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Online Appendix: Additional Material

B1. Insurance for a Risk-Averse Agent

Risk aversion introduces novel elements that are absent in the baseline case.
First, insurance reduces the risk of going to litigation. Second, the agent’s wealth
may determine the agent’s level of risk aversion, which affects the equilibrium
transfer under bargaining. In addition, generally there is no separability between
the cost of insurance for the agent and the settlement payoff. So even in the
absence of wealth effects (e.g., CARA utility), the price of insurance may alter
the bargaining core. Third, the settlement fee paid by the agent, as well as
the willingness to pay for insurance, do not generally have closed-form solutions.
As a result, in general, the main analysis the model under risk aversion is not
analytically tractable.

Consider a risk-averse agent with initial wealth w covered by an insurance policy
α = (αS , αL αD), bought at some price Q, and with preferences over lotteries
represented by an increasing and concave Bernouilli utility function u(·). If the
third party and the agent go to litigation, the expected payoff of the agent is

(B1) u(CE(p, α,Q)) ≡ pu(w−cA+αL−d+αD−Q)+(1−p)u(w−cA+αL−Q),

where CE(p, α,Q) denotes the certainty equivalent of the risky litigation outcome
under insurance policy α bought at price Q. Under risk neutrality, we showed
that an uninformed insurer fully cover litigation costs, i.e., αL = cA. However,
under risk aversion this is not necessarily true. The reason is that αL increases
the payoff in both states of the world, which reduces the value of a larger αD to
decrease the variance of the lottery.25 Additionally, the certainty equivalent of
going to litigation is affected by the price of the insurance and the level of wealth
of the agent, whereas in the risk-neutral case the agent’s wealth and the price of
insurance do not affect the decision to litigate.

Under risk aversion parties are also better off by avoiding litigation: they save
on litigation cost, and the agent avoids the risky litigation outcome. This means
that risk aversion provides stronger settlement incentives to the parties. A feasible
settlement agreement is a transfer T from the agent to the third party such that
0 < pd−c ≤ T and u(CE(p, α,Q)) ≤ u(w−Q−max{T −αS , 0}) or, equivalently,

Tmin(p) ≡ pd− c ≤ T ≤ w −Q− CE(p, α,Q) + min{αS , T}.

If w − Q − CE(p, α,Q) < 0, the agent will not accept a settlement agreement
and parties litigate. If w −Q − CE(p, α,Q) ≥ 0, the agent accepts a settlement
agreement as long as T ≤ Tmax(p, α,Q) ≡ w − Q − CE(p, α,Q) + αS . Without

25We have ∂2

∂αL∂αD
u(CE(p, α,Q)) < 0. Under risk-neutrality this cross-derivative is zero.
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insurance parties always settle because u(CE(p, 0, 0)) ≤ u(w−T ) for any transfer
T ≥ pd− c.26

When w−Q−CE(p, α,Q) ≥ 0 and Tmin(p) ≤ Tmax(p, α,Q) the agent and the
thrid party settle. In this case, the settlement fee is given by the solution to the
maximization of the Nash-product. As in the case of risk neutrality, efficiency of
Nash Bargaining implies that settlement transfer must be larger than αS , so we
can write the problem as:

(B2)

Tα(p,Q) ∈ arg max
T

(u(w −Q− T + αS)− u(CE(p, α,Q)))θ(T − (pd− c))1−θ

subject to max{αS , pd− c} ≤ T ≤ w −Q− CE(p, α,Q) + αS .

Under risk neutrality, we showed that any contract with Tmin(p) = Tmax(p, α,Q)
is optimal, and under imperfect information the insurer sets αL = cA and αS = 0.
Under risk aversion, however, this result may no longer hold given the non-
linearity of Q + CE(p, α,Q), as a function of Q (in the risk neutral case, Q +
CE(p, α,Q) is independent of Q). The price of insurance could increase by reduc-
ing the litigation cost coverage (αL < cA), reducing the payment of the litigation
lottery in each state of nature, which increases the value of damage coverage (αD),
which decreases risk. In addition, to increase incentives to settle, the insurer may
set a positive αS . Covering settlements has two effects. First, increasing αS
increases the settlement transfer, which lowers the agent’s willingness to pay.
Second, increasing αS may provide incentives to settle.

For the general class of risk-averse preferences, the outcome of bargaining may
depend upon wealth w and the price of insurance Q. Our model is then not
analytically tractable for analysis beyond the complete information case. We can
simulate outcomes for certain classes of utility functions, but this introduces a
taxonomy of possible cases to consider (e.g., increasing risk aversion, decreasing
risk aversion, etc.). Analyzing all these cases for a class of distributions of types
is beyond the scope of this paper. For this reason, in the next section we focus
on one class of risk-preferences that allow us to gain some analytical tractability.

Mean-Variance Preferences. — For mean-variance preferences we can obtain
some analytic results. An agent with these preferences evaluates lottery X ac-
cording to

U(X) = E(X)− σVar(X)

2
.

26To see this, note that u(CE(p, 0, 0)) ≤ u(w − τ), where τ = pd+ cA > pd− c.
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Under insurance policy α = (αS , αL, αD), the certainty equivalent under litigation
is27

CE(p, α) = w − (cA − αL)− p(d− αD)− σp(1− p)(d− αD)2

2
.

The only difference with the risk neutral case is the last term RP (p, αD) ≡
σp(1−p)(d−αD)2

2 , which corresponds to the agent’s risk-premium. The bargaining
surplus is

SB = min{T, αS}+ c+ cA − αL − pαD +RP (p, αD).

Mirroring the proof of the risk neutral case, it can be shown that T ≥ αS . Then,
the bargaining surplus for type p is simply

SB(p) = αS + c+ cA − αL − pαD +RP (p, αD).

When SB(p) ≥ 0 the agent of type p and the third party settle, otherwise they
litigate. In the risk-neutral case, the bargaining surplus SRN (p) = αS + c+ cA −
αL−pαD is linear and strictly decreasing in p. Under risk aversion, the bargaining
surplus is concave and may be non-monotone in p, so in principle it is not clear
that we can define a threshold type p∗.28 Figure B1 illustrates the bargaining
surplus as a function of the agent’s type for the cases of risk neutrality and risk
aversion.

The next lemma guarantees the existence of a unique threshold type p∗ such
that SB(p∗) = 0.

LEMMA 6: There is a unique positive value that solves the equation SB(p) = 0.

PROOF:
SB(0) = αS + c+ cA−αL > 0. By concavity, SB(p) has a unique positive root.

QED
Lemma 6 allows us to define a litigation-threshold type p∗ such that types

p ≤ p∗ settle and types p > p∗ litigate, where p∗ is the unique positive solution
to the equation

p∗ =
c+ cA − αL + αS

αD
+
RP (p∗, αD)

αD
.

When RP (p∗, αD) > 0, the threshold p∗ is larger than this threshold for a risk
neutral agent. This is shown in Figure B1 (for the case αS = 0, where the thresh-
old for a risk-averse agent p∗σ is larger than this threshold for a risk neutral agent
p∗0. This is, a risk-averse agent covered by contract α has weakly larger incentives
to settle than a risk-neutral agent covered by the same contract. Intuitively, risk
aversion pushes the agent to settle to avoid the risky litigation outcome. Only

27The price Q is paid up-front, so under these preferences the term Q + CE(p, α,Q) is independent
of Q.

28By concavity, the bargaining surplus is strictly decreasing for σ < 2αD
(d−αD)2

.
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Figure B1. : Barganing surplus as a function of the agent’s type for the case of
risk neutrality (σ = 0) and risk aversion (σ > 0). The thresholds p∗0 (and p∗σ)
correspond to the type that is indifferent between settlement and litigation under
risk neutrality (and under risk aversion).

under full insurance (αD = d) this force disappears, i.e., RP (p∗, αD) = 0. The
next result study how a contract α affects the bargaining surplus.

LEMMA 7: SB(·) is strictly decreasing in αD and αL, and strictly increasing in

αS. Also, ∂SB(p∗)
∂p < 0, and sign ∂p∗

∂αj
= sign ∂SB

∂αj
for j ∈ {S,L,D}.

PROOF:
We have ∂SB(p∗)

∂p = σ
2 (d − αD)2(1 − 2p∗) − αD. From the definition of p∗ we

have σ
2 (d− αD)2 = p∗αD−(αS+c+cA−αL)

p∗(1−p∗) . Replacing we get

∂SB(p∗)
∂p

=

[
p∗αD − (αS + c+ cA − αL)

p∗(1− p∗)

]
(1− 2p∗)− αD

= −
[
αS + c+ cA − αL

p∗
+
RP (p∗, αD)

1− p∗
]
< 0.

To compute the partial derivative with respect to the contract parameters we use
that

SB(p∗) = 0⇒ ∂SB(p∗)
∂αj

+
∂SB(p∗)
∂p

∂p∗

∂αj
= 0.

Given that ∂SB(p∗)
∂p < 0, we have sign ∂p∗

∂αj
= sign ∂SB

∂αj
for j ∈ {S,L,D}. QED

4



Lemma 7 shows that increasing αD or αL, or decreasing αS reduces the bargain-
ing surplus. Given that the agent’s payment to the third party is proportional to
the bargaining surplus, the insurer would like to make the bargaining surplus as
small as possible. But this presents a tradeoff for the insurer: decreasing the bar-
gaining will also induce more litigation (by decreasing p∗). The insurer faces this
tradeoff when selling insurance agents that are risk neutral or risk averse. The
main difference is that damages insurance (αD) reduces the bargaining surplus
and the litigation threshold at a faster rate under risk aversion.

