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In this document, we provide all proofs of lemmas and propositions of the main text. In Sec-

tion 4, we also present the differentiated goods Stackelberg model with private information and

study the robustness checks for our results in this set-up. Supplementary calculations in Math-

ematica 12.1 are provided in online Appendix B, which is available at the following website:

https://sites.google.com/site/cumbulerayl /research-1.
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1 Proofs of the common-value Stackelberg oligopoly model

1.1 Supplementary notation

Let N = {1,2,...,k} denote the set of firms in a k-firm market. Thus, N = N,,. Let wy(Ng) =
e V(N = TG, wa(Ne) = SRR, and wa(Ny) = 2
We add the “*” superscript for the corresponding equilibrium outcomes of the associated vari-
ables. The “NS”, “PS”, and “FS” subscripts denote the no-sharing, partial-sharing and full-sharing
Stackelberg games, respectively. For example, E(Q%¢(Ni)) denotes the expected perfect revealing
equilibrium (PRE) total output when the set of firms is Ny, in the Stackelberg no-sharing game. The

subscript “C” denotes the Cournot game.

1.2 Earlier results

First, we restate three results of Cumbul (2021) in Lemmas A1-A3 to prove our claims.

Lemma Al. (Cumbul, 2021, Lemma 6)
i) E(QNs(Nk)) = (a +0)/b— E(qf, ys(Nk)) and E(plq(Nk)) = bE(g 5q(Nk))-
i1) B(gi, s (N) = “552 TH2 " wa(;).

i) 8E(ql NS(NI»)) 0, 3E(<1181;§(Nk)) >0, aE(QZSI;I-_g(Nk)) >0, an

iv) For each i€ N\ k, qZNS(Nk) = QZNS(NkH)-

d OE(qy, ns(Nk))
Oo2
o

< 0.
Lemma A2. (Cumbul, 2021, Lemma 10)
i) For i < k, E(7} yg(Nit1)) = w2 (Ne) E(m} yg(Ni)).-
i4) B(mj, s (Nks1)) = 2bws (Ne)wa (Nk) (s (Ni)-
iii) B(m s (V) = S5 TS wd(N0) + 212 (iergscbmrmen iy w(N0).
i) Fori <n, E(r} yg(N)) = E(n} xg(N:)) x 2bwi (N;) [Ti=r " wa(Ny).

Lemma A3. (Cumbul, 2021, Lemma 11 and Proposition 1)
i) The expected PRE total surplus in the no-sharing Stackelberg game is

prsiyso) = VU EO) S ) T wiov,).

=B(TS} ys(N))

=B(T'S3 ns(N))

The expected PRE total profit is E(Ilyg(N)) = > ey E(7} ns(N)) and the expected PRE consumer
surplus is E(CSxyg(N)) = E(TSys(N)) — E(Ilh¢(N)).

it) The expected Bayesian equilibrium total surplus in the Cournot game is

n(n+2)(a+0)> nog(3c%+ (n+2)07)
2b(n + 1)? 2b(202 + o3(n+1))?

=E(TS{ o(N)) =E(TS} o(N))=6(N)

E(TS(N)) =




The expected Bayesian equilibrium total profit and consumer surplus in the Cournot game are

n(a + 0)? nog(o? + o2)
E(I5(N)) = <
(e (V) bin+1)2 " b(202+03(n+1))2
N—_———
=E(I] (N)) =E(II3 o(N))

and E(CSE(N)) = E(TSE(N)) — E(IIE(N)), respectively.

iii) B(TS3 5s(N)) < B(TS5(N)) = O(N) = Z‘Zfﬁifﬁ??ﬁlf))?)

1.3 Supplementary lemmas and their proofs

Next, we prove four useful lemmas to be used in the forthcoming proofs.
Lemma A4. i) Forallc>1,

. _ cnog(o2+ (n+1)03)(202 + (2n + 1)0})
B(IS5.xs(N)) > X(N) = 4b(2030—|— (n+ 1)03)2(;203 +(c+n(c+ 139)03) ' o

ii) Take any i,j € N such thati < j.
Cov(0, E(0]s1, s2, ..., si)) = Cov(E(0]s1, sa, ..., $i), B(0]s1, s2, ..., s;)) = icy /(02 +i0}).

