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A  Proofs

Proof of Proposition 4
The proposition can be proven in a recursive way. Agent 1 only observes his signal and
chooses
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Agent 2 observes a?¢ and infers the signal realization, since an action greater (lower)

than 50 can only be taken after observing a good (bad) signal. By the assumption of “k-
overconfidence,” he has subjective expectations on the predecessor’s signal precision, and the
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Since k-overconfidence is common knowledge, agent 3 infers the signal realizations from the
C 5 qoc

Note that this is equivalent to attributing precision

observation of ¥ and a$“ (since a$ is only possible after observing a signal sy = 1,



and a9 < aP¢ after observing a signal s, = 0) and again uses subjective expectations for

the precision of both, thus choosing a§{'“ such that
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The same steps apply to any further agent t =4,5,...,7T.

Proof of Proposition 5
Let us define I(x) := log {*=. First, observe that, for each ¢ > 2, the 3 coefficients are

determined by the following equations:
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where B is the ¢t x t lower triangular matrix
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Similarly, the v coefficients are defined by the following equations:
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where I' is the ¢ x ¢ lower triangular matrix containing = coefficients,
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By comparing (A.1) with (A.2), one can see that, since B is nonsingular, I' = B~! must
hold. Hence, for [ <t, —v,,; is given by the [t,/]-element of B~".

The closed form solutions for v, ; for each theory can also be obtained in a recursive way.
For the PBE, note that agent ¢ chooses action af?F such that
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1. For BRTNI, observe that, by assumption, agent ¢ chooses action a?#T™! such that
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(Indeed, Eyster and Rabin (2009) derive the § coefficients from this formula).

In the OC model, agent 2 chooses action a9 such that
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Agent 3 chooses action a§'“ such that
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The same steps apply to any further agent t = 4,5,...,T.

Finally, let us consider the ABEE. First of all, recall that in the ABEE 3, ; =t —, that
is, By p=kforallt=23,...,and k=1,2,...,(t - 1).

Consider now the system of equations I'B = I. Fort = 2,3,4..., the product of the t-th

row vector of I' and the (¢ — 1)-th column vector of B gives

V-1t ﬁt,t—l =0,

from which we obtain that v,, ; = 1. For t = 3,4,5,..., the product of the ¢-th row vector

of I and the (¢ — 2)-th column vector of B gives
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~Yep—2 T %ﬁ,t—lﬁt—l,t—Q + 5t,t—2 =0,
from which we obtain that v,, , = 1. For ¢ = 4,5,6, ..., the product of the {-th row vector
of I" and the (¢ — 3)-th column vector of B gives

~Yet—3 — %,t725t72,t73 - W/t,tflﬁt—l,tfi’) + Bt,t—z =0,

from which we obtain that v,, 5 = 0.
Now, let us consider all t = 5,6,7,..., and k = 4,5,6,...,(t —1). The product of the
t-th row vector of I" and the (¢ — k)-th column vector of B gives
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On the basis of this equation, observe that the difference of v,, , ; and 7, , gives

Vet—ke1 — Vb = ~Vet—k — Vb1 — Veg—bt2 = "~ Veg—1 T L.

Similarly, the difference between (v, 1 o — Vs p1) and (Ve g1 — Ves_s) giVes
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Moreover, the sum of v,, ., and 7,,_;_5 gives
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Hence, starting from the three initial values, v,, 1 = 7,,_ o = 1 and 7,, 3 = 0, this
equation iteratively pins down the whole sequence of (’Yt,t—u%,t—m e ,’ym). Specifically,
(’Yt,t—4a’Yt,t—5a’Yt,t—6) =(-1,-1,0), (7t,t—777t,t—8>7t,t—9> =(1,1,0), (”Yt,t—wa7t,t—1177t,t—12) =
(—1,—1,0), and so on. For instance, for subject 10, the weights are (71071, V10,25 V10,3 - - - ,71079) =
(0,1,1,0,—1,—-1,0,1,1).



Finally note that, given its cyclical feature, the sequence of weights can be expressed as

Ve = sign (sin(£)), or v,,; = sign (sin(5i7)).

B Testing Differences across Treatments

Table B.1: Differences across Treatments:
Median Rank-sum Test for Action 1 (p-value)

| SL1 vs. SL2 | SL1 vs. SL3 | SL2 vs. SL3

Period 1 0.999 0.999 0.999
Period 2 0.136 0.520 0.738
Period 3 0.317 0.881 0.317
Period 4 0.738 0.597 0.829
Period 5 0.881
Period 6 0.911
Period 7 0.316
Period 8 0.289
Period 9 0.435
Period 10 0.420

For each period, the test is performed using session-specific medians.