Let Tα(p) = pd−c+(1−θ)SB(p) be the Nash bargaining transfer for contract α.
An agent of type p pays a settlement transfer equal to T (p) = min{Tα(p)−αS , 0},
i.e., the agent is fully covered by the insurer if Tα(p) < αS . In the risk-neutral case,
the Nash bargaining transfer is strictly increasing in p, but under risk aversion
this transfer may be non-monotone. The reason is that types around p = 1/2
value insurance more than types closer to p = 0 or p = 1. We need to impose a
condition over σ to guarantee that the Nash bargaining transfer is increasing in
p.

LEMMA 8: When σ < 2
d(1−θ) , the Nash bargaining transfer is increasing, and

there is a unique threshold type p∗∗ is defined by the condition pd − c + (1 −
θ)S(p∗∗) = αS such that agents p ≤ p∗∗ settle and their settlement offer is fully
covered by the insurance.

PROOF:
We have T ′α(p) = d − αD(1 − θ) + (1 − θ)σ(d−αD)2

2 (1 − 2p). It’s clear that for
any p such that 2p ≤ 1 we have T ′α(p) > 0. Consider then p such that 2p > 1, so

T ′α(p) = d− (1− θ)
[
αD +

σ(d− αD)2

2
(2p− 1)

]
.

A sufficient condition for this to hold is d > (1 − θ)

[
αD +

σ(d− αD)2

2

]
. The

RHS of this inequality as a function of αD is convex, so the maximum is either
αD = 0 or αD = d. When αD = d, this holds. When αD = 0, this holds as long
as σ < 2

d(1−θ) . QED

For σ sufficiently small, T (p) is weakly increasing, which allow us to find a
unique solution to the equation Tα(p) = αS . We will impose this condition for
the remainder of the analysis.

ASSUMPTION 2: σ < 2
d(1−θ) .

This expression states that willingness to pay is monotone increasing provided
the risk aversion parameter σ is less than an amount proportional to the inverse
of the damages. Hence, when damages are higher, we need a stronger assumption
on the risk parameter σ.
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How do p∗ and p∗∗ compare? We have that p∗ solves the equation S(p∗) = 0
and p∗∗ solves the equation (1− θ)S(p∗∗) = αS − (p∗∗d− c) with αS > pd− c, so

S(p∗∗) = αS−(p∗∗d−c)
1−θ > 0. Given that S(0) > 0, and S is concave, it is clear that

p∗∗ must be smaller than p∗. Therefore, we can write,
(B3)

W (p, α) =





T0(p) c
d ≤ p ≤ p∗∗

T0(p) + αS − Tα(p) if p∗∗ < p ≤ p∗
T0(p)− p(d− αD)− (cA − αL)−RP (p, αD) if p > p∗

LEMMA 9: W (p, α) is continuous for any level of risk aversion.

PROOF:
First, it is easy to verify that W (p, α) is continuous for p 6= p∗∗ or p 6= p∗.

Second, by definition p∗∗ is such that Tα(p∗∗) = αS , so W (p, α) is continuous
at p = p∗∗. Third, from the definition of p∗ we have that Tα(p∗) = p∗d − c and
p∗αD = αS+c+cA−αL+R(p∗, αD). Thus, −p∗(d−αD)−(cA−αL)−RP (p∗, αD) =
αS − Tα(p∗). QED

Type p’s willingness to pay for contract α is
(B4)

W (p, α) =





pd− c+ (1− θ)
(
c+ cA + σd2

2 p(1− p)
)

if c
d ≤ p ≤ p∗∗,

θαS + (1− θ)
[
αL + pαD + σαD(2d−αD)

2 p(1− p)
]

if p∗∗ < p ≤ p∗,
αL + pαD + σp(1−p)

2 (αD(2d− αD)− θd2)− θ (c+ cA) if p > p∗.

When c
d < p ≤ p∗∗ the agent settles and pays nothing—the insurer fully covers

the agent’s settlement transfer. Thus, the agent’s willingness to pay for insurance
in this case is T0(p), the amount that an agent without insurance would have
paid to TP under a settlement agreement. An agent of type p∗∗ < p ≤ p∗ settles
litigation. The willingness to pay of this agent is the sum of the direct lump-sum
transfer to cover settlement αS plus the TP’s share of the bargaining surplus not
captured in the negotiation due to insurance (1−θ)[αL−αS+pαD+0.5σαD(2d−
αD)p(1− p)]. The first component in the term inside the bracket is the value of
insurance αL − αS + pαD realized with or without risk aversion. Intuitively,
insurance allows the agent to extract additional surplus by improving its own
threat point and reducing TP’s payoff towards its own threat point. The second
component is the risk-premium reduction effect of insurance:

(B5)
σp(1− p)αD(2d− αD)

2
=
σp(1− p)d2

2
− σp(1− p)(d− αD)2

2
.

With damages insurance αD, the agent faces a loss of just d − αD instead of d
when TP wins the case. Because the agent ultimately settles with or without
insurance, this gain enters the bargaining surplus directly, and the agent captures
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share 1− θ of it.
An agent of type p > p∗ litigates. The term αL + pαD is the direct value of

insurance. Because the agent litigates, there is no bargaining surplus and it does
not share this benefit with the third party.

The second term is the risk-premium reduction:
(B6)
p(1− p)σ

2

[
(αD(2d− αD))− θd2

]
= (1− θ)σp(1− p)d

2

2
− σp(1− p)(d− αD)2

2
.

This is lower under litigation than under settlement, by θ
(
σp(1−p)(d−αD)2

2

)
, be-

cause the agent endures the entire variance when it owns insurance (and litigates).
When θ = 0, the variance-reduction effect is the same under settlement and liti-
gation. Intuitively, the variance part of the agent’s utility under insurance is the
same (for θ = 0) when the agent settles and when it litigates. As θ increases,
the variance part of the agent’s utility under insurance (which enters negatively)
stays the same under litigation, but declines under settlement. For sufficiently

high θ > d2

αD(2d−αD) , the variance-reduction effect is negative.

The third term is the litigation cost effect. This is the part of the agent’s payoff
under no insurance that accrues from settling and avoiding litigation costs. This
is surrendered under litigation.

In contrast to the risk neutral case, W (p, α) may not be increasing in p the
region [p∗, p∗∗]. The reason is that agents whose types are around p = 1/2 value
insurance more than agents whose types are closer to p = 0 or p = 1. Figure B2
shows the shape of the willingness to pay when risk aversion is relatively low (left
panel) and high (right panel). Differentiating with respect to p, we have

(B7)
W (p, α)

dp
=





d+ (1− θ)σd2(1−2p)
2 if c

d ≤ p ≤ p∗∗,
(1− θ)

[
αD + σ(1−2p)

2 (αD(2d− αD))
]

if p∗∗ < p ≤ p∗,
αD + σ(1−2p)

2 (αD(2d− αD)− θd2) if p > p∗.

LEMMA 10: W (p, α) is strictly increasing in p for σ ≤ 1
d .

PROOF:
It can be shown that W (p,α)

dp |p∗∗<p≤p∗ > 0 is the hardest condition to satisfy.

Using that αD ≤ d, it is easy to see that this term is positive when σ ≤ 1
d . QED

Note that Assumption 2 does not guarantee the condition in Lemma 10.
The net surplus from serving type p with policy α is

(B8)

(W−K)(p, α) =





pd− c+ (1− θ)
(
c+ cA + σd2

2 p(1− p)
)
− αS if c

d ≤ p ≤ p∗∗

(1− θ)
[
αL − αS + pαD + σαD(2d−αD)

2 p(1− p)
]

if p∗∗ < p ≤ p∗

−θ (c+ cA) + σp(1−p)
2

(
αD(2d− αD)− θd2

)
if p > p∗

7



Figure B2. : W (p, α) for contract αS = 1, αL = 1, and αD = 3 and model
parameters: c = cA = 1, d = 5, θ = 0.8.

In contrast to the risk neutral case, it is not always true that the net surplus
is negative for types that litigate (p > p∗); for instance, this term will be positive
when θ is small. Using the definition of p∗, we can write

(B9)

(W−K)(p, α) =





pd− c+ (1− θ)(c+ cA +RP (p, 0))− αS if c
d
≤ p ≤ p∗∗

(1− θ) [c+ cA +RP (p, 0) + (p− p∗)αD +RP (p∗, αD)−RP (p, αD)] if p∗∗ < p ≤ p∗
−θ(c+ cA) + (1− θ)RP (p, 0)−RP (p, αD) if p > p∗

Equation B9 describes the willingness to pay as a function of the threshold
types p∗ and p∗∗ generated by contract α.

LEMMA 11: Consider two contracts: α = (αS , αL, αD) that generates threshold
p∗ and p∗∗, and α̂ = (α̂S , α̂L, αD) that generates threshold p̂∗ = p∗ and p̂∗∗ <
p∗∗. If α̂S < αS, then (W − K)(p, α) = (W − K)(p, α̂) for all p ∈ [p∗∗, 1] and
(W −K)(p, α) < (W −K)(p, α̂) for all p < p∗∗.

PROOF:
Both contracts generate the same litigation threshold p∗ and both contracts

cover the same amount in damages αD. Thus, we have that (W − K)(p, α) =
(W −K)(p, α̂) for all p ∈ [p∗∗, 1]. For any p ≤ p̂∗∗ we have that (W −K)(p, α) <
(W − K)(p, α̂) because α̂S < αS . Finally, consider any p ∈ (p̂∗∗, p∗∗). In this
region, (W −K)(p, α) < (W −K)(p, α̂) is equivalent to

pd− c− αS < (1− θ) [(p− p∗)αD +RP (p∗, αD)−RP (p, αD)] .

It is easy to see that this inequality corresponds to T (p) < αS , which holds for
any p < p∗∗. QED
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Lemma 11 implies that given to contracts that induce the same threshold p∗

and cover the same amount for damages αD, the insurer will prefer the contract
with the smallest p∗∗.29 Thus, we can show that some contracts are dominated.