Proof of Lemma A4: i) We prove the claim by induction. For k& = 1,

o5(2¢(3c — 1)o2 + (6 + c(6¢ + 5))o205 + 6(c + 1)0p)
16b(02 + 02)%(c?02 + (2¢ + 1)03)

E(TS5 ns(N1)) = x(N1) = >0
because b > 0 and ¢ > 1. Suppose that E(T'S5 yg(Nk)) > x(Ny) for some k < n. We want to show
that (TS5 ns(Net1)) > X(Nigr). As E(TS ng(Nis1)) = w3 (Np) E(TS3 5 5(Ni)) + ws(Ng) by
Lemma A3-i), we should show that

¢ = w3(Nk) E(T'S5 s (Ni)) + ws(Ni) = x(Nit1) > 0. (2)

Note that w5 (Ng) > 0. After replacing E(T'S5 yg(Ny)) with its lower bound x(Ny) in (2) by using

the initial supposition, we obtain the lowest possible value of ¢ as

w3 (Ni)X (Ni) + ws(Ny) = x(Nt1)
— o4 (Yo 105 +1205 T304 +acp +505 +1e0s” +704*)
- 16b(0?+0’§(k?+1))2(20’2+0’g(k}+1))2(20’?+(k+2)0’g)2(C2U?+U§(C+k)(0+1)))(CQU?+05(1+2C+1€(C+1)))’

¢

where

Yo = 32¢°(Be—1)ol?,

Y1 = 16¢* (4412(k+2¢%) +e(5+2k(10c-1)) ) o2,

Yo = 8(c(12+c(46+c(TT+T5¢)))+12k+20(20+c(68+c(38+63¢))  k+ (124 e(16+c(84-+¢(9+50¢))) k2 ) 020,
Y3 = 4(16k(14+k) (6+5k) +4c(24-+k(99+k(96+25k))) +¢* (208+2k(326-+5k(67+22k))) ) oS+

+4 (c3 (2754-k(518+k(2654+26k)))+2c* (574+k(145+3k(39+ 10k))))n§,



Py = 2(4k(1+k)(75+2k(63+25k))+4c(75+k(370+k(548+309k+57k2)))+2c2(1+k)(239+k(583+2k(243+67k))))of—i—
+2(c® (440+ k(12084 k(10904 k (347+20k)))) +¢* (1-+k) (2+K) (42-+ k(814 35k)) ) o¢,

Py = (2c(228+k(1314+k(2584+k(2251+k(881+124k)))))+2c2(296+k(1134+k(1701+2k(635+k(240+37k))))))gf—&—

+(8k(1+k)(57+k(145+3k(39+10k)))+03(332+k(1200+k(1570+k(883+2k(93+2k)))))+2c4(1+k)2(2+k)2(3+4k))a§7

P = (2k(1+k)2(2+k)(42+k(81+35k))+c(1+k)(168+k(944+k(1774+k(1441+520k+68k2)))))a‘;‘—i—
+(c2(188+k(808+k(1354+k(1136+k(515+14k(9+k))))))+c3(1+k)(2+k)(24+k(72+k(67+18k))))a?,

Y7 = (14k)(2+k) (2k(1+k) (24K) (3+4k)+e(14+k) (12+k(5+2k) (124 k(13-+4k)))+¢* (124 k(404 k(42+13K))) ) .

Asc,k>1,%; >0fori=0,1,...,7. Thus, ( > ¢ > 0, as claimed.

ii) By using Lemma 1, direct computations show that

COU(@ E(8|51,S2, LS )) COU( 20402 (s1+sat.. .+s,-))

o2+io?
4
2+m sCov(0,51 + 82+ ... +8;) = %fgg
because Cov(0, 51 + 83 + ... + 8;) = :jl Cov(, si) = ic3. Similarly, for i < j,

Cov(E(0|s1, s2, - sz) E(0|s1, s2, - SJ))
_ COU(U 0+09((7521;228+ +sl) o 0+<79(s21-;229+ +sJ))
= W (VCW(Zk; sk) +i(j — 1)Cov(s, s1))

0'

= v erriep X (102 +05) +i(j —1)a5)
4

i
— Tg (42 P52 — "9
= rreeren X i0C +105) = Gl
because Cov(sy, s;) = o3 for k # [ and Var(sg) = 02 + o3. O

Lemma A5. The expected equilibrium individual profits in the partial and full sharing games are
given as follows.
i) For each i € Ny, E(n} pg(Nk+1)) = E(7} pg(Nk))/2.

E(m; ps(Nit1)) olo)
i) E(r* N, _ ) eYo .
“’) (Trk+1,PS'( k+1)) 2 4b(0'62 + ko_g)(a_g ¥ (k+ 1)0_3)
= j=i—1

) (a+6) 7 oo}
i11) For each i € N, E(n} pg(N)) = ~—F— — —£ . .

