there is at least one individual in K for which ks ≥ ηk, she refuses

to deviate if c > (k−ηk)(h(k)−h2(m)). Denote the membership fee required to prevent a devi-

ation to a club of size k when min{lh,na}> k > m by FNLh(k,m,na) = (k−ηk)(h(k)−h2(m)).

Thus, the minimal membership fee required to prevent the formation of a new club are

If m > γ

c≥max{ max
γ≥k≥2

FNSh(k,m,na), max
m≥k>γ

FNIh(k,m,na), max
min{lh,na}>k>m

FNLh(k,m,na)}
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while if γ ≥ m

c≥max{ max
m≥k≥2

FNSh(k,m,na), max
min{lh,na}>k>m

FNLh(k,m,na)}

Finally, we analyse the incentive to join a new club. Individual b is irrelevant since she is

already present in all the populated clubs. A non-central Individual i who joins an existing Club s

shortens her paths to the members of this club (excluding the center) while she pays the member-

ship fee (and intensifies the congestion in Club s). The utility of Individual i from Environment

G+{i,s} (where {i,s} /∈ A and nG(s)≥ 2) is

ui(G+{i,s},h,c) = (m−1)h(m)+(m−1)h(m+1)+(na−2m+1)h2(m)−2c

Therefore, the net benefit for Individual i from joining an existing Club s is (m− 1)[h(m+ 1)−
h2(m)]− c. Thus, no individual wishes to join a new club in G if and only if

c≥ (m−1)[h(m+1)−h2(m)]

Denote Jh(m) = (m−1)[h(m+1)−h2(m)].

Note that FNSh(m,m) = (m− 1)(h(m)− h2(m)) and therefore FNSh(m,m) ≥ Jh(m). Thus,

the lower bound on the membership are:

If m > γ

c≥max{ max
γ≥k≥2

FNSh(k,m), max
m≥k>γ

FNIh(k,m,na), max
min{lh,na}>k>m

FNLh(k,m,na),Jh(m)}

while if γ ≥ m then c≥max{ max
m≥k≥2

FNSh(k,m), max
min{lh,na}>k>m

FNLh(k,m,na)}.

Claim 2

Proof. We assume na > 2. Since m = 2, the number of clubs is never smaller than m and therefore

only the first part of Proposition 4 is relevant for the 2-Star environment.

Let us begin with Part (i). When m = 2 we get kh(2) = h(2) as the upper bound. For the

lower bound only FNSh(2,2) and FNLh(k,2,na) for k ∈ {3, . . . ,min{lh − 1,na − 1}} are rele-

vant. FNSh(2,2) = h(2)− h2(2). Since m = 2 and k ≤ na−1, we get ηk = 1. Therefore,

FNLh(k,2,na) = (k− 1)(h(k)− h2(2)). The 2-Star environment is therefore OCS if and only

if h(2)≥ c≥ max
k∈{2,...,min{lh−1,na−1}}

(k−1)(h(k)−h2(2)).

Next, by Lemma 2, since the club congestion function is elastic then kh(·) is strictly decreas-

ing. Note that (k−1)(h(k)−h2(2)) = kh(k)− (k− 1)h2(2). Thus, the first part decreases with k
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while the second part increases with k, meaning that (k−1)(h(k)−h2(2)) is maximized by k = 2.

Therefore the 2-Star environment is OCS if and only if h(2)≥ c≥ h(2)−h2(2).

The reciprocal club congestion function implies that (k−1)(h(k)−h2(2)) equals 1− (k−
1)h2(2) = 1− (k−1) = 2− k. Thus, using Part (i), if h(·) is the reciprocal club congestion func-

tion, the 2-star environment is OCS if and only if c ∈ [0,1].

Finally, suppose that h(·) is an exponential club congestion function. A straight forward ap-

plication of Part (i) suggests that the 2-Star environment is OCS if and only if

a+δ ≥ c≥ max
k∈{2,...,min{lh−1,na−1}}

(k−1)((a+δ
k−1)− (a+δ )2)

It is easy to see that when a = 0 the upper bound becomes δ . Since a = 0 implies that lh = 3, the

lower bound becomes δ −δ 2. Therefore, if a = 0 then the 2-Star environment is OCS if and only

if c ∈ [δ −δ 2,δ ].

Claim 3

Proof. Since na ≥ 9 then γ ≥ 4 > 3, so that only the first part of Proposition 4 is relevant.