PROPOSITION 7: For a given contract α = (αS , αL, αD) define the contract
α̂ = (max{αS − αL, 0},max{αL − αS , 0}, αD). Then, (W − K)(p, α) ≤ (W −
K)(p, α̂) for any p.

PROOF:
First, note that both contracts α and α̂ generate the same threshold p∗ because

αS − αL = max{αS − αL, 0} − max{αL − αS , 0}. Second, note that max{αS −
αL, 0} ≤ αS . Thus, by Lemma 11 we have (W −K)(p, α) ≤ (W −K)(p, α̂) for
any p. QED

Proposition 7 implies that, if the goal is to maximize W − K pointwise, the
insurer will never offer contracts that cover simultaneously settlements and litiga-
tion costs, because these contracts are pointwise dominated. Thus, we can focus
on contracts of the form (αS , 0, αD) or (0, αL, αD).

Under risk neutrality, Proposition 3 (in the main text) shows that we can go
one step further: To maximize (W−K) pointwise in p we can restrict to contracts
of the form α = (0, cA, c/p

∗), for some p∗ > c/d. The reason is that for any fixed

p∗ and any contract that satisfy p∗αD = c+ cA − αL + αS we have: ∂(W−K)
∂αD

< 0

for p ∈ (p∗∗, p∗) and zero otherwise; ∂(W−K)
∂αS

< 0 for p < p∗∗ and zero otherwise;

and, ∂(W−K)
∂αL

= 0 for all p. Thus, the insurer has a preference for reducing αS
and αD as much as possible, as long as the contract parameters satisfy αL =
cA + c − p∗αD + αS with αL ≤ cA. Therefore, the insurer sets αS = 0 and
αD = c

p∗ .

Under risk aversion, for any fixed p∗ and any contract that satisfy p∗αD =

c + cA − αL + αS + RP (αD, p
∗) we still have that: ∂(W−K)

∂αS
< 0 for p < p∗∗ and

zero otherwise; and that ∂(W−K)
∂αL

= 0 for all p. However, the partial derivative
with respect to αD is no longer weakly negative:

∂(W −K)

∂αD
(p, α) =

=





0 if c
d ≤ c

d ≤ p ≤ p∗∗
(1− θ) [(p− p∗)αD − σ(d− αD)(p∗(1− p∗)− p(1− p))] if p∗∗ < p ≤ p∗
σ(d− αD)p(1− p) if p > p∗

We have ∂(W−K)
∂αD

(p, α) < 0 for p ∈ [p∗, p∗∗] and, when αD < d, ∂(W−K)
∂αD

(p, α) >
0for p > p∗. Thus, in contrast to the risk neutral case, it is not true that the
insurer wants to reduce αD as much as possible. This implies that even under

29Given that T ′(p) > 0 we have ∂p∗∗

∂αS
= θ

T ′(p∗∗) > 0, so lowering αS will also lower p∗∗.
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Assumption 2 there may not exist a contract that maximizes W −K pointwise
in p.

The insurer’s cost of serving type p with policy α depends on the agent’s level
of risk aversion through the threshold p∗.

(B10) K(p, α) =

{
αS if p ≤ p∗,
αL + pαD if p > p∗.

In contrast to the risk neutral case, the contract that maximizes W −K at p for
a risk-averse agent, for a fixed litigation threshold p∗, in some cases depends on p;
this also explains why under risk aversion it is impossible to find a contract that
maximizes W −K pointwise for all p. To further hone the contrast between risk
neutrality and risk aversion we present an example. In the example, we explain
intuitively how to find the contract that maximizes (W − K) at p for a fixed
litigation threshold p∗.

Example. Consider the set of contracts that generate a fixed litigation thresh-
old p∗. Within that set of contracts let us find the contract that maximizes
(W −K) at some point p. Let z ≡ αL − αS ∈ (∞, cA].

1. Risk neutrality. This case is easily illustrated using a simple consumer
choice framework, where the “consumer” is the agent+insurer (A+I) and whose
utility is W − K and must choose over the “budget set” z = cA + c − αDp

∗

subject to z ≤ cA. This constraint is represented by the two-piece black line in
Figure B3. When p < p∗, A+I’s willingness to pay (W −K)(p) = (1−θ)(z+pαD)
is represented by the red indifference curves, which have slope p. As a result, the
optimal mix of z and αD is always at the corner where z = cA, which implies
that αL = cA and αS = 0. Intuitively, (A+I)’s marginal rate of substitution p is
lower than p∗. As a result, litigation costs insurance is more valuable given the
tradeoff implied by p∗, and the optimal mix of z and αD is always at the corner
where αL = cA. Finally, when p > p∗ (i.e., types that litigate) we have that
(W −K)(p) is always negative and is constant, so it is affected by the choice of
p∗ but is otherwise unaffected by the choices of z and αD.

2. Risk aversion. Fixing p∗ yields a non-linear constraint illustrated in Fig-
ure B4. The z−axis intercept of the formula for the S(p∗) = 0 constraint is
higher because of the risk premium. The additional constraint z ≤ cA still must
hold, and it binds at an αD > c

p∗ because of the risk premium. In addition, the
risk premium makes the constraint a convex function of αD. The slope of this
constraint is −p∗[1 + (1− p∗)σ(d− αD)].

Indifference curves for an agent of type p—where p < p∗—similarly have a
convex shape, with slope −p[1 + (1 − p)σ(d − αD)]. The indifference curve is
tangent to the constraint at

(B11) α̂D = d−
[

p− p∗
σ (p∗(1− p∗)− p(1− p))

]
.

10



Figure B3. : Maximization of W −K for p < p∗ in the case of risk neutrality.

Figure B4. : Maximization of W −K for p < p∗ in the case of risk aversion.

If this tangency occurs for z < cA, as in Figure B4, then the α̂D given in (B11)
optimizes W conditional on p∗. Otherwise the optimal coverage obtains at the
upper boundary. Now, it is impossible for α̂D to be negative. When this condition
implies a negative α̂D, then we know that the αL = cA kink binds. We can use
this condition to determine a restriction on σ that guarantees that this kink binds:

(B12) σ <
1

d

(
1

p∗ + p− 1

)
.

Because we restrict attention to cases where the second fraction yields a positive
number (p closer to .5 than p∗), and to cases where p ≤ p∗, the lowest that the
second fraction can be is 1. Hence, we need only restrict attention to σ < 1

d to
guarantee that z = αC = cA is pointwise optimal for types that settle.

For higher σ, of course, this is not the case. To see the intuition for that case
most clearly, let p∗ > .5. First, note that the difference in the slopes of the curves
in Figure B4 depend both on p and p(1−p). If p < 1−p∗, then p is so low that it is
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farther from p = .5 than p∗. Then both terms in the slope are of lower magnitude
for the indifference curves than for the constraint. The indifference curves are
then shallower than the constraint everywhere, so the optimal insurance occurs
at the αL = cA kink. As p increases, it eventually reaches a point where it is
closer to .5 than p∗. Then, the second term in the slope is of greater magnitude
for the indifference curve than for the constraint. It is then possible for the red
indifference curve to be steeper than the constraint at low αD and shallower at
high αD.

For types that litigate, a lower αD exposes the agent to more risk when it
litigates, which reduces W −K for p > p∗. Recall total A+I profit for types that
litigate is

(B13) W −K = −θ (c+ cA) +
σp(1− p)

2

(
αD(2d− αD)− θd2

)
.

Obviously, this is maximized for the highest level of damages, αD = d, and this is
independent of p∗ because αS is not bounded above. The particular value of p∗

does matter for z through the S(p∗) = 0 constraint, which implies z = c+cA−p∗d.
Table B2 shows the optimal policy for type p within the set of contracts that

generate a litigation threshold p∗ (in the table, p∗ = 0.8). Under risk neutrality
(σ = 0), each type p optimally is allocated the same insurance, αL = cA and
αD = c

p∗ . This is strictly optimal for types that settle, and weakly optimal for
types that litigate.

For low σ = 0.1, each type that settles optimally receives the same level of
litigation costs insurance as under risk neutrality. Because of the risk premium,
the implied level of damages insurance is higher. And, more importantly, each
type that litigates now optimally receives maximum damages coverage αD = 5,
and the implied z = −2 for all p > .8. Hence, even for the low-σ case, there is no
contract that maximizes W −K pointwise in p.

For high σ = 1.25, the lack of pointwise maximization is even more pronounced.
There are essentially three different regions of p. For low p ≤ .4875, the αL = cA
kink binds. For p ∈ (.4875, p∗], the optimal level of z is below cA. It is positive for
p ∈ (.4875, .6], and negative for p ∈ (.6, p∗]. For p > p∗, types litigate. Essentially,
the ability to sell coverage for settlements slacks the constraint on how big αD
can be, which is valuable when σ and p are high. As in the σ = 0.1 case, each
type that litigates now receives maximum damages coverage αD = 5, and the
implied z = −2 for all p > .8. Note that damages coverage strictly increases for
p ∈ [.4875, p∗].

It turns out that the function in (B11) is generally monotone increasing in p
for p ∈ [1− p∗, p∗]. After some algebra, we find

(B14)
dα̂D
dp

=
1

σ (p∗ + p− 1)2

12



The implication is that there is no peak in α̂D at p = .5. Intuitively, increases in
p above .5 increase the direct value of insurance and decrease the risk-premium
reduction. But the former effect dominates.

σ = 0 σ = 0.1 σ = 1.25
p z αD z αD z αD

0.3 1.00 1.25 1.00 1.38 1.00 2.22
0.4 1.00 1.25 1.00 1.38 1.00 2.22
0.5 1.00 1.25 1.00 1.38 0.85 2.33
0.6 1.00 1.25 1.00 1.38 0.00 3.00
0.7 1.00 1.25 1.00 1.38 -0.46 3.40
0.8 1.00 1.25 1.00 1.38 -0.75 3.67
0.9 1.00 1.25 -2.00 5.00 -2.00 5.00
1.0 1.00 1.25 -2.00 5.00 -2.00 5.00

Table B1—: Contract that maximizes W −K for type p, conditional on p∗ = .8,
σ = 1.25, c = cA = 1, θ = 0.8, d = 5.