Table B.2: Differences across Treatments:
Median Rank-sum Test for Action 2 (p-value)

| SL1 vs. SL2 | SL1 vs. SL3 | SL2 vs. SL3

Period 1 0.459 0.834 0.751
Period 2 0.220 0.999 0.243
Period 3 0.218 0.345 0.914
Period 4 0.281 0.244 0.117
Period 5 0.911
Period 6 0.599
Period 7 0.023
Period 8 0.590
Period 9 0.529
Period 10 0.805

For each period, the test is performed using session-specific medians.



C Factoring Out Uninformative Actions

In this section we offer a robustness check, by factoring out actions that are, presumably,
uninformative. In particular, as a first step, we define an action at time ¢ as uninformative

according to the criterion:
(a2, =50)or (a? =a? |)fori=2,---,t— 1.

To factor out these actions, we eliminate them and renumber the entire sequence (e.g.,
if action 3 is uninformative, then action 3 is eliminated, period 4 becomes period 3, period

5 becomes period 4 and so on).

Figure C.1: Quantile Regressions of Action 1 on Predecessors’ Signals
Eliminating Uninformative Periods (Estimated Weights)
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The figure shows the estimated coefficients from a median regression of first action loglike-
lihood ratios on predecessors’ signal loglikelihood ratios after eliminating uninformative
periods. For each period t = 1,...,10, predecessors’ signals, s;,4 = 1,...,t — 1, are on
the x-axis; corresponding point estimates and 95% confidence intervals are on the y-axis,
represented by black dots and dashed capped lines, respectively. Confidence intervals are
computed by bootstrap (500 replications), clustering at the session level.



Table C.1: Hypothesis Testing: Weights on Predecessors’ Signals (p-values)

Dependent Variable: Action 1 (loglikelihood ratio)
Eliminating Uninformative Periods

HIPE . HPFTNT
Bia=-=PB1=1 Beg=2""1Vi=1,.. ,t—1
Period 2 0.159 0.159
Period 3 0.000 0.000
Period 4 0.025 0.000
Period 5 0.000 0.000
Period 6 0.000 0.000
Period 7 0.000 0.000
Period 8 0.000 0.000
Period 9 0.000 0.000
H[‘)“BEE : HOOC :
Bpi=t—iVi=1,...t—1 Bia=:=PBrs
Period 2 0.159 .
Period 3 0.000 0.999
Period 4 0.000 0.079
Period 5 0.000 0.993
Period 6 0.000 0.582
Period 7 0.000 0.291
Period 8 0.000 0.996
Period 9 0.000 0.986

The table reports tests based on bootstrap standard errors (500 replications), clustering
at the session level.

It is worth noting that this procedure implies a loss of observations for later periods.
In particular, the available observations for ¢ = 10 are 47. Coefficients for this period are
not reliably estimated. We report them without confidence intervals and only for the sake
of completeness. For the same reason, we do not report hypothesis testing p-values and
estimates of k£ for this period.

We have repeated the analysis using a more stringent criterion according to which an
action i is classified as uninformative if and only if

(a?_, =50) or (a7 =a? ) or (a> , =0ora’ , =100) fori=2,--- ¢t — 1.
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Table C.2: Quantile Regressions of Action 1 on Predecessors’ Signals:
Estimation of k under HYC : 3,, = -+ = 5,4
Eliminating Uninformative Periods

95% Confidence Interval

k lower limit upper limit
Period 2 | 0.752 0.462 0.992
Period 3 | 0.650 0.518 0.818
Period 4 | 0.559 0.438 0.997
Period 5 | 0.508 0.332 0.647
Period 6 | 0.422 0.250 0.545
Period 7 | 0.327 0.183 0.528
Period 8 | 0.332 0.200 0.508
Period 9 | 0.272 0.098 0.437
All 0.463 0.317 0.626

The table reports 95% confidence intervals obtained with bootstrap (500 replications),
clustering at the session level.

The results are similar to those presented here and available upon request.
We have also used a different methodology, by attributing the value s; = 0.5 (uninfor-
mative signal) to any uninformative action. The results are again broadly similar to those

presented here and available upon request.

D Distance between o] and a?

As we mention in footnote 27, the theoretical models have strikingly different predictions
about the difference between the first action chosen by a subject at time ¢ and the second
action (i.e., the observable action) chosen by his immediate predecessor at time ¢ — 1. By

combining expressions (1) and (2) one obtains the following difference in loglikelihood ratios:
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According to the PBE, all differences in the [ coefficients on the right-hand-side are
equal to 0. This gives the well known result that, in the PBE, the agent simply imitates the
immediate predecessor’s action, as this is a sufficient statistics for all the private information
up to that period. In the OC equilibrium, the differences in the § coefficients are all equal to
0, except for the last one, (3,;, | — B;_1,_1), which is negative and constant over time. This
is because 8, 1, ; = 1 and f,;, ; < 0 (e.g., 0.488 in our estimation).! In the BRTNI and
ABEE models, the distance between the loglikelihood ratios is increasing over time, since the
terms of the sum on the right hand side are strictly greater from zero (except the last one).
For instance, in the ABEE the differences in the g coefficients are all equal to 1, except for
the last one which is 0. Hence, if the value of the good is 100 (0), the difference in equation
(D.1) becomes, in expectation, larger and positive (negative) over time.