First, let h(m) = 1
m−1 . Note that lh = 5. Thus, the 3-Star environment is OCS if and only if

2h(3)≥ c≥max{h(2)+h(2)h(3)−2h2(3),2[h(3)−h2(3)],3[h(4)−h2(3)]}

and using the functional form we get 1≥ c≥max{1, 1
2 ,

1
4} and therefore the 3-Star environment is

OCS if and only if c = 1.

Next, let h(m) = δ m−1 for δ ∈ (0,1). Note that again lh = 5. Thus, again the 3-star environ-

ment is OCS if and only if

2h(3)≥ c≥max{h(2)+h(2)h(3)−2h2(3),2[h(3)−h2(3)],3[h(4)−h2(3)]}

and using the functional form the 3-Star environment is OCS if and only if

2δ
2 ≥ c≥max{δ +δ

3−2δ
4,2δ

2−2δ
4,3δ

3−3δ
4}

Note that since δ ∈ (0,1) it must be that δ (1− δ )2 > 0. Therefore, δ + δ 3 > 2δ 2 and δ + δ 3−
2δ 4 > 2δ 2−2δ 4. Meaning that the 3-Star environment is OCS if and only if

2δ
2 ≥ c≥max{δ +δ

3−2δ
4,3δ

3−3δ
4}
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Note that since δ ∈ (0,1) it must be that δ 2(2−δ )< 1.7 Therefore, 2δ 2−δ 3 < 1 or 2δ 3−δ 4 < δ

or 3δ 3−δ 4 < δ +δ 3 or 3δ 3−3δ 4 < δ +δ 3−2δ 4. Meaning that the 3-Star environment is OCS

if and only if 2δ
2 ≥ c≥ δ +δ

3−2δ
4. Given that δ ∈ (0,1) then (δ 2+1)(2δ −1)≥ 0 if and only

if δ ∈ [1
2 ,1). Thus, 2δ 3− δ 2 + 2δ ≥ 1 if and only if δ ∈ [1

2 ,1). And, 2δ 4− δ 3 + 2δ 2 ≥ δ if and

only if δ ∈ [1
2 ,1). Meaning that 2δ 2 ≥ δ +δ 3−2δ 4 if and only if δ ∈ [1

2 ,1). Thus, since the 3-Star

environment is OCS if and only if c ∈ [δ +δ 3−2δ 4,2δ 2], there is a range of membership fees for

which it is OCS if and only if δ ≥ 1
2 .

B Proofs of Results from the Online Appendix

Proposition 1

Lemma B.1. If c > 0 and the Club Congestion function is h(2) = δ and ∀m > 2 : h(m) = 0 then

∀g ∈Gn,∀i ∈ N : ui(Gg) = uJW
i (g).

Proof. Note that for every un-weighted network g =< N,E >, the induced network of Gg denoted

by ḡ =< N, Ē,W > is such that Ē = E and, by the choice of h(·), each link has a weight of δ since

the clubs are all of size two.

Since all the weights in ḡ are the same, the length of the shortest weighted path between

individuals i and j in ḡ is the same as the length of the shortest path between them in g. Therefore,

the distance between individuals i and j in ḡ equals δ di j where di j is the geodesic distance between

individuals i and j in ḡ and therefore also in g. Hence, the benefits of the individuals in Gg equal

their benefits in g.

Moreover, by construction, the number of direct links each individual maintains in g equals

the number of her affiliations in Gḡ. Therefore, the costs of the individuals in Gg equal their costs

in g. Hence, ∀i ∈ N : ui(Gg) = uJW
i (g).

Lemma B.2. Let g be an un-weighted network and let Gg =< N,S,A > be the corresponding

environment. ∀i, j ∈ N such that ∃s ∈ S : {{i,s},{ j,s}} ⊆ A then ui(Gg−{i, j}) = ui(Gg−{i,s}).

Proof. By construction, the Environment Gg−{i, j} includes the same clubs as Gg excluding Club s.

Therefore its induced weighted network ḡ−s is identical to g excluding the link between individuals

i and j. Denote the benefits of Individual i in ḡ−s by B. Then ui(Gg−{i, j}) = B− (sGg(i)−1)× c.