To summarize, pointwise maximization obtains under risk neutrality but not
under risk aversion. With low levels of σ, litigation costs coverage remains more
valuable than damages insurance for types that settle. But not for types that
litigate. With higher levels of σ, litigation costs coverage is not necessarily more
valuable than damages insurance for types that settle.

Complete Information. — If the insurer is informed about the agent’s type,
then it will offer a contract that targets that type. This is the same result under
risk neutrality.

PROPOSITION 8: The optimal contract for type p under complete information
is any contract such that p∗(α) = p.

PROOF:
We say that contract α targets p if S(p) = 0, i.e., the litigation threshold implied

by this contract is p∗ = p.
First, by Lemma 11 we can restrict to contracts such that p > p∗∗. If not, we can

always reduce αS to achieve this condition. Second, the value of (W −K)(p, α)
for a contract α that targets p is independent of the contract parameters and
equal to

(B15) πT ≡ (1− θ)
[
c+ cA +

σd2

2
p(1− p)

]
.

Third, under complete information, the optimal contract for type p does not
induce type p to litigate. If type p litigates, it means the insurer offers some
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contract targets p∗ with p∗ < p. The value of W −K for this contract at type p
is then

πL = −θ(c+ cA) + (1− θ)RP (p, 0)−RP (p, αD),

while Equation B15 is the value of W −K at p for a contract that targets type
p. Note that

πT − πL = (1− θ)(c+ cA) + (1− θ)RP (p, 0) + θ(c+ cA)− (1− θ)RP (p, 0) +RP (p, αD)

= (c+ cA) +RP (p, αD) > 0.

Therefore, it is never optimal to induce type p to litigate under complete infor-
mation, so the optimal contract for type p should be such that p∗∗ < p ≤ p∗.

Fourth, (W −K)(p, α̂) is higher for a contract α̂ that targets type p̂ > p, than
for a contract α that targets p iff

(p− p̂)α̂D +RP (p̂, α̂D)−RP (p, α̂D) > 0,

where α̂D is the contract parameter associated to contract p̂. This can be written
as

(p̂− p)α̂D <
σ

2
(d− α̂D)2[p̂(1− p̂)− p(1− p)].

Note that p̂(1− p̂)− p(1− p) = (p̂− p)(1− (p̂+ p)), and given that p < p̂ we have

α̂D <
σ

2
(d− α̂D)2(1− (p̂+ p))

Thus, for any p > 0.5, this condition never holds because the RHS is negative.
Consider p ≤ 0.5. The RHS of the inequality is

σ

2
(d− α̂D)2(1− (p̂+ p∗)) ≤ σ

2
(d− α̂D)2(1− p̂).

By the definition of p̂ we have:

σ

2
(d− α̂D)2p̂(1− p̂) = p̂α̂D − (α̂S + c+ cA − α̂L) < p̂α̂D.

This implies that
σ

2
(d− α̂D)2(1− p̂) < α̂D.

Therefore, there is no contract α̂ that generates a litigation threshold p̂, with
p̂ > p, such that (W − K)(p, α̂) > W − K(p, α), where α is any contract that
targets type p. QED

Just like in the case of risk neutrality, Proposition 8 shows that the optimal
contract under complete information for type p is any the contracts that targets
this type. We have multiple contracts that are optimal, in fact, any contract such
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that S(p) = 0.

Symmetric Information. — Proposition 7 implies that we need to search for
contracts where either αS = 0 or αD = 0. The problem solved be the insurer(s)
is to find a contract α solution to

max
{α=(αS ,αL,αD)}

∫ 1

c/d
[W (p, α)−K(p, α)]dF (p)

subject to αL · αS = 0. Table B2 shows a numerical simulation for the optimal
contract under symmetric information. The table shows that for low values of
risk aversion the optimal contract shares similar characteristics with the optimal
contract under risk neutrality: αS = 0, αL = cA and αD ≥ c/p∗. Note, however,
that in general αD > c/p∗. The reason for the insurer to increase αD when the
agent is risk averse—relative to the case where the agent is risk neutral—is to
protect the agent against the uncertain litigation outcome, which makes the agent
tougher in the negotiation with the third party. However, increasing αD too much
also induces more litigation. To counteract the increase in litigation, the insurer
does not cover all the litigation costs; and when not covering litigation costs is
not enough to deter the agent from going to litigation, the insurer begins to cover
settlements (αS > 0).

Optimal menu of contracts under adverse selection – Monopoly. — We re-
strict our attention to direct revelation mechanisms: the insurer allocates contract
α(p̂) = (αS(p̂), αL(p̂), αD(p̂)) at cost T (p̂) to an agent reveals a type p̂. The insurer
chooses functions α : [c/d, 1]→ [0,∞)× [0, cA]× [0, d] and T : [c/d, 1]→ [0,∞)to
solve

max
α(·),T (·)

∫ 1

c/d
[T (p)−K(p, α(p))]f(p)dp

subject to truthful revelation (incentive compatibility)

U(p) = max
p̂∈[c/d,1]

W (p, α(p̂))− T (p̂)

and participation U(p) ≥ 0. By the envelop theorem we have U(p) − U(c/p) =∫ p

c/d

∂W (s, α(s))

∂p
ds, which is equivalent to

(B16) T (p) = W (p, α(p))−
∫ p

c/d

∂W (s, α(s))

∂p
ds+ U(c/p).
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F (p) = 1− (1− p)2

σ αS αL αD p∗

10−8 0 1 1.01 0.995
0.1 0 1 1.03 0.983
0.5 0 1 1.245 0.947
0.6 0 1 1.315 0.939
0.7 0 1 1.385 0.932
0.8 0 1 1.460 0.925
0.9 0 0.97 1.550 0.920

1 0 0.63 1.880 0.921
1.5 0.23 0 2.750 0.917

2 0.26 0 2.910 0.905

F (p) = p0.5

σ αS αL αD p∗

10−8 0 1 1 1
0.1 0 1 1 1
0.5 0 1 1 1
0.6 0 0.88 1.12 1
0.7 0 0.33 1.68 1
0.8 0.09 0 2.09 1
0.9 0.24 0 2.24 1

1 0.26 0 2.26 1
1.5 0.36 0 2.36 1

2 0.44 0 2.44 1

Table B2—: Optimal contract under symmetric information for different values
of σ and different distribution of types. Parameters c = cA = 1, θ = 0.8, d = 5.

Replacing in the objective function we obtain

max
α(·)

∫ 1

c/d

[
W (p, α(p))−K(p, α(p))−

∫ p

c/d

∂W (s, α(s))

∂p
ds− U(c/d)

]
f(p)dp

It is clear that the monopolist sets U(c/d) = 0. Using the standard change of
variables we get the following problem:

(B17) max
α(·)

∫ 1

c/d

[
W (p, α(p))−K(p, α(p))− ∂W (p, α(p))

∂p

(
1− F (p)

f(p)

)]
f(p)dp.

In a “standard problem” of mechanism design, incentive compatibility requires
an increasing allocation. Our problem differs from the standard case because
the allocation is multi-dimensional, although the private information is single-
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dimensional.

LEMMA 12: Incentive compatibility requires

(B18)

N∑

i=1

∂W (s, α(t))

∂p∂αi
α′i(t) =

=
∂W (s, α(t))

∂p∂αS
α′S(t) +

∂W (s, α(t))

∂p∂αL
α′L(t) +

∂W (s, α(t))

∂p∂αD
α′D(t) ≥ 0, ∀s, t.

PROOF:

For any p, p̂ for incentive compatibility requires:

W (p, α(p))− T (p) ≥W (p, α(p̂))− T (p̂).

Let ∆(p, p̂) = W (p, α(p))− T (p)− [W (p, α(p̂))− T (p̂)]. We have

∆(p, p̂) = W (p, α(p))− T (p)− [W (p̂, α(p̂))− T (p̂) +W (p, α(p̂))−W (p̂, α(p̂))].

= W (p, α(p))− T (p)− [W (p̂, α(p̂))− T (p̂)]− [W (p, α(p̂))−W (p̂, α(p̂))]

=

∫ p

c/d

∂W (s, α(s))

∂p
ds−

∫ p̂

c/d

∂W (s, α(s))

∂p
ds− [W (p, α(p̂))−W (p̂, α(p̂))]︸ ︷︷ ︸∫ p

p̂

∂W (s, α(p̂))

∂p
ds

=

∫ p

p̂

∂W (s, α(s))

∂p
ds−

∫ p

p̂

∂W (s, α(p̂))

∂p
ds

=

∫ p

p̂

[
∂W (s, α(s))

∂p
− ∂W (s, α(p̂))

∂p

]
ds

Therefore, ∆(p, p̂) ≥ 0 ⇔
∫ p

p̂

[
∂W (s, α(s))

∂p
− ∂W (s, α(p̂))

∂p

]
ds ≥ 0. A more

compact form of the same IC condition is

∫ p

p̂

[
∂W (s, α(s))

∂p
− ∂W (s, α(p̂))

∂p

]
ds ≥ 0⇔

∫ p

p̂

[∫ s

p̂

d

dt

[
∂W (s, α(t))

∂p

]

t=u

du

]
ds ≥ 0.