) ( ,PS( )) on+ip e 2n+172]b(03 +]03)(03 + (] + 1)03)

(a+0)? nog

w) For each i € N, E(m} pg(N)) =

2ty 2ntip(o2 4+ nof)’

Proof of Lemma A5: i) Take any i € N,. We can show that

E((a+6 - bQ?as(NkH))QE‘,ps(NkH))

)=
(a+6— bZ] 195 ps(Nk+1) = 0q5 11 ps(Nk+1))a; ps(Nk+1))

)
(
( bZ;Zl%ps(NHl);Qe E(0|s1,52,--,8k+1) Z*PS(NIC'H))
(
(m

(a+0-b31= ’fq;Ps(Nk))q;Ps(Nm)
2

Bl ps(Vr)
2 )

where the first, second, and fifth equalities follow by definition. In the third equality, we plug in the



PS equilibrium quantity strategy of firm k+1 by (19). The fourth equality is valid as 4 p s(Nig1) =
q; ps(INk) for each j € Ny by Lemma 4; and E((20—E(0]s1, s2, ..., sk-+1))4; ps(Nk)) = E(0q; pg(Nk))
by Lemma A4-i3).

ii) By Lemma 4, the partial sharing equilibrium quantities of firms k and k£ + 1 in the Ny ;-firm
market should satisfy

. a+2"1E(0|s1, 52, ..., 58) — Z;zlffl (2971E(0]s1, s2, ..., 57))
Gk, ps(Nit1) = 92k

and

. a+ ZkE(9|81, S92y .ny Sk+1) — E;zlf (2j—1E(9|517 82y .ny SJ))
Qk+1,PS(Nk+1) = ok+1p ’

Accordingly, we can derive that

¥ QZ,PS(NHI) E(0]s1, 82, ..., sp+1) — E(0]s1, 52, .., Sk)
Goy1,ps(Nkt1) = 5 + 2 . (3)

Moreover, total equilibrium quantity in the partial sharing game is

* e * a 1 fay E(6|817827“'75i)
Qps(Ni41) = Z i ps(Ni+1) = 5(1 - 2k+1) + Z Cp2k—i2 )
=1 =1

by using Lemma 4. Finally, we can show that

E(WZH,PS(NICH)) = E((a +0— bQ*Ps(NkH))QZH,ps(Nk+1))

_ E((a + 0 — bQ*PS(Nk+1))(q;7PS(2Nk+1) + E(G\sl,52,...,sk+12)b—E‘(9|51,sz,.“,sk)))
E(r; Npi1 « 51,82,...,5k — 81,82,...,8

_ ( k,PsQ( k+1)) +E((a+9_prs(Nk+l))E(9‘ 1,82 k+12)b E(0]s1,82 k))

E(W;)Ps(Nk+l)) a i=k+1 E(0|s1,82,...,8:)\ E(0]s1,82,....,8k+1)—FE(0]s1,52,...,5k)
= + E((2k+1 + 9 - EiZI ok—i+2 : ) 2b )

E(my, Ny, i=k+1 E $2,..,8i) E(B|s1,52,..., —E(f|s1,82,...,
_ E(m.ps( kﬂ))—l—CO’U(G—Z;:l-’_ (9|511C7ji24;2 781)7 (0]s1,52 5k+12)b (0]s1,52 Sk))

_ E(nf ps(Net1)) + Cov(0 — E(0]s1,52,-+5k+1) E(G\sl,52,...,sk+1)7E(9|51,52,.‘.,316))
- 2 ’ 2b

_ E(my; ps(Nit1)) + oZap

- 2 4b(a§+ka§)(a§+(k+l)a§) ’

where the first and third equalities follow by definition. In the second equality, we plugged in the
value of g, | pg(Ng+1) from (3). In the fourth equality, we insert the value of Q},; pg(Ng+1) from
(4). In the fifth equality, the non-covariance terms disappear because E(E(6|s1, 2, ..., Sp+1)) =
E(E(0|s1, 82, ...,5:)) = 0 by the law of iterated expectations. The remaining two equalities follow
by Lemma A4-i3).

iii) When n = 1, there is no difference between no-sharing and sharing games. In this case, the
expected monopoly profit equals
(a+6)? o5

4b 4b(o2 +03)’

E(r1,ps(N)) = E(m1 ps(N1)) = (5)



Starting from the monopoly profit and using Lemma A5-i) and Lemma A5-ii) iteratively, we have

Bl o) = @07 'S 9% (6)
s 22/h — 22-2b(0? + jo3) (02 + (j + 1)03)

Similarly, using Lemma A5-i) again, we can get

E(r} po(N;
B () = 2 rirs ) 7)

iteratively. The result follows after plugging (6) into (7).

iv) Using Lemma 4,

— E(§ coes S 1
Qis(N) = Y ai () = CHEOBL 2] g Ly 0
=1

One can further derive that

E(r} pg(N)) = E((a+0 — bQ%5(N))g ps(N))
=E(a+0—-bQ%s(N))E(q; ps(N)) + Cov(a+ 0 —bQ%s(N), q; pg(N))

a+6)? 2" —1)E(0|s1,52,...,8 E(0]s1,52,...,8n)
= (2n+i)b +CO'U(0 - ( ) (2‘”1 E ")7 ( ‘ 1212[) = )

_ (a+0)? Cov(0,E(0]s1,82,---,51)) (2" —1)Cov(E(0]|s1,82,...,80),E(0]s1,82,...,81))
= ntig T 27 - 2ntip
_ (a+0)? nag1

= gatip T gFig(e tnol)

where the first and the second equalities are by definition. We insert the value of Q}.¢(N) from (8)
in the third equality. We use the properties of covariance in the fourth equality. In the last step, we
use Lemma A4-ii). O

Lemma A6. The expected equilibrium total profits, total surpluses and consumer surpluses in the
partial and full sharing games are, respectively, given by

i) For each j = {PS,FS}, E(IL;(N)) = > ey E(7};(N)) and E(CS;(N)) = E(TS;(N)) —
E(II5(N)).