Environment Gg−{i,s} includes the same clubs as Gg, but the affiliation of Individual i in

Club s is dropped. Since Club s is a singleton in Gg−{i,s}, it induces no links. Therefore, ḡis, the

weighted network induced by Gg−{i,s} is identical to ḡ−s. Hence, the benefits of Individual i in

ḡis are B and ui(Gg−{i,s}) =B−(sGg(i)−1)×c. Thus, we get ui(Gg−{i, j}) = ui(Gg−{i,s}).
7δ 2(2−δ ) has a local maximum at 4

3 , a local minimum at 0 and its value at δ = 1 is 1.
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Proof

Proof. We suppose that g ∈ PS(δ ,c,n) and show that Gg ∈ OCS(h,c,n). The “No Joining” condi-

tion holds since the utility from a club of size 3 is zero while the participation fee is positive. For

the same reason, no coalition of size greater than two wishes to form a new club.

Next, consider two individuals, i and j, that do not share a club in Gg. Then, by construc-

tion, Individual i and Individual j are not linked in g. Since g is pairwise stable, if uJW
i (g) <

uJW
i (g+{i, j}) then uJW

j (g) > uJW
j (g+{i, j}). By Lemma B.1, if ui(Gg) < ui(Gg+{i, j}) then

u j(Gg) > u j(Gg+{i, j}). Denote by mi j the coalition that includes only individuals i and j. Then,

note that Gg+{i, j} is identical to Gg +mi j since both denote the addition of Club s that includes in-

dividuals i and j to Environment Gg. Hence, if ui(Gg)< ui(Gg +mi j) then u j(Gg)> u j(Gg +mi j).

Therefore, no coalition of size two wishes to form a new club and the “No New Club Formation”

condition holds.

For the “No Leaving” condition, consider Individual i that participates, together with Individ-

ual j, in Club s in Gg. Then, by construction, Individual i and Individual j are linked in g. Since g is

pairwise stable uJW
i (g)≥ uJW

i (g−{i, j}). By Lemma B.1, ui(Gg)≥ ui(Gg−{i, j}). By Lemma B.2,

ui(Gg)≥ ui(Gg−{i,s}), meaning that this condition also holds. Therefore, Gg ∈ OCS(h,c,n).

For the other direction, we suppose that Gg ∈ OCS(h,c,n) and show that g ∈ PS(δ ,c,n).

First, consider Individual i that is linked with Individual j in g. By construction Individual i par-

ticipates, together with Individual j, in Club s in Gg. Since Gg is OCS, ui(Gg) ≥ ui(Gg−{i,s}).
By Lemma B.2, ui(Gg) ≥ ui(Gg−{i, j}). By Lemma B.1, uJW

i (g) ≥ uJW
i (g−{i, j}), meaning that

no individual wishes to discard an existing link. Next, consider two individuals, i and j, that are

not linked in g. By construction individuals i and j do not share a club in Gg. Since Gg is OCS,

if ui(Gg)< ui(Gg +mi j) then u j(Gg)> u j(Gg +mi j). But, as mentioned above, Gg+{i, j} is identi-

cal to Gg +mi j. Therefore, if ui(Gg) < ui(Gg+{i, j}) then u j(Gg) > u j(Gg+{i, j}). By Lemma B.1,

if uJW
i (g) < uJW

i (g+{i, j}) then uJW
j (g) > uJW

j (g+{i, j}), meaning that no pair of individuals

wishes to form a new link. Therefore, g ∈ PS(δ ,c,n).

For the second part note that since we assume that Gn includes only environments with dis-

tinct clubs, every environment G ∈ Gn\GḠn includes at least one populated club of size greater

than two. However, every individual that participates in a club of size greater than two wishes to

leave the club since its benefits are zero (all induced links of such club are of weight zero) while

the membership fee is positive. Therefore, G /∈ OCS(h,c,n).

Lemma 1

Lemma B.3. Let h(m) be an exponential congestion function. Let m > m′ and suppose kh(m) >

kh(m′) for a given parameter a. Then kh(m)> kh(m′) for every ā ∈ [a,1−δ ).

Proof. For the given parameter a, kh(m)−kh(m′)> 0. Therefore, (m−1)(a+δ m−1)−(m′−1)(a+
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δ m′−1) > 0 or written differently, (m−m′)a+(m− 1)δ m−1− (m′− 1)δ m′−1 > 0. Now suppose

a increases to ā. Since m > m′, (m−m′)ā + (m− 1)δ m−1− (m′− 1)δ m′−1 > 0 and therefore

(m−1)(ā+δ m−1)− (m′−1)(ā+δ m′−1)> 0. Hence, kh(m)− kh(m′)> 0 given ā.

Lemma B.4. Let na≥ 4 and let h(m) be an exponential club congestion function with a > 0. kh(m)

has at most two extreme points, m̄ < ¯̄m, where m̄ is a local maximum and ¯̄m is a local minimum.