The term inside the integral must be weakly positive, because the inequality must

hold for any p̂, p. When α(t) = (α1(t), ..., αN (t)), we have
d

dt

[
∂W (s, α(t))

∂p

]
=

N∑

i=1

∂W (s, α(t))

∂p∂αi
α′i(t). Therefore, the condition implied by IC (analogous to Lemma
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3 in the paper) is

N∑

i=1

∂W (s, α(t))

∂p∂αi
α′i(t) =

=
∂W (s, α(t))

∂p∂αS
α′S(t)+

∂W (s, α(t))

∂p∂αL
α′L(t)+

∂W (s, α(t))

∂p∂αD
α′D(t) ≥ 0, for all s, t.

QED

Thus, the monopolist solves problem (B17) subject to condition (B18). Once
we find the allocation, we use (B16) to compute the transfer.

Risk Neutrality. To contrast the problem under risk aversion with our base-
line results under risk neutrality, consider first σ = 0. In this case, condition
(B18) reduces simply to αD(p) weakly increasing, and problem (B17) reduces to
max

∫
G(p, α)dF (p), where

G(p, α) = W (p, α)−K(p, α)− ∂W (p, α)

∂p

(
1− F (p)

f(p)

)
,

and h(p) = 1−F (p)
f(p) . Rather than solving this problem directly, we fix p ∈ [c/d, 1]

and we look for a contract that maximizes G(p, α) pointwise. It can be shown
that any such contract satisfies p ∈ (p∗∗, p∗] or, equivalently,

(B19) θαS − (pd− c) < (1− θ)[c+ cA − αL − pαD].

and

(B20) pαD ≤ αS + c+ cA − αL.

So the point-wise maximization reduces to maximize G(p, α) subject to (B19) and
(B20).

We solve this problem in two steps:

1) Define p̄ as the solution to p = h(p). 1. When p ≤ p̄, the insurer sets
αD(p) = 0, αL as large as possible, and αS as small as possible, in the
region where (B20) and (B19) are satisfied. It is easy so see that contract
α(p) = (0, cA, 0) satisfies all of this. Thus, this is the optimal menu in the
region p ≤ p̄.

2) When p > p̄, we solve the following linear optimization problem with linear
constraints:

max
αS ,αL,αD

αL − αS + (p− h(p))αD
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subject to

αL + pαD ≤ c+ cA +
pd− c− θαS

1− θ(B21)

αL + pαD ≤ c+ cA + αS(B22)

It can be shown that the solution to this problem is contract α = (0, cA, c/p).

The problem with this solution is that it violates the monotonicity constraint
of αD(p). Thus, we need to use ironing. Each types p > p̄ will get the same
allocation (0, cA, c/p

∗), where p∗ is defined in Theorem 2 in the main text. 30

Risk Aversion. We can follow similar steps in the case of risk aversion. Let
GR(p, α) be the analogous to G(p, α). First, from Proposition 7, we know that
we want to push p∗∗ as low as possible to maximize W − K pointwise. This
argument is still true for GR(p, α) because in the region where p ≤ p∗ we have
GR(p, α) = W (p, α)−K(p, α)−αSh(p). Therefore, a contract α is dominated by
α̂ if p̂∗∗ < p∗∗, p̂∗ = p∗ and α̂D = αD, in the sense that GR(p, α) ≤ GR(p, α̂) for
any p. This implies again that we can look for contracts where αS = 0 or αL = 0.

We proceed to maximize to find a contract α∗(p) such that GR(p, α(p)) ≥
GR(p, α) for any other contract α. This solution is the optimal menu of con-
tracts when incentive compatibility is not violated. It is not hard to see that
for small values of σ, Equation B18 is equivalent to αD(p) non-decreasing. We
can understand qualitatively the shape of the optimal contract by looking at the
contract α∗(p). Given that the problem is not analytically tractable, we solve it
numerically.

We simulated contracts for the parameters c = cA = 1, d = 5, θ = 0.8, σ =
0.076, and different distributions of types. The contract such that GR(p, α(p)) ≥
GR(p, α) features no settlement coverage and full litigation cost coverage, i.e.,
αS(p) = 0 and αL(p) = cA for all p. However, the level of damages coverage
changes with the distribution of types. Figure B5 shows the value of αD(p) in the
simulation of three scenarios.

Under risk-neutrality the highest type that is excluded is p̄, which is the solution

to p = 1−F (p)
f(p) . When F (p) = pa, this threshold corresponds to p̄ =

(
1

1 + a

) 1
a

.

In Figure B5, from top to bottom we have: p̄ = 0.37, p̄ = 0.5, and p̄ = 0.7. The
first observation is that risk aversion reduces the set of types that are excluded
from damages insurance, i.e., p̄risk averse ≤ p̄risk neutral.

Second, when types are not excluded, αD(p) increases in a small region and
decreases thereafter. Because incentive compatibility requires αD(p) to be non-
decreasing, there will be some threshold type pIron, with pIron ≥ p̄risk aversion such
that any type p ≥ pIron receives the same damages coverage. Under risk neutrality,
pIron = p̄risk neutral, so the optimal menu entailed only two contracts. Under

30This is precesily the solution to the ironing problem.
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Figure B5. : Damages coverage of contracts such that GR(p, α(p)) ≥ GR(p, α)
for any other contract α, for different distributions of types. The distribution of
types in the plot at the top is F (p) = p0.1, in the plot at middle is F (p) = p, and
at the bottom is F (p) = p5.

risk aversion, however, we have more than two contracts: Low types do not get
damages coverage; types that are a little bit higher than the highest excluded
type buy small amount of damages coverage, specific to their types; high types,
receive the same damages coverage, and it is not specific to their types.

Thus, qualitatively, the optimal contract under risk aversion features:

1) A contract that does not cover damages for types p ≤ p̄risk averse.

2) A type-dependent contract that cover both damages and litigation costs for
p ∈ [p̄risk averse, pIron].

3) A type-independent contract that cover both damages and litigation costs
for p > pIron.

The main qualitative differences between this contract and the case of risk neu-
trality is that there are fewer types excluded from damages insurance, and that
the optimal menu features more than just two contracts. Finally, for larger levels
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of risk aversion, as in the case of symmetric information, the optimal contract
may also cover settlements. This case is more complicated because the agent’s
willingness to pay may not be supermodular (see Figure B2).

Perfect Competition Under Adverse Selection with Risk Aversion. —

Proofs of the main results under risk neutrality rely on monotonicity of W in p
and supermodularity of W in p and αD, as well as the unprofitability of insurance
sold to types that litigate. The assumption σ < 1

d ensures the monotonicity and
supermodularity conditions, but does not guarantee unprofitability of insurance
sold to types that litigate. For the latter, we need additional assumptions. For
p > p∗, we can write

W −K =

(
σp(1− p)

2

)[
αD(2d− αD)− θd2

]
− θ(c+ cA).

This is never positive for all p, and may be negative for all p. Note that W −K
is increasing in αD, so imposing that W − K is negative for all p > p∗ and
αD = d provides a sufficient condition for the insurer to lose money when the
agent litigates. This condition corresponds to

σ <
8θ(c+ cA)

d2(1− θ)

Note that this condition does not imply, and is not implied by, the assumption of
σ < 1

d . The simplest way to see this is to note that the constraint is impossible
to meet for θ = 0 and is always met for θ = 1.

Under the assumption σ < min
{

1
d ,

8θ(c+cA)
d2(1−θ)

}
our proofs (Lemma 1, Lemma 2,

and Theorem 2 in the main text) go through essentially unchanged.
Lemma 1. This lemma states that no pooling equilibrium exists with a con-

tract that yields p∗ < 1. In the risk-neutral analysis, we can restrict attention to
the contract αL = cA and αD = c

p∗ . The result holds because there is always a

profitable alternative contract. Because p∗ < 1, the insurer incurs some costs on
the types that litigate p > p∗. Hence, for this contract to earn zero profit for the
insurer, it must be sold at a positive price. Let the break-even price, if all types
buy this contract, equal P̃. Because of the supermodularity of W in p and αD,
there exists an alternative contract with slightly lower αD sold at a price slightly
below P̃ that attracts just types that settle. Because the insurer would incur no
costs from these types, the contract is profitable.

In the case of risk aversion, the analog to Lemma 1 holds easily if σ < 1
d so

that the supermodularity of W in p and αD continues to hold. While the basic
logic is the same, a couple of things are different. First, we can still focus on the
p∗ < 1 condition implied by a pooling contract, but note that we cannot restrict
attention to the contract αL = cA and αD = c

p∗ . The reason is that we lose

21



pointwise maximization of W—the contract αL = cA and αD = c
p∗ maximizes

W conditional on p∗ for types that settle, but αD = d insurance maximizes W
conditional on p∗ for types that litigate. So with that change, it is necessary
to consider any contract that yields p∗. But note that it remains true that the
insurer incurs no costs on types that settle and incurs positive costs on types
that litigate. Hence, for any αL and αD that yield cutoff p∗, the insurer must
charge a positive price to break even. Because there is cross-subsidization, this
price is less than the average cost from the types that litigate. And because of
the supermodularity of W in p and αD, it remains possible to skim off the types
that settle profitably.

Lemma 2. This lemma states that no separating equilibrium exists at all.
Restrict attention to low-σ, where W is monotone increasing in p and αL = cA
contracts dominate for types that settle. Also, consider the two-type case, p ∈
{pL, pH}.

To start, it is still true that there is no equilibrium with two contracts where
the prices are both zero and all types settle, because types would not sort in that
case. Under risk neutrality, the intuition is two-fold. First, because of pointwise
maximization, any contract without αL = cA is dominated and cannot be part of
an equilibrium. Second, because of single crossing, whichever αL = cA contract is
preferred by one type will also be preferred by the other. With σ < 1

d , pointwise
maximization holds for types that settle and single-crossing holds generally. So
with low σ, there is no separating equilibrium with two contracts at price 0 sold
to types that settle.