3 X om_1 1 (a+0)? 3ioh
it) E(TSpg(N)) = o (2- o ) % Z 22n=2043p(02 + i02)
i=1 €
=E(TS;}
(TSips) =E(TS; ps)
. 2n —1 2" —1 (a+0)2 2" -1 2n —1 noy
€ %
=E(TS} rg) =E(TS; rs)

Proof of Lemma A6: i) The claims follow by definition of total profits and consumer surplus.



it) We can derive that

E(TSps) = (a+ 9)E{Q*Ps) —b(E(Qps))?/2 + Cov(0, Qpg) — bV?r(Q}s)ﬂ
_ 271 (2 B 271,71)(0‘_)'_0) n COV(@ Zz n E(9|s21ﬂ,s%;.1.,si)) _ bVar(szf E(91‘7521717f27i¥.1.75i))/2

on on 25 )
_ 21 (2 . 2"_1)((1-&-9_) Zl n 1,03 - Zi:n (2"7‘+2—3)i0;1
- 2n 2n 2b i=1 2n—it1p(c2+icy) i=1 22n—2i+3p(c2+icy)

2"—1 2" 1 (a+6)* 3io

5 (2 — 5) a2b +Zl 1 W&Hw?)’

where the first equality is_by definition. Note also that Qpg = 2(1 — o) + iy % by
(4) and E(Qpg) = (a+0)(1 — 5) by Corollary 2. For the second equality, we plugged in these
values of total quantity and its expected value. The third inequality follows by repeatedly using
Lemma A4-ii) and the properties of covariance and variance. The last equality is a simplification.

iii) By using (8), Corollary 2, and Lemma A4-i7), similar computations show that

E(TShg) = (a+ 9)E(fg?s) —0(E(Q}s))*/2 + Cov(0, Qfs) — bVar(Qfs)/2
_ 2 —1(2 ) —1)(a+9) + Cov(6, (2 —1)E(2|2:1}782,...,sn)) _ bVar((2 _1)E(i|2$nl7327--«73n))/2

on on 2 . . .
_2n—1 (2 _ 2"71)(a+0)2 + (2" —1)noy _ (2"—1)*noy
- 2n on 2b 2"b(a2+n0'2) 22”+1b(03+no’g)
_ 2”1 _2"—1 (a+6)? 2™ _1 21 nog
— "on (2 on ) 2b + on (2 on ) 2b(0-52+n0-3) .

Lemma A7. We claim that for k > 2, W(Ny) > Y (Ny) > Z(Ny), where

op (03 +02) (24 k@ +k(k+2))os + 42+ k(k +2))ozo? + 4(k + 2)0l)

W(Ny) = 5 2\2 (9 2 22 ’
2b (202 + (k+ 1)03)” (202 + (k + 2)03)
Y (Ny) = : :
o Jgo 6223t (02 + joi) (02 + (j + 1)og)’
2+ 4 | — 1)o? + k(k + 1)02
Z(N) = aa(( 1) ( r)

D222 (o2 1 kag) (02 + (k + 1)o3)’

Proof of Lemma A7: For k =2,

oy (44020 + 4080308 + 12950308 + 1917050 + 14000502 + 42004°)
64b (02 + 02) (62 + 302) (02 + 203)%(202 + 302)?

W(Nz2) —Y(Nz) =

and
30204(202 + 303)

> 0.
32b(02 + 03)(02 + 20%) (02 + 303)

Y(N2) = Z(N2) =

Now suppose that W(Ny) > Y(Ng) > Z(Ny) for some k > 2. We want to show that W (Nyy1) >
Y (Ngt1) > Z(Nky1). We have that

W(Nk+1) — W(Nk)/4 > ba?wl(Nk)wl(NkH) > Z(Nk+1) — Z(Nk)/4 =
W (Npyp) — YN | W) o YN 4 20, (N Jwy (Nigy1) > Z(Npp) — 200
= W(Ni41) > Y (Ngs1) > Z(Ni1),




where the first implication follows by our initial supposition and the last implication is by definition.
The inequalities in the first line should hold because at k > 2,

Z(Ny,)

bo 2w (Ng)wi(Nyy1) = Z(Nyy1) +
o2og((2kF1 2k — 1) — 1)o? + (4(24}@ — 1)+ k(2F1(2M1 — 1) — 1))02)