Proof. Denote gh(m) = ηh(m)
ηh(m+1) . To show that gh(m) is strictly increasing, it is helpful to rewrite

it as

gh(m) =

h(m+1)−h(m)
h(m)

1
m

h(m+2)−h(m+1)
h(m+1)

1
m+1

Then,

gh(m) =
m

m+1
× h(m+1)

h(m)
× h(m+1)−h(m)

h(m+2)−h(m+1)
=

m
m+1

× h(m+1)
h(m)

× 1
δ
.

gh(m+1) =
m+1
m+2

× h(m+2)
h(m+1)

× h(m+2)−h(m+1)
h(m+3)−h(m+2)

=
m+1
m+2

× h(m+2)
h(m+1)

× 1
δ
.

Note that for every integer m≥ 1, δ ∈ (0,1) satisfies δ m−1+δ m+1 > 2δ m. Therefore, a2+2aδ m+

δ 2m < a2+aδ m−1+aδ m+1+δ 2m which can be rewritten as h2(m+1)< h(m)×h(m+2). Hence,

∀m ∈ {2, . . . ,na− 2} : h(m+2)
h(m+1) >

h(m+1)
h(m) . Also, note that ∀m ∈ N : m+1

m+2 > m
m+1 . Taken together,

∀m ∈ {2, . . . ,na−2} : gh(m+1)> gh(m), meaning gh(m) is strictly increasing.

Since ηh(m) ≤ 0 and since gh(m) is strictly increasing, there exists m? such that for every

m < m? the club-size elasticity ηh(m) is decreasing (gh(m)< 1) while for every m > m?, ηh(m) is

increasing (gh(m)> 1). Thus, generally, ηh(m) is unimodal with a single minimum at m?.

Thus, generally, ηh(m) can be divided to four parts in the following order:

(i) ηh(m)>−1 and ηh(m) is decreasing.

(ii) ηh(m)<−1 and ηh(m) is decreasing.

(iii) ηh(m)<−1 and ηh(m) is increasing.

(iv) ηh(m)>−1 and ηh(m) is increasing.

Therefore, by Lemma 2 in the main text, kh(m) has at most three parts, the first increasing (cor-

responding to (i)), the second decreasing (corresponding to (ii) and (iii)) and the third increasing

again (corresponding to (iv)). Hence, for na ≥ 4, kh(m) has at most two extreme points, m̄ < ¯̄m,

where m̄ is a local maximum and ¯̄m is a local minimum.
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Lemma B.5. For every na ≥ 4:

1. δ̂ (na)>
1
2 .

2. ∀δ ∈ (0, δ̂ (na)) : b(δ ,na)> 0.

3. argmaxδ∈(0,1) b(δ ,na) = δ̂ 2(na).

Proof. First, note that δ̂ (na) = ( 1
na−1)

1
na−2 is the unique root of b(δ ,na) that is real, positive and

smaller than one. Next,

∂ δ̂ (na)

∂na
=

1
na−2

× (
1

na−1
)

1
na−2−1× −1

(na−1)2 +(
1

na−1
)

1
na−2 × ln

1
na−1

× −1
(na−2)2

Hence,

∂ δ̂ (na)

∂na
=− 1

na−2
× (

1
na−1

)
1

na−2 ×
[ 1
(na−1)

+ ln
1

na−1
× 1

(na−2)
]

Since na ≥ 4, ∂ δ̂ (na)
∂na

> 0 if and only if 1
(na−1) + ln 1

na−1 ×
1

(na−2) < 0. Hence, ∂ δ̂ (na)
∂na

> 0 if and only

if ln 1
na−1 < −1+ 1

na−1 . Therefore, if ln 1
na−1 < −1 then ∂ δ̂ (na)

∂na
> 0. This means that if na > e+1

then ∂ δ̂ (na)
∂na

> 0. Since na ≥ 4 we showed that ∂ δ̂ (na)
∂na

> 0.

Note that δ̂ (4) = (1
3)

1
2 ≈ 0.577. Hence δ̂ (4)> 1

2 . Since ∂ δ̂ (na)
∂na

> 0 we get that δ̂ (na)>
1
2 for

every na ≥ 4.