So the remaining possibility includes at least one contract where types litigate.
Let one such contract be αLit, and let it be sold to type p for K(p, αLit) > 0.
From Proposition 2, we know that W − K is maximized for insurance αI such
that p∗(αI) = p. Hence, type p will always strictly prefer to pay ε for αI insurance
as long as ε is sufficiently close to 0. And this is profitable if it attracts only type
p agents or if it attracts other less-costly agents. This rules out any candidate
equilibrium where type pH litigates, because αI that is such that p∗(αI) = pH
surely attracts type pH agents, and any other agents that purchase αI are of
type pL and also would not litigate. So now the remaining possibility includes
a contract where the type pL agent litigates, and another contract preferred by
agent pH . By our standard cream-skimming argument (which holds for σ < 1

d),
it is possible to alter the components of insurance and the price in such a way
that attracts the pL types, induces settlement by them, and does not attract the
pH agents.

With insurance possibly being profitable for types that litigate, the change is
that such an insurance contract must be sold for K(p, α). But other than that,
nothing really changes.

Now consider the continuous-density case. It remains true that two contracts
that induce only settlement cannot form a separating equilibrium. It also remains
true that any contract that induces some litigation is subject to cream-skimming.
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What would change is the cream-skimming need not necessarily just induce settle-
ment. Candidate contracts that induce litigation must charge break-even average
prices. That means lower-p types may litigate but be less costly. They can be
cream-skimmed. Any deviation that attracts lower-p types attracts still-cheaper
(on average) types, so altering the less-generous coverage down to cream skim
cannot be made unprofitable by inducing selection away from the more-generous
coverage. We can use the old proof until we reach the case where µF (D1(S)) = 0.
We cannot rule out such contracts with unprofitability. However, the same cream-
skimming argument that the proof of Lemma 2 uses to rule out contracts that
attract both types that litigate and types that settle can be used in the RA case.
The reason is that K(p, α) is increasing in p. So any contract that attracts some
measure of types that litigate, and no measure of types that settle, must sell at an
average cost. If the types that buy the contract are p and p, then the price would

need to be
∫ p
p K(p, α)df(p). But then the low-p types can be sold less generous

insurance for a lower price and be cream-skimmed away. For example, the p type
could be sold perfect insurance for a positive price.

Theorem 2 follows from Lemmas 1 and 2, but the exact condition that guar-
antees that there is no profitable deviation from p∗ will now change. Thus, the
qualitative result is the same, but the precise conditions to sustain an equilibrium
are now different.

B2. Control over the Settlement Decision

In this extension we consider the optimal assignment of control over the settle-
ment process. In our main model we assumed that in general the agent decides
whether to settle or litigate and negotiates the settlement, which is motivated
by the features of actual liability insurance contracts that we observe in some
industries, such as in patent litigation. In this framework the agent benefits from
the ability to negotiate a better settlement with the third party, but the option
to litigate gives rise to an ex post moral hazard problem. Instead, the agent and
insurer may in some settings prefer an insurance contract whereby the insurer
negotiates the settlement and controls the decision whether to settle or litigate,
to avoid the problem of ex post moral hazard.

To study this problem, analogously to our main model, suppose that the insurer
contracts with the agent, then observes p and negotiates a settlement with the
third party, under the threat of litigation. The insurer offers a contract αD ∈ [0, d]
to cover the possible damages that the agent may have to pay if found liable, as
in the main body of the paper. Since the insurer controls the litigation process, it
pays the settlement transfer and the litigation cost cA; alternatively, this can also
be modeled analogously as the agent paying the litigation cost, and the insurance
contract covering (some part of) the litigation cost.

We assume, as in the literature on litigation insurance (Meurer (1992)), that
the insurer must negotiate “in good faith,” a restriction which in practice is
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interpreted to mean that the insurer must negotiate a settlement which maximizes
I and A’s joint payoff. Equivalently, this can also be seen as a requirement that
the insurer must leave the agent no-worse-off than if it had not bought insurance.
Under both of these interpretations, since αD is a transfer between the agent
and the insurer, the parties are indifferent over all αD. For generality, we also
allow for the possibility that the insurer is better than the agent at negotiating a
settlement: suppose the insurer has bargaining skill θI , rather than θ.

First, notice that this model of settlement is in fact analogous to our baseline
model with no insurance: one party (in this case the insurer) negotiates a settle-
ment to maximize I and A’s joint payoff, which is equivalent to a model without
insurance where the agent negotiates a settlement to maximize its own payoff,
though possibly with different bargaining skill.

In this extension, the agent’s payoff without insurance is

V̄ = −cA − pd+ θ(c+ cA).

The agent’s payoff with insurance (where the insurer bargains) is

V = −cA − pd+ θI(c+ cA).

So the agent and insurer’s net joint surplus from insurance (relative to no
insurance) is

W = (θI − θ)(cA + c).

It is clear that such insurance cannot be profitable if θ > θI , so we will focus on
the case where θI ≥ θ. Also, notice that this surplus is independent of p: all types
value this kind of insurance contract by the same amount. With a monopolist
insurer, the optimal price of this insurance is W , whereas with competition it is
0. In both settings the bargaining surplus is always positive, so there is never
any litigation in equilibrium. Moreover, because this surplus is independent of
p, the joint surplus from such insurance is the same across different market and
information structures. Whether p is the agent’s private information or not at the
time of contracting with the insurer is in fact irrelevant in this case—both parties
anticipate that at the time of bargaining, I knows p and bargains to maximize A
and I’s joint payoff (which is analogous to our baseline model where A bargains
without insurance). A receives no information rents, since the net joint surplus
from this insurance contract is independent of p.

For each market structure and information structure, we can now compare the
insurer’s overall profit in our main model against its profit from selling insurer-
controlled insurance. We mainly focus on the cases where setting p∗ = 1 is
optimal, although analogous comparisons and intuitions emerge in all cases, where
p∗ < 1 may be optimal.
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Monopoly and competition under symmetric informationTo begin, consider
the setting with symmetric information. We show that under both monopoly and
perfect competition, there exists a threshold bargaining parameter θ̃I such that it
is optimal to assign the right to settle to the agent for any θI ≤ θ̃I , and to assign
it to the insurer when θI > θ̃I . Moreover, for θI = θ, agent-controlled settlement
is optimal, confirming that the results in our main model are robust.

From Proposition 4, we can compare a monopolist insurer’s profit from agent-
controlled contracts, as well as a perfectly competitive insurer’s profit from agent-
controlled contracts–both of these relate to the net joint surplus of insurance. In
the case where p∗ = 1 is optimal, we have

PM (1) = JSC(1) = Ep(W (p, 1)) =

∫ 1

c
d

(1− θ)(cA + cp)dF (p).

We compare this to the I’s profit and the net joint surplus from insurer-controlled
contracts:

P̃M = WC ≡
∫ 1

c
d

(θI − θ)(cA + c)dF (p).

With some rearranging, we have that

P̃M ≥ PM (1) = JSC(1) ⇔
∫ 1

c
d

(1− θ)c(1− p)dF (p) ≥
∫ 1

c
d

(1− θI)(cA + c)dF (p)

Notice that for θI sufficiently high (e.g. θI = 1), the right-hand side is 0 and the
left-hand side is positive (independent of θI), so insurer-controlled insurance is
optimal. On the other hand, for θI low enough (e.g. θI = θ), we have c(1− p) <
c+ cA, so the inequality is reversed, hence agent-controlled insurance is optimal.
There exists a unique threshold θ̃I given by

∫ 1

c
d

(1− θ)c(1− p)dF (p) =

∫ 1

c
d

(1− θ̃I)(cA + c)dF (p),

such that for θI > θ̃I , insurer-controlled contracts are optimal, whereas for θI ≤
θ̃I , agent-controlled contracts are optimal. Moreover, when the agent and insurer
are equally good at bargaining, i.e. θ = θI , agent-controlled insurance contracts
are optimal. Our equilibrium results from the main model continue to hold when
θI and θ are similar enough.

Competition under private informationNow consider a competitive market
where the agent is privately informed about its type. To see whether agent-
controlled or insurer-controlled insurance will be sustained as an equilibrium, we
must again compare the insurer and agent’s net joint surplus from each type
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of contract. From Lemma 2 and Theorem 2, the only possible agent-controlled
equilibrium contract is a pooling contract with p∗ = 1. I and A’s joint surplus is

JSC(1) ≡ Ep(W (p, 1)) =

∫ 1

c
d

(1− θ)(cA + cp)dF (p).

With an insurer-controlled insurance contract, I and A’s joint surplus is

P̃M = WC =

∫ 1

c
d

(θI − θ)(cA + c)dF (p).

Both of these are identical to the case of symmetric information, and thus our
conclusions coincide: for θI > θ̃I , insurer-controlled contracts are offered in equi-
librium, whereas for θI ≤ θ̃I , agent-controlled contracts are offered in equilibrium.
When the agent and insurer have equal (or similar enough) bargaining skill, our
equilibrium results from the main model continue to hold.

Monopoly under private informationFinally, consider the monopoly setting
with private information. In the case where p∗ = 1 is optimal, from Theorem 1,
the insurer offers a menu of two contracts: a contract with αD = 0 sold at price
(1− θ)cA, for types p ≤ p̄, and one with αD = c

p∗ sold at price (1− θ)(cA + c p̄p∗ ),
for types p > p̄. The insurer’s total revenue here is

RM (1) ≡
∫ p̄

c
d

(1− θ)cAdF (p) +

∫ 1

p̄
(1− θ)(cA + c

p̄

p∗
)dF (p)

We compare this against the insurer’s profit in this extension:

P̃M =

∫ 1

c
d

(θI − θ)(cA + c)dF (p).