0
b2+ (02 + ko) (02 + (k+ 1)og) (02 + (k +2)07) i

and

2
W (Niy1) = W(Ng)/4 = bodwi (Ni)wi (Np41)
- 03(16(3k+2)o‘24+16(16+3k(11+4k))o‘2022+f1Jgaio—i-fgJSUE+f3Ugof+f4aéoaf+fsaé2of+fgaé4)

- 8b(02+02(k+1))(202+02(k+1))2(02+02(k+2))(202+02 (k+2))? (202402 (k+3))? >0,
where f;, 1 =1,2,...,6 are positive because
fi =4(196 + 3k(175 + 2k(61 + 13k))),
f2 = 4(312 + k(1042 + k(1059 + k(439 + 66k)))),
fa = 1138 + k(4642 + k(6196 + 3k(1255 + k(364 + 41k)))),
fa=2(k+2)(150 + k(670 4+ 3k(302 + k(179 4+ 5k(10 + k))))),
f5 =170 + k(1040 + k(2102 + 3k(693 + k(383 + k(120 + k(k + 19)))))),
fo=(k+1)(k+2)(10+ k(62 + k(11 4 3k)(8 + k(k + 3)))).
Altogether, it should hold that W (Ny11) > Y (Nk41) > Z(Ngy1), as desired. O

1.4 Proofs of Lemmas 1-4 and Propositions 1-4 of the base model
Proofs of Lemma 1 and Lemma 2: The proofs follow from Cumbul (2021). O

Proof of Proposition 1: i) By Lemma Al-i) and Lemma Al-ii),

UgE(qZ,NS(Nk))
2002+ 03(k+1))

E(@Q@ns(Nit1)) — E(@ns(Nk)) =

As E(qj;, ns(Nk)) > 0 by Lemma Al-ii), E(Qxg(Nk+1)) > E(Qys(Ni)). Asp=a+0—bQ, it also
follows that E(pyg(Nk+1)) < E(pig(Nk))-
Finally, using Lemma A3-i), E(T'Sy5(Ni)) = E(TS} yg(Ni)) + E(T'S5 x5(Nk)). By definition,

(a+0)2(1 — w3(N) T2 wi(N;)
8b ’

E(T'S] ns(Nit1)) = E(TST ns(Nk)) =

which is positive because 1 — w3 (Ny) = % > 0. Using Lemma A3-7),
€ 0
E(TS3 ns(Nit1)) = E(TS3 ng(Ni) = ws(Ni) = (1= w3 (Ny)) E(TS3 ys(Ni)). 9)

As 1 — w3(Ng) > 0, the difference in (9) is decreasing in E(TS5 yg(Ni)). When E(TS3 yg(Nk))



gets its upper bound of ©(Ny) by Lemma A3-iii), (9) reduces to

0g(1208 + 8(3 + 2k)olo? 4+ (15 + k(17 + 3k))o20g + (3 + 4k)of)

E(TS3,55(Ne1)=TS2,n5(Nk)) = 8b(02 + 02(k + 1))2(202 + 02(k + 1))? :

which is positive. Altogether, E(TS}%g(Nigt+1)) > E(TS¥g(Nk)), as claimed.

ii) As n — oo, the expected PRE total output level converges to its perfectly competitive level
of (a+0)/b, which is smaller than the monopoly output level of (a+0)/(2b) by part 4ii). As the first
best level of total profit occurs at the monopoly profit level and the expected total profit is concave
in E(Q), the expected PRE total profit does not converge to its first best level.

Now take any i € Ny, \ k. Using Lemma A2-i) and noting that 1 — w2(Ny) = 03 /(2(c2 + o3 (k +
1))) > 0 and E(7] yg(Ng)) > 0,

E(mi ns(Nk)) = E(m; ns(Nit1)) = (1 — wa(Ng)) E(7} s (Nk)) > 0. (10)

Moreover, iterative calculations show that

j=ktl—1
lim E(7](Ngy1)) = E(7] (Ng)) lim I | wa(N;) =0
l—o0 =00 L
j=

because lim,, oo :jf_l wz(Ng)) = 0 by our next proof in part 444). Similarly, E(7} yg(Nk)) —

E(WZWS(N;CH)) =(1- 2bw1(Nk>’LU2(Nk))E(7TZ,NS(Nk)) > 0 because

202 + (1 +2k(1 + k))og + 20203 (2k + 1)
2002+ 03(k+1))?

1— wal(Nk)wg(Nk) = > 0.