In the figure below, we report the median of the difference

llr : —
Aal,a27 lf St_l — ]_

I - —
A a2 s1=0

A:

as observed in the data across periods. Under the assumption that (¢} — &?) has median 0
conditional on the history of signals, we would expect the median of this difference to be
about 0 if the data generating model were the PBE, negative and roughly constant in the
case of the OC, and to exhibit a tendency to increase, in the case of BRTNI and ABEE.

As one can seen, the median difference A is negative and roughly constant, in agreement

1One may be tempted to think that an alternative model (or heuristic) with the same implication is a
simple model in which the agent neglects the entire sequence, only looks at the immediate predecessor’s action
and “discounts it”. Note, however, that to “discount” an action one would need to know the predecessor’s
signal realization, which with this heuristic would not be available.
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Figure D.1: Median Difference of Loglikelihood Ratios of Action 1 and 2 across Periods
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with the OC model.

E Instructions
Welcome to our experiment! We hope you will enjoy it.

You are about to take part in a study on decision making with 9 other participants.
Everyone in the experiment has the same instructions. If something in the instructions is
not clear and you have questions, please, do not hesitate to ask for clarification. We will be
happy to answer your questions privately.

Depending on your choices, the other participants’ choices and some luck you will earn

some money. You will receive the money immediately after the experiment.

E.1 The Experiment

The experiment consists of 15 rounds of decision making. In each round you will make two

consecutive decisions. All of you will participate in each round.
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What you have to do

In each round, you have simply to choose a number between 0 and 100. You will make
this choice twice, before and after receiving some information. The reason for these choices
is the following. There is a good whose value can be either 0 or 100 units of a fictitious
currency called “lira.” You will not be told whether the good is worth 0 or 100 liras, but
will receive some information about which value is more likely to have been chosen by a
computer. We will ask you to predict the value of the good, that is, to indicate the chance
that the value is 100 liras.

The value of the good

Whether the good will be worth 0 or 100 liras will be determined randomly at the begin-
ning of each round: there will be a probability of 50% that the value is 0 and a probability
of 50% that it is 100 liras, like in the toss of a coin. The computer chooses the value of the
good in each round afresh. The value of the good in one round never depends on the value

of the good in one of the previous rounds.

What you will know about the value

Although you will not be told the value of the good, you will, however, receive some
information about which value is more likely to have been chosen. For each of you, the
computer will use two “virtual urns” both containing green and red balls. The proportion
of the two types of balls in each urn, however, is different. One urn contains more red than
green balls, whereas the other urn contains more green than red balls. If the value of the
good is 0, you will observe a ball drawn from an urn containing more red balls. If the value
is 100, instead, you will observe a ball drawn from an urn containing more green balls. To

recap:
e If the value is 100, then there are more GREEN balls in the urn.
e [f the value is 0, then there are more RED balls in the urn.

Therefore, the ball color will give you some information about the value of the good.
Below we will tell you more about how many balls there are in the urns. First, though, let

us see more precisely what will happen in each round.
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E.2 Procedures for each round

In each of the 15 rounds you will make decisions in sequence, one after the other. There
will be 10 periods. Each of you will make her/his two choices only in one period, randomly
chosen. Since there are 10 participants, this means that all of you will participate in each
round.

The precise sequence of events is the following:

First: the computer program will decide randomly if the good for that round is worth 0
or 100 liras. You will not be told this value. On your screen you will read “Round 1 of 15.
The computer is deciding the value of the good by flipping a coin.”

Second: the computer program will randomly select who is the first person who has to
make a choice. Each of you has the same (1/10th) chance of being selected.

Third: the computer will draw a ball from the “virtual urn” and inform the first person
(only the first person) of the drawn ball color. The first person will see this information on
the screen. No one else will see it. The other participants will be waiting.

Fourth: after the person sees this information, (s)he has to choose a number between 0
and 100. This can be done by moving a slider on the screen (to select a precise number, please,
use the arrows on your keyboard). The decision made will be visible to all participants.

Fifth: the computer will now randomly choose another person. Again, all the remaining
9 people have the same (1/9th) chance of being chosen.

Sixth: this second person, having observed the first person’s prediction, will be asked to
make her /his prediction, choosing a number between 0 and 100. This decision will not be
visible to other participants.