So we have

P̃M ≥ RM (1)⇔
∫ p̄

c
d

(θI − θ)cdF (p) +

∫ 1

p̄
(θI − θ)c(1−

p̄

p∗
)dF (p) ≥

≥
∫ p̄

c
d

(1− θI)cAdF (p) +

∫ 1

p̄
(1− θI)(cA + c

p̄

p∗
)dF (p)

As before, for θI sufficiently high (e.g. θI = 1), the right-hand side is 0 and the
left-hand side is positive, so insurer-controlled insurance is optimal. On the other
hand, for θI low enough (e.g. θI = θ), the left-hand side is 0 while the right-hand
side is positive, so the inequality is reversed, hence agent-controlled insurance is
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optimal. There exists a threshold θ̄I given by the expression

∫ p̄

c
d

(θ̄I−θ)cdF (p)+

∫ 1

p̄
(θ̄I−θ)c(1−

p̄

p∗
)dF (p) =

∫ p̄

c
d

(1−θ̄I)cAdF (p)+

∫ 1

p̄
(1−θ̄I)(cA+c

p̄

p∗
)dF (p)

such that for θI > θ̄I , insurer-controlled contracts are optimal, whereas for θI ≤
θ̄I , agent-controlled contracts are optimal. As in the setting with symmetric
information, the results from our main model continue to hold as long as θI and
θ are similar enough.

B3. Bargaining under Incomplete Information

When parties bargain under incomplete information, generically litigation arises
in equilibrium. In the main text, when parties bargain under complete infor-
mation, litigation never occurs in equilibrium. This is a well-known difference
between these two models of bargaining, independent of the issue of insurance.
In our baseline setting, insurance has the potential of inducing litigation in an
environment that otherwise would never feature litigation.

For illustrative purposes, we consider the two-type case: A fraction λ of agents
are type pH and a fraction 1−λ are type pL, with 0 ≤ pL < pH ≤ 1. Assume the
agent is protected by the liability insurance policy α = (αS , αL, αD). Following
the literature, we assume the uninformed party makes a take-it-or-leave it offer
to the informed party. Consider the following two offers:

SL = αS + (cA − αL) + pL(d− αD)

SH = αS + (cA − αL) + pH(d− αD)

The low-risk type is indifferent between paying SL and litigating, while the high-
risk agent is strictly better off by accepting SL. The settlement offer SH leaves
the high-risk type indifferent between accepting the offer or litigation but low-risk
type rejects the offer and litigate. The third party’s outside option is E[p]d − c
because it can always make a ‘bad faith’ settlement offer (S∞ = +∞) that forces
both types to litigate. We have three cases:

1) TP makes offer SL, both types of agents settle, and TP’s payoff is

πTP (SL) = αS + (cA − αL) + pL(d− αD)

2) TP makes offer SH , high-risk types settle but low-risk type litigate, and
TP’s payoff is

πTP (SH) = λ[αS + (cA − αL) + pH(d− αD)] + (1− λ)[pLd− c]
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3) TP forces litigation by offering S∞ and TP’s payoff in this case is

πTP (S∞) = (λpH + (1− λ)pL)d− c

It can be shown that

πTP (SH) = πTP (S∞) + λ(c+ cA − αL − pHαD + αS)︸ ︷︷ ︸
≡Y (α)

πTP (SH) = πTP (SL) + λ(pH − pL)(d− αD)− (1− λ)[c+ cA − αL − pLαD + αS ]︸ ︷︷ ︸
≡Z(α)

πTP (SL) = πTP (S∞) + Y (α)− Z(α)︸ ︷︷ ︸
≡W (α)

The optimal offer, is determined by Y (α), Z(α), and W (α), because SH � SL
is equivalent to Y (α) ≥ 0; SH � S∞ is equivalent to Z(α) ≥ 0; and SL � S∞ is
equivalent to W (α) ≥ 0. In fact, the optimal offer is:

1) SL(α) if and only if α ∈ CL = {α : Z(α) ≤ 0 and Y (α) ≥ Z(α)}.
2) SH(α) if and only if α ∈ CH = {α : Z(α) ≥ 0 and Y (α) ≥ 0}.
3) S∞ if and only if α ∈ C∞ = {α : Y (α) ≤ 0 and Y (α) ≤ Z(α)}.

Without insurance (by setting αS = αL = αD = 0) we have Y (0) = λ(c+ cA) > 0
and Z(0) = λ(pH − pL)d − (1 − λ)(c + cA), so it is optimal to offer SL(0) if
Z(0) < 0, or to offer SH if Z(0) > 0. Thus, it is possible to obtain litigation in
equilibrium without insurance.

We now derive the agent’s willingness to pay for insurance policy α. We first

consider the case Z(0) < 0 or, equivalently,
(

λ
1−λ

)
(pH − pL)d < c + cA. In this

case, the optimal settlement offer for an agent without insurance is SL(0). Hence,
every agent gets the same outside option from not buying insurance, which is to
pay SL(0) as a settlement fee.

The willingness to pay of an agent of type pL pay for insurance contract α is:

• SL(0)− (SL(α)− αS) = αL + pLαD if α ∈ CL.

• SL(0)− [(cA − αL) + pL(d− αD)] = αL + pLαD if α 6∈ CL.

This is because the low-type agent only accepts SL(α) and rejects (and goes to
litigation) with any other offer.

The willingness to pay of an agent of type pH pay for insurance contract α is:

• SL(0)− (SL(α)− αS) = αL + pLαD if α ∈ CL.

• SL(0)− (SH(α)− αS) = αL + pHαD − d(pH − pL) if α ∈ CH .
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• SL(0)− [(cA − αL) + pH(d− αD)] = αL + pHαD − d(pH − pL) otherwise.

Conditional on having bought insurance policy α, the high-type agent accepts
both offers SL(α) and SH(α), and rejects S∞.

Complete Information between the insurer and the agent

If the agent’s type is pL, the insurer would offer a policy α ∈ CL such that
maximizes αL + pLαD − αS . This is because under this policy the agent settles
so the insurer has to pay αS , but the insurer does not pay αL + pLαD (this is the
gain from an improved bargaining position). In contrast, if the agent litigates,
the insurer pays all the cost so the net surplus between the insurer and the agent
is zero.

Thus, the optimal contract solves

max
(αS ,αL,αD)

αL + pLαD − αS

subject to

(1− λ)[αL − αS ] + αD(pL − λpH) ≤ (1− λ)(c+ cA)− λd(pH − pL)

αL − αS + αD ≤ c+ cA − λd(pH − pL)

We can treat αL−αS as a new variable x ∈ (−∞, cA] and transform the problem
to:

max
(x,αD)

x+ pLαD

subject to

(1− λ)x+ αD(pL − λpH) ≤ (1− λ)(c+ cA)− λd(pH − pL)

x+ αD ≤ c+ cA − λd(pH − pL)

The solution to this problem is easy to compute, although it depends on the
parameters of the problem. For example if pH < λ(1−pH), the solution is αD = 0

and x∗ = c+cA−
(

λ
1−λ

)
(pH−pL)d, which is positive by the assumption Z(0) < 0.

In other words, under some assumptions on the parameters, the optimal contract
under complete information for an agent of type pL is to set αL − αS = x∗.

Similar to the baseline case, under complete information the insurer sells a con-
tract that never induces litigation. In contrast to the baseline case, in this setting
insurance improves welfare by reducing the amount of litigation in equilibrium.
Also, as in the baseline case, there is multiplicity in the optimal contract.

Incomplete and Symmetric Information

Under incomplete and symmetric information between the agent and the in-
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surer, the insurer would induce litigation by offering α ∈ C∞, incurring in losses,
so this cannot be optimal. When α ∈ CH , the insurer induces litigation for the
low-type. In this case, The net surplus between the low-type agent and the in-
surer is zero, whereas the net surplus between the high-type agent and the insurer
is αL−αS + pHαD − d(pH − pL). Finally, when α ∈ CL, the net surplus between
both types of agents and the insurer is αL − αS + pLαD.

As in the case of complete information, we can see that only the difference
between αL and αS is relevant for the insurer’s problem. Thus, the optimal
contract under incomplete and symmetric information solves:

max
α=(αS ,αL,αD)

[x+ pLαD]1(α ∈ CL) + λ[x+ pHαD − d(pH − pL)]1(α ∈ CH)

where x = αL − αS . The solution to this optimization problem depends on the
parameters of the problem. In contrast to the baseline case in the main text, where
αS = 0 and αL = cA, when parties bargain under incomplete information we
obtain multiple optimal contracts, because αS and αL are “perfect substitutes.”

In this setting, the insurer may not want to minimize the difference αS − αL,
which in the main text leads to set αS = 0 and αL = cA, because the insurer
chooses a contract to extract rent from the third party, by inducing it to make
a low offer that is accepted by the agent, thus raising the agent’s willingness to
pay for insurance.

B4. Alternative Equilibrium Concepts

One of the criticisms of the results in Rothschild and Stiglitz (1976) is that,
under some conditions, equilibrium fails to exist. In our setting, when the mass
of high-risk types is sufficiently low equilibrium may also fail to exist. The lit-
erature following Rothschild and Stiglitz (1976) has come up with alternative
equilibrium notions under which an equilibrium exists. Riley (1979) proposes a
reactive equilibrium notion, which exists in the Rothschild and Stiglitz (1976)
setting. In our setting, in contrast, this equilibrium may not exist. First, if there
exists a Nash equilibrium set of contracts, it is a Riley equilibrium. Consider the
case where there is no Nash equilibrium. Then, there exists a contract p∗d < 1
that is a profitable deviation from p∗ = 1. But then, this new contract can be
cream-skimmed. And the contract that cream-skims p∗d can never be “safe,” i.e.,
it can also be cream-skimmed by another contract. Therefore in our setting Riley
and Nash coincide, meaning that a Riley equilibrium may not exist.