For every na ≥ 4, b(0,na) = 0 and b(δ̂ (na),na) = 0 and there is no other δ ∈ [0, δ̂ (na)] such

that b(δ ,na) = 0. Since b(δ ,na) is continuous and its derivative with respect to δ at δ = 0 is

positive when na ≥ 4 (∂b(δ ,na)
∂δ

(0,na) =
1

na−2 > 0), we infer that ∀δ ∈ (0, δ̂ (na)) : b(δ ,na) > 0

when na ≥ 4.

Finally,

∂b(δ ,na)

∂δ
=

1
na−2

− (na−1)2

na−2
×δ

na−2

Thus, for a given na, the maximum of b(δ ,na) is achieved at δ = ( 1
na−1)

2
na−2 = δ̂ 2(na).

Proof

Proof. First, by Lemma B.3, if m > m′ and kh(m)> kh(m′) for a given parameter a then kh(m)>

kh(m′) for every ā ∈ [a,1− δ ). Hence, if m? is the club size that maximizes the DCV for a, then

for every ā ∈ [a,1− δ ) the DCV is maximized by m ≥ m?. Hence, the club size that maximizes

the DCV weakly increases with a (Part 1).
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Second, we show that if a ∈ [0,min{b(δ ,na),δ (1−2δ )}) then the DCV is maximized at m =

2. We begin by considering the case of h(m)= a+δ m−1 where δ ∈ (0,1), a∈ (0,min{b(δ ,na),δ (1−
2δ )}) and a+ δ ∈ (0,1). By Lemma B.4, kh(m) has at most two extreme points, m̄ < ¯̄m, where

m̄ is a local maximum and ¯̄m is a local minimum. If kh(2) > kh(3), rewritten as a < δ (1− 2δ ),

then m = 2 must be the local integer maximum of kh(m). Therefore, in these cases the global

integer maximum is either at m = 2 or at m = na. Hence, if also kh(2) > kh(na), rewritten as

a < 1
na−2δ (1− (na− 1)δ na−2) = b(na,δ ), then the global integer maximum is at m = 2. Thus, if

a ∈ (0,min
{

δ (1− 2δ ),b(na,δ )
}
) then kh(m) is maximized at m = 2. Note that δ (1− 2δ ) > 0

if and only if δ ∈ (0, 1
2). Hence, it is left to be shown that if a = 0 and δ ∈ (0, 1

2) then kh(m) is

maximized at m = 2. In this case h(m) = δ m−1 and therefore the club-size elasticity is ηh(m) =

m(δ −1). Thus, the congestion function is elastic if δ < 1
2 since then ηh(m) < −1 for every club

size. By Lemma 2 in the main text, kh(m) is decreasing and therefore maximized at m = 2. Hence,

if a ∈ [0,min
{

δ (1−2δ ),b(na,δ )
}
) then the DCV is maximized at m = 2 (Part 2).

Recall that δ (1−2δ ) is positive if and only if δ ∈ (0, 1
2) and that its derivative with respect to δ

at δ = 0 is one (∂δ (1−2δ )
∂δ

(δ = 0) = 1). Also recall that when na≥ 4 by Lemma B.5, b(na,δ ) is pos-

itive when δ ∈ (0, δ̂ (na)) where δ̂ (na)>
1
2 and its derivative with respect to δ at δ = 0 is 1

na−2 < 1.

Hence, these two function cross for some δ ∈ (0, 1
2) and since both are single peaked at this re-

gion, we denote it by δ ? ( b(δ ?,na) = δ ?(1− 2δ ?)). Therefore, there is a unique δ ?(na) ∈ (0, 1
2)

such that ∀δ ∈ (0,δ ?) : δ (1− 2δ ) > b(na,δ ) and ∀δ ∈ (δ ?, 1
2) : δ (1− 2δ ) < b(na,δ ). Consider

the case where δ ∈ (0,δ ?) and a ∈ (b(δ ,na),δ (1− 2δ )). In this range, m = 2 must be the local

integer maximum of kh(m) (since a < δ (1−2δ )). However, the global maximum is m = na since

a > b(δ ,na). Thus, for δ ∈ (0,δ ?) and a ∈ (b(δ ,na),δ (1−2δ )) the DCV is maximized at m = na.

However, by Lemma B.3, by increasing a the club size that maximizes the DCV cannot decrease.

Since na is the maximal size, then for δ ∈ (0,δ ?) and a ∈ (b(δ ,na),1−δ ) the DCV is maximized

at m = na (Part 3).