In a similar manner, using Lemma A2 iteratively,
j=k+1-1

lim E(mi(Np41)) = 2bwy (N) E(me(Ny)) lim - [ wa(N;) =0.

l—o0 l—o0
Jj=k

iii) (Total output and price) By Lemma Al-ii),

: . ( , 202 + (2§ + 1)o2
3n, Bl vs (Nk)) = =57 > Jim ] L 202+ (j+ 1))

) (11)
As 02,07 € Ry, there exists f € N such that fo} > o2 by the Archimedean property. Moreover,
Ows(N;) /002 = o2/(2(c? + d2(j + 1))?) > 0. Therefore, replacing o? with fo? in the second

multiplicative term of (11) increases it and it becomes

2x4x6x%x...x(2f+2) " (2y — 1!
11m
y—=oo 1 X3 X5 X .. x(2f +1) @2yt

(12)



where y = f+k, 2y — D! = [['=¥(2i — 1) and (2y)!! = [['=Y(2i). As f is a finite natural number,
the first multiplicative term in (12) is finite, greater than 1, and independent of k. To conclude the

proof, it is then sufficient to show that limy,_; @y=DU _ . Note that

ey
@2yt 2y (2y)!
S =G T g T S T (13)

Using Stirling’s approximation, y! ~ (£)¥,/27y and (2y)! ~ (%’)23’\/4# So, (13) simplifies to

oy I
S TG T ey =0 (14)

As E(Qys(Ng)) = (a+ 0)/b— E(qZ’NS(Nk)) by Lemma Al-7), limp_,00 E(Qyg(Ni)) = (a+
0)/b —limy_ o0 E(qf ns(Nk)) = (a + 6)/b. Moreover, as p = a + 0 — bQ,

lim B(piys(Ne) = a+0— b lim B(Qis(Ny)) = 0. (15)

(Total Surplus) Recall by Lemma A3-i) that E(T'Syg(N)) = E(T'S} ys(N)) + E(T'S5 x5(N)).

As limy, oo ],zjf*l wa(Ng)) = 0 by the above proof,

a+6)2(4 —lim,_ o 1w2 a+6)?

Moreover, as E(T'S3 yg(N)) > x(N) for any finite n by Lemma A4-i), for all ¢ € N4,

2
COg

> i = —
i B(TS3ns(N)) 2 lim x(N) = 5= - (16)
. \ _ nod(30%+o3(nt2)) :
Similarly, E(T'S3 yg(N)) < O(N) = 20(202 0% (n1T))? for any finite n by Lemma A3-iii). Thus,
El (T6 0-6 n
: o5
Jim E(TS3 ns(N)) < lim O(N) = % (17)

by continuity. Combining (16) and (17),

2
9 COy
p = A E(TS ns(N)) 2 3rm 5y

Moreover, for sufficiently hlgh natural number ¢ . Therefore, by the Sandwich theorem,

, 2b(c+1)
lim,, o E(T'S5 yg(N)) = 32, as desired. O

Proof of Lemma 8: Using the Cournot equilibrium quantities provided by Vives (2011, Prop S1),

the expected equilibrium total surplus equals

n(2A +b(n+2))(a+0)%  nog(b(302 + (n+2)o2) + 2X(c? + 09))

B(T'Sc) = 2(2X 4 b(n +1))? 2(2M\(02 + 07) + b(202 + o (n + 1)))?

(18)




By simple algebra, lim,, o E(TSc) = ((a +0)? +03)/(2b) at any A > 0. O

Proof of Proposition 2: i) (Expected Profits and o2, ¢7) First, for firm 1, we can show that

Bri s(V) = Bl s (N0) X 2oun (M) i1 wa(Ny)

= (Lt | )y Zh_, T[E=r ! QoetChiloq)
4b 46(02+09) o2+207 Llk=1  "2(c2+(k+1)03)
k=n—1
_ (a0 95(207 +30%) o k=n—1
= 4b (20-2 + 40-0) 0-2 + TLO'G ]n2 w4 Nk 4b(o2+209)(o2+n02) H 4(Nk).

=p(N)

The first equality is due to Lemma A2-iv) for ¢ = 1. For the second equality, we substitute the values
of wy (Ng), wa(Ny), and E(7} ng(N1)), where the latter is from (5). The third equality follows after

rearranging the equation.
3@(1\7 )

Note that 8“’4(]\“) = *Q(GQiiUz)Q < 0. Thus, it is sufficient to show that < 0 from the
above derlvatlon. For n=2,3,4,
Op(N2) __ oj(0? +07)
o2 (02 +202)3 ’
Op(N3)  05(408 4 240207 + 45020, + 2407) -0
oo2 4(02 + 200) (02 + 303 ) ’
Op(Ny)  03(8010 4+ 10400} + 526000y + 1276020 + 14490207 + 58204") “0
do? 8(02 + 203)3 (02 + 30%)° (U? +403)? '
Now suppose n > 4. Rearranging ¢(N) yields that
— k=n—1
(202 + 303) [Iizpwa(Ny) o2
QO(N) = 20-92 +ZO’§ 0.2 _|_0n0.2 w4(Nk)
€ 0 € % k=5
=9
We know that the terms except ¥ is decreasing in 02. We can also show that
99 16007 + 208080 + 1016080 + 222800} + 1929020,° + 1980)° “0
do2 16<a§+203)3(02+303) (o?+4ao> '
Thus, we proved that W < 0. In order to see W > 0, we note that 8“’5%9’“ =
€ 6
%Wk) > 0, a(o—N) = —6%57]?)2—‘3 > 0 for i = 2,3,4, and % = —%U— > 0. Furthermore,
0'6 0'2 0'4 0'4 n 0'20' no
for hy = 4b(02+20'g)9(02+n<72) and hy = O'2+3L0'27 % = gii(;;féagz)(o’%-i-s’riféyw > 0 and % =
2 *
(UQIW > 0. These computations are sufficient to conclude that W > 0.
6