Azevedo and Gottlieb (2017) propose an equilibrium refinement of the free-
entry equilibrium (there is multiplicity of free-entry equilibria in the Rothschild
and Stiglitz (1976) setting). This equilibrium notion requires continuity in the
costs. In our setting, however, the insurer costs are not continuous as a function
of the agent’s type, so we cannot directly use this equilibrium notion. Another
alternative is to use mixed strategies. Farinha Luz (2017) characterizes a mixed-
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strategy equilibrium in the Rothschild and Stiglitz (1976) setting. The main
assumption is that there is a finite number of firms, and most of the analysis is
for the case of two firms.31 We believe it may be possible to construct a mixed-
strategy equilibrium in our setting, but this is beyond the scope of this paper, as
we focus on pure strategies, which are more natural to interpret in our contracting
environment.

Wilson (1977) proposes the notion of anticipatory equilibrium. A set of policies
is a Wilson equilibrium if each policy earns nonnegative profits and there is no
other set of policies which earn positive profits in the aggregate and nonnegative
profits individually, after the unprofitable policies in the original set have been
withdrawn. When a Nash equilibriun exists, this is also a Wilson equilibrium,
because there are no profitable deviations. When a Nash equilibrium does not
exists, a Wilson equilibrium may exist, and consists of pooling both types into a
single contract: the contract that generates zero joint profits, and it is the most
preferred contract for the low-risk type, i.e., the contract that targets the low
type p∗ = pL, sold at price

Q = λ

(
cA + c

pH
pL

)
.

B5. Characterization of the Symmetric Information Contract

To help characterize the solution to this problem, we consider smooth distribu-
tions for which the density may equal zero only at the boundaries of the support.32

ASSUMPTION 3: Let F (·) be twice-continuously differentiable, with probability
density f(p) > 0 for all p ∈ (0, 1).

Consider the derivative of the objective function in equation (10):
(B23)

Ψ′SI(p
∗) = (1− θ)(c+ cA)f(p∗)︸ ︷︷ ︸

marginal type

− (1− θ) c

(p∗)2

p∗∫

c/d

pdF (p)

︸ ︷︷ ︸
infra-marginal types

+ θ(c+ cA)f(p∗)︸ ︷︷ ︸
marginal type

.

Increasing coverage has an effect on the marginal type and infra-marginal types.
First, the marginal type p∗ gets perfect insurance and extracts the full bargaining
surplus (c+cA) from the third party. The marginal gain of increasing p∗ is shown
in equation (B23) in two different places: a gain of (1 − θ)(c + cA) from the
leverage of types marginally below type p∗; and a gain from avoiding a loss of

31The paper also discusses the case of the number of firms going to infinity.
32These formulas also apply to the case where p has a discrete distribution with binary support, which

is available upon request.
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θ(c + cA) in bargaining surplus for types marginally above p∗ who would settle
instead of going to court. Second, the infra-marginal types p < p∗ receive a level
of insurance further away from their perfect level, inducing a loss in the joint
surplus of the insurer and agent.

The optimal contract either precludes litigation entirely (p∗ = 1) or balances the
gain of the marginal type versus the average loss of the infra-marginal types. To
further understand when it is optimal to offer a contract that induces litigation,
we define the elasticity of density.

DEFINITION 2: For distributions satisfying Assumption 3, the elasticity of
density is

η(p) =
pf ′(p)
f(p)

.

It is easy to see that the following identity holds

Ψ′′SI(p)p
2 + 2Ψ′SI(p)p =

pf(p)

cA + c

[
η(p) + 1 +

cA + θc

cA + c

]
.

Thus, if p∗ is an interior solution of problem (10), the first and second order
conditions, Ψ′SI(p

∗) = 0 and Ψ′′SI(p
∗) < 0, respectively, imply

η(p∗) < −
(

1 +
cA + θc

cA + c

)
.

The elasticity of density provides us with a sufficient condition for a unique solu-
tion of problem (10).

LEMMA 13: Under Assumption 3, the solution to problem (10) is unique and
equal to p∗ = 1 if for all p ∈

[
c
d , 1
]

we have

η(p) ≥ −
(

1 +
cA + θc

cA + c

)
.

For any convex distribution F (·), η(p) ≥ 0 for all p. By Lemma 13, the unique
optimal contract precludes litigation by setting p∗ = 1. When the density func-
tion is increasing, the marginal gain dominates the infra-marginal loss, i.e., it is
suboptimal to sell insurance generous enough to induce litigation by risky types.
Intuitively, it is also optimal to preclude litigation when F (p) is mildly concave.

There are many distributions where the solution to (10) induces litigation for
some types. In such cases, η(p) allows us to provide a sufficient condition for
uniqueness.
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LEMMA 14: Under Assumption 3, let p∗ < 1 be such that Ψ′SI(p
∗) = 0 and

Ψ′′SI(p
∗) < 0. Then, p∗ is the unique interior solution if

η(p) ≤ −
(

1 +
cA + θc

c+ cA

)
, for all p ∈ [p∗, 1]

When p∗ < 1, the insurer targets a particular type p∗ with perfect insurance
and induces litigation by types p > p∗ and imperfect insurance for types p < p∗.
In targeting, the insurer seeks a sufficiently low level of relative litigation risk
associated with type p∗.33 When the elasticity of density falls with p and the
density of a high-risk type is low,34 intuitively, the insurer prefers to induce some
litigation. We have the following result.

COROLLARY 1: If η(p) is non-increasing and f(1) <
(1− θ)c
cA + c

1∫

c/d

pdF (p), there

exists a unique p∗ ∈
(
c
d , 1
)

that solves (10).

PROOF:
When Ψ′SI(1) < 0, there exists p∗ < 1 that solves (10). Since η(p∗) <

−
(

1 + cA+θc
c+cA

)
and η(p) is non-increasing, the sufficient condition for uniqueness

in Lemma 14 holds. QED
Next, we present comparative statics results.35

LEMMA 15: p∗ is non-decreasing in cA and θ, and is non-increasing in d.

Lemma 15 follows from the Topkis monotonicity theorem. An increase in the
agent’s litigation cost cA increases the opportunity cost of litigation. The gain
from increasing the number of types that settle is unambiguously higher, so p∗

is non-decreasing in cA. An increase in the agent’s bargaining skill decreases the
insurer’s ability to profit from insurance: the willingness to pay for insurance
falls but the cost of insurance is the same. Thus p∗ is non-decreasing in θ because
an increase in the agent’s bargaining skill does not change the surplus gain of
the marginal type, but it reduces the surplus loss of the infra-marginal types.
An increase in damages d increases the number of agents exposed to credible
liability claims. Thus the number of infra-marginal types increases and therefore
p∗ weakly decreases. The effect of the third-party’s litigation cost c is ambiguous,

33η(·) is analogous to the Arrow-Pratt coefficient of relative risk aversion when the Bernoulli utility
function is u(x) ≡ F (x). A large coefficient of relative risk aversion implies that the decision-maker has
very little to gain by gambling. In our environment, a large negative η(p) means that the insurer wants
a lower p, because it has very little to lose from gambling on relatively unlikely litigation.

34Note that specifying η(p) as decreasing in p is a weaker assumption than specifying f(p) to have
decreasing density and to be log-concave in p.

35As the two-type case suggests, problem (10) may have multiple solutions, e.g. with a continuous
distribution with non-monotonic η(p). If so, the monotonicity of p∗ is in the strong set order.
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because it increases both the surplus gain of the marginal type and the loss in
surplus of the infra-marginal types.

B6. Omitted proofs

Proof of Lemma 13

PROOF:

p∗ 6= p̂′ > 1 and p∗ 6= c
d because ΨSI(p̂

′) < ΨSI(1) and ΨSI

(
c
d

)
< ΨSI(1). With

a continuous distribution F (·), the objective function is continuous, so a maximum
exists (not necessarily unique). With a continuous density, the derivative of the
ΨSI(·) is also continuous. If there are multiple solutions, then at least one must
be an interior local maximum. The density f(·) is differentiable because F is
twice differentiable, so the first and second order conditions imply

(B24) (c+ cA)f ′(p∗) +
f(p∗)
p∗

[2cA + (1 + θ)c] < 0.

Then, if for all p∗ condition (B24) is violated, we can guarantee that the solution
of the problem is p∗ = 1 because in that case there is no interior local maximum
of Ψ(·). Hence, since a solution must exist, it must be that p∗ = 1. QED

Proof of Lemma 14

PROOF:

Suppose p1 < p2 < 1 are two points satisfying the FOC, Ψ′SI(pi) = 0, and the
SOC, Ψ′′SI(pi) < 0. We have pi >

c
d because Ψ′SI

(
c
d

)
> 0. Then, by continuity of

Ψ′, there exists ξ ∈ (p1, p2) such that Ψ′SI(ξ) = 0 and Ψ′′SI(ξ) > 0, which implies

(c+ cA)f ′(ξ) +
f(ξ)

ξ
[2cA + (1 + θ)c] > 0⇔ η(ξ) > −1− cA + θc

cA + c
.

If this condition does not hold, the existence of both p1 and p2 is a contradiction.
QED

Proof of Lemma 15

PROOF:

By Topkis’ monotonicity theorem,
∂2ΨSI

∂p̂∂η
≥ 0⇒ p∗(·) non-decreasing in η. It is

easy to show that
∂2ΨSI

∂p̂∂cA
> 0,

∂2ΨSI

∂p̂∂θ
> 0, and

∂2ΨSI

∂p̂∂d
< 0. We have

∂2ΨSI

∂p̂∂c
(p∗) =
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f(p∗) − (1− θ)
(p∗)2




p∗∫

c/d

pf(p)dp−
( c
d

)2
f
( c
d

)

 . As p∗ → c

d , ∂2ΨSI
∂p̂∂c → θf

(
c
d

)
> 0.

Moreover, ∂2ΨSI
∂p̂∂c is increasing if η(p) ≥ −1. QED
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