Next, consider the case where δ ∈ (δ ?, δ̂ ) and a ∈ (max{0,δ (1− 2δ )},b(δ ,na)). In this

range, m = 2 is not the local integer maximum of kh(m) (since a > δ (1−2δ )). But, kh(2)> kh(na)

since a < b(δ ,na). Therefore, the DCV is not maximized by m = 2 and it is not maximized by

m = na. Therefore, the DCV is maximized at m ∈ {3, . . . ,na−1} (Part 4).

Next, consider the case where δ ∈ [1
2 ,1−

1
na−1 ] and a = 0. In this case the congestion function

reduces to h(m) = δ m−1 where δ ∈ [1
2 ,1−

1
na−1 ]. As a continuous function kh(m) = (m−1)δ m−1 is

single peaked and achieves its maximum at m?= 1− 1
lnδ

. Therefore, the highest values achieved by

integers are either in
⌊
1− 1

lnδ

⌋
or

⌈
1− 1

lnδ

⌉
. Hence, when a = 0 and the club-size elasticity is in-

determinate (1− 1
na−1 ≥ δ ≥ 1

2 ) the DCV is maximized either at m =
⌊
1− 1

lnδ

⌋
or at m =

⌈
1− 1

lnδ

⌉
(Part 5).

Finally, consider the case where δ ∈ (1− 1
na−1 ,1) and a = 0. Then the club congestion func-
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tion becomes h(m) = δ m−1 where δ ∈ (1− 1
na−1 ,1). The club-size elasticity is ηh(m) = m(δ −1)

and the congestion function is inelastic since for δ > 1− 1
na−1 we get ηh(m) > −1 for every club

size. By Lemma 2 in the main text, kh(m) is increasing and therefore maximized at m = na. In

addition, by Lemma B.3, by increasing a the club size that maximizes the DCV cannot decrease.

Since na is the maximal size, then for δ ∈ (1− 1
na−1 ,1) and every legitimate value of a the DCV is

maximized at m = na (Part 6).

Proposition 2

Proof. The case of the reciprocal club congestion function is based on the DCV being a constant

function that equals to 1. The case of the exponential club congestion function is based on Lemma

1. The first case results from Part 2 and from kh(2) = a+δ . The second case is an implication of

parts 3 and 6 (recall that kh(na) = (na−1)(a+δ na−1)). The final case results from Part 5.

Claim 1

Proof. Let h(·) be an exponential club congestion function where δ ∈ (0, 1
2) and a > 0. By Propo-

sition 3 in the main text and Lemma A.1 in the appendix of the main text, for every na > m, there

exists a range of membership fees where the m-complete environment is OCS if (m− 1)[(a+

δ m−1)− (a+δ m−1)2]≥ δ −δ m−1. Note that the right-hand-side of the inequality is bounded from

above by δ < 1
2 and the left-hand-side of the inequality can be written as

(m−1)(a−a2)+(1−2a)(m−1)δ m−1− (m−1)δ 2(m−1)

Then, (1− 2a)(m− 1)δ m−1 and (m− 1)δ 2(m−1) go to zero when m goes to infinity, while, since

a ∈ (0,1), (m−1)(a−a2) goes to infinity when m goes to infinity. Thus, the left-hand-side of the

inequality is not bounded. Moreover, since the left-hand-side of the inequality is monotonic from

some club size (depends on δ and a) there exists m̄ such that ∀m : m > m̄ the inequality holds.

Thus, ∀m : na > m > m̄ there exists a range of c in which the m-complete environment is OCS.

For similar reasons there exists an integer m̃ such that ∀m : m > m̃ the upper bound is higher

than δ (since δ is greater than the right-hand-side for every m≥ 2, m̃≥ m̄). Let c̄ = (m̃−1)[(a+

δ m̃−1)− (a+δ m̃−1)2]. Thus, in the membership fees range (δ , c̄), every m-complete environment

where m≥ m̃ is OCS.

Claim 2

Proof. By Proposition 4 in the main text, Jh(m) = (m− 1)[h(m+ 1)− h2(m)]. Since club con-

gestion functions are assumed to be non-increasing, we get h(m) ≥ h(m+1)−h2(m). Therefore,
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(m−1)h(m)≥ (m−1)[h(m+1)−h2(m)]. Hence, Kh(m)≥ Jh(m). If

Jh(m)≥max{ max
γ≥k≥2

FNSh(k,m), max
m≥k>γ

FNIh(k,m,na), max
min{lh,na}>k>m

FNLh(k,m,na)}

then by the second part of Proposition 4 in the main text, a range of membership fees for which

the m-Star environment is OCS is guaranteed.
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