Lastly, using Lemma A2-iii) and Lemma A2-iv),

IE(75 ns(N2))  02(2024302)(a+0)? g(—80%—240%02 —150205+40%)
BU - 8b( 2-|—2U )3 + 16b( 2+o’ ) (02+20' )3 )
OE(m5, Ns(NS)) _ 02(20%4302 )( 20890202 902 0'9+309)(a+0)
da - 16b(c 2+202)3(02+302)3
+ og(3201°+2560803+760<76ag+99104og+485azo§+12o;°)
32b(02+02)2(02+202)3(02+302)3 ’

10



where both partial derivatives may be positive or negative. A similar conclusion is valid for the

relationship of these profits with o3.

ii) (Total Output and o2, 03) It follows from Lemma A1-i) that BE(%{\;g(N)) = —BE(q%;VQ_S(N)) for
j =0,e. By Lemma Al-iii), W > 0 and W < 0, and therefore, w <0
€ 0 €
and 2EQis(N) 5 o
9o

iii) (Total Surplus and o2) We claim that W < 0. Using Lemma A3, E(TSyg(N)) =
+ . e proot is done in two steps.
E(TST ns(N)) + E(T'S5 ys(N)). Th f is done i

STEP 1: We first claim that the total derivative W < 0. This derivative equals

AB(TS; ns(N) _ OE(TS{ns(N))  0B(Qis(N))
do? 0E(Qys(N)) Jo?

(o5 bE(@s () x )

As E(pys(N)) = a+0—-bE(Qus(N)) = bE(qys(N)) > 0 by Lemma Al, the claim follows after
noting that OE(Q% ¢(IN))/dc2 < 0 by part ).

STEP 2: We finally claim that OE(T'S5 y5(Ni))/00? < 0. For k = 2,

OE(TS2ns(N2))  04(2408 + 1040205 + 1450205 + 6805)

= — <0
0o? 32b(02 + 03)%(02 + 203)3

w < 0 for some k < n. It must then be shown that

OE@S2sWit)) < () holds. Remark that E(TSh,ns(Nit1)) = w(Ni) x E(TSs,ns(Ny)) + ws(Ne)
by Lemma A3-i). Therefore,

by Lemma A3-i). Now suppose that

OE(TSz2,ns(Nit1)) _ 211}2(Nk) (€ (TSQ NS(Nk)) ws(szk) + UJ%(N )8E(TSQ NS(Nk))

do2 00?2 do?2

By the initial supposition, %W < 0 holds, which implies w3 (Ny) x %W < 0.

Hence, it will be sufficient to show that the sign of

Owy(Ny,) "
0o?

Ows(Ng)

U(Nk) = 2’LU2(Nk) 80’2

E(TSZNS(N]@)) +

is negative to conclude that W < 0. Aswa(Ng) > 0and 8w§§g’°) = 2(02+ngf)(k+1))2 >0,
€ o\
U(Ny) is increasing in E(T'So nys(Ng)). Therefore U(Ny) is maximized when E(T'Sy ng(Nk)) gets

its upper bound of ©(N}) by Lemma A3-ii). In this case, it reduces to

05 (1205 + 4(6 + 5k)otod + (15 + k(24 + Tk))o2oy + B+ k(7T + k(3 + k)))o§)
8b( 02+ (k+1)03)3(202 + (k+ 1)03)? ’

O(Ng) = —

< 0, as desired.
OE(T'Sxs(N))
902

which is negative. This finding proves that M

iii) (Total Surplus and 09) We subsequently claim that > 0. Analogous calculations

11



PETSIns(M) 1 T soo PETSins(M)

to part i) shows that 903 807

> 0, first note that for k = 2,

OB(TS; ns(N2))  02(602 + 150207 + 1007) (802 + 220207 + 1107) -
dog N 32b(02 + 03)%(02 + 203)3 '

Now suppose that W < 0 for some k < n. We will show that w 0.
0 o

As E(TS5 ns(Nit1)) = wi(Ni) x E(T'S3 ys(Nk)) + ws(Ni),

OE(TS; ns(Nit+1))

OE(TS; Ns(Nk))
507 0.2

902

= 2w (Ni) P33 B(TS5 s (Ni)) + 55 + w3 (Ni)

As w%(Nk)W > 0 by the initial supposition, it is adequate to show that
)

811)2 (Nk)
oo}

8w3(Nk)

E(Nk> = 2w2(Nk) 303

E(TS5 ns(Ng)) + > 0.