Seventh: after the decision, the computer will draw a ball from the “virtual urn” and
inform (only) the second person of its color.

Eighth: the second person, after observing the ball color, will now make a new prediction,
choosing again a number between 0 and 100. This choice is visible to all participants.

Ninth: the computer will choose a third person. This person will have to make two
predictions, before and after receiving information, exactly as the second person. The first
decision is after having observed the first two persons’ predictions. The second prediction is
after having observed the ball color too. The decision made after seeing the ball color will

be visible to everyone. Then the computer will choose the fourth person and so on, until all
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ten people have had the opportunity to participate.
Tenth: the computer will reveal the value of the good for the round and the payoff you

earned in the round.

Observation 1: All 10 participants have to make the same type of decision, predicting
the value of the good. However, the first person in the sequence is asked to make only one
prediction, while the others will make two. The reason is simple. Since the first person knows
nothing, the only sensible prediction is 50, given that there is a 50 — 50 chance that the value
is 0 or 100 liras. Therefore, if you are the first, we do not ask you to make the prediction
before seeing the ball color. Instead, if you are a subsequent person, we will ask you to
make a prediction even before seeing the ball color, just after observing the predecessors’
predictions. Always recall that the predecessors’ predictions that you will observe
are the second predictions that they made, that is, the predictions they made

after receiving information about the ball color.

Observation 2: As we said, when it is your turn, the computer will draw a ball from one
of two virtual urns: the urn containing more red than green balls if the value is zero; and
the urn containing more green than red balls if the value is 100. But, exactly how many red
and green balls are there in the urns? If the value is 0, then there are 70 red balls and 30
green balls. If the value is 100, then there are 70 green balls and 30 red balls.

E.3 Your per-round payoff

Your earnings depend on how well you predict the value of the good. If you are the first
person in the sequence, your payoff will depend on the only prediction that you are asked
to make. If you are a subsequent decision maker, your payoff will depend on the first or the
second prediction you make, with the same chance (like in the toss of a coin).

If you predict the value exactly, you will earn 100 liras. If your prediction differs from
the true value by an amount x, you will earn 100 — 0.0122. This means that the further your
prediction is from the true value, the less you will earn. Moreover, if your mistake is small,
you will be penalized only a small amount; if your mistake is big, you will be penalized more
than proportionally.

To make this rule clear, let us see some examples.
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Example 1: Suppose the true value is 100. Suppose you predict 80. In this case you
made a mistake of 20. We will give you 100 — 0.01 % 20? = 96.0 liras.

Example 2: Suppose the true value is 0. Suppose you predict 10. In this case you made
a mistake of 10. We will give you 100 — 0.01 x 10? = 99 liras.

Example 3: Suppose the true value is 100. Suppose you predict 25. In this case you
made a mistake of 75. We will give you 100 — 0.01 * 752 = 43.75 liras.

Example 4: Suppose the true value is 0. Suppose you predict 50. In this case you made
a mistake of 50. We will give you 100 — 0.01 * 502 = 75 liras.

Note that the worst you can do under this payoff scheme is to state that you believe that
there is a 100% chance that the value is 100 when in fact it is 0, or you believe that there is
a 100% chance that the value is 0 when in fact it is 100. Here your payoff from prediction
would be 0. Similarly, the best you can do is to guess correctly and assign 100% to the value

which turns out to be the actual value of the good. Here your payoff will be 100 liras.

Note that with this payoff scheme, the best thing you can do to maximize
the expected size of your payoff is simply to state your true belief about what
you think the true value of the good is. Any other prediction will decrease the
amount you can expect to earn. For instance, suppose you think there is a 90% chance
that the value of the good is 100 and, hence, a 10% chance that value is 0. If this is your
belief about the likely value of the good, to maximize your expected payoff, choose 90 as
your prediction. Similarly, if you think the value is 100 with chance 33% and 0 with chance
67%, then select 33.

E.4 The other rounds

We will repeat the procedures described in the first round for 14 more rounds. As we said,
at the beginning of each new round, the value of the good is again randomly chosen by the
computer. Therefore, the value of the good in round 2 is independent of the value in round

1 and so on.
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E.5 The final payment

To compute your payment, we will randomly choose (with equal chance) one round among
the first five, one among the rounds 6 — 10 and one among the last five rounds. For each
of these round we will then choose either prediction 1 or prediction 2 (with equal chance),
unless you turn was 1, in which case there is nothing to choose since you only made one
prediction. We will sum the payoffs that you have obtained for those predictions and rounds.
We will then convert your payoff into pounds at the exchange rate of 100 liras = £7. That is,
for every 100 liras you earn, you will get 7 pounds. Moreover, you will receive a participation
fee of £5 just for showing up on time. You will be paid in cash, in private, at the end of the

experiment.
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