E(Ni) is minimized when E(T'S; yg(Nk)) gets its maximum value of ©(Ny) as wz(Ng) > 0 and
Owy(Ny)/00f = —02/(2(02 + (k + 1)03)?) < 0. For E(T'S; yg(Ni)) = O(Ny),

03 (2405 +60(k+1)08 03 +2(27+k(55+27k)) o o +(21+ k(66+k(67+24K)))o 20§+ (k+1)° (3+4k) )

E(Nk) = 8b(02+(k+1)02)3(202+(k+1)02)?2 ’

which is positive. This result shows that E)E(TS;,NS(NICH))/aag > 0. O

Proof of Lemma 4: The last-follower aims to maximize

i=n—1
max E(m,[s1, 82, ..., 8n) = E((a + 6 — bg, — b Z 0i)Gn |51, 52, -y Sn)-
dn

i=1

The first order condition (FOC) boils down to

. bzl " 1qi+E(9|51,52,...,sn)
qn,Ps— % . (19)

Similarly, firm n — 1 maximizes its expected profit max,, , E(m,—1|s1, 52, ..., Sp—1):

i=n—2

J(f}naxE((a—l—G—bqn 1—b Z ¢ — b4y, ps)qn—151,52, ., 50-1)-
n—1 i—1

After substituting (19) into this maximization problem, the FOC reduces to

. a—bzZ - 2qi—|—E(9|81,32,...,3n_1)
Qn—l,PS - 2 .

Iterative calculations show that firm ¢’s best response is

i — b= i+ E(0)s1, 52, -0 81)
qi,PS - 2

12



and the leader’s equilibrium output is ¢j pg = %ﬁlsl). The partial sharing equilibrium outputs

of firms can be iteratively derived from these derivations. The full sharing equilibrium outputs can

be similarly derived; and therefore, the proof is skipped. O

Proof of Proposition 3: i) Gal-Or (1987) shows that forn = 2, E(7] yg) < E(7] pg). Forn > 2
and for each i < n, we claim that E(n} yg¢) < E(7} pg) if 02/0f = oo, and E(7} pg) < E(7} yg) if

2 _4

2 2 _ g, o .
oZ/og — 0. Let H; = 4b(ag+(j71)ag)(a§+ja§)' First, we show that

e _
lim,z 0 E(r ,NS(N»:hmgzﬁo(( T Tlmy w3 (Ne) + 32 Z(H-H’;_; Lw3(N:)))

— (awi%hm 2_>0Hk - 1w2(Nk)+hma2aoZ 5 (H Hk i w3(Ny))

(a+9) +0'9 Hk i— 1(2£+1)
2k+27

where the first equality is by Lemma A2-ii). The second equality is because for j = 1, lim,2_,o H; =

2
%. As limgz 49 wa(Ng) = glﬁ—i;, and for j > 1, lim,2_,o H; = 0, the last equality should hold.

Similarly,

limgz 0 B s (Vi) = limgz o (L5725 TTZ) " w (Vi) )
Hlimge oo (027 (H TTZS wd(N1))) = (a + 6)%/(4b),

where the first equality is by Lemma A2-iv). The second equality is a consequence of limg2 ;o0 w3 (Ny,) =

1, and for j > 1, limy2 ,, H; = 0. Using the above derivations, for each i < n,

limg2_so B(7} xg(N)) = limgz_yo B(7} ng(N)) % limg2_g (2bwi (N;)) x limyz_yg T1i=r " wa(Ny)
a+0 o k=i— k=n—
f(+)+eH 1(2k+1) z+1XH 1(2k+1)

2k+2 2k+2
o (a+9) +09 Hk n— 1(2k+1) k=i— 1(2k+1)
TG a2/ k=1 (5p332)s

limy2 o0 B ng(N)) = limgz o0 E(m] (Vi) X limgz o0 (2bwy (N;)) x limg2_, o Hk =Ly (N)
(“+9) x0x1=0.

Following similar steps to the above proofs,

. a+6)2 j=1—1 020'4
hmo.z%o E(m (s fpg(N)) = llmg'Q*)O ((2"+i)b + Z;—O 2 FI—2ib(o 2+309)(02+(J+1) ))
_ (a+0)*+o2 j=i—1 ooy
= T ontip + hmgz—>o (Zj:l onti— 27b(o2+]ag)(02+(j+1)09))
(a+0)+03
- T 2ntip
limys oo B( ps (V) = limys oy (SHE2 4 592071 o:%% )
o2—o0 £\Ti ps o200 \gnFp 2 F=27b(024702) (02 + (G +1)02)
_ (at0)
— 2ntip -

It is clear that lim,2 o0 E(7] pg(N)) = (gffi): > limy2 00 E(7] xg(IN)) = 0. We next show that
for n > 3 and i < n,

lim E(m} ys(N)) 1 etk p1k ﬁ k+1
0250 B(m} pg(N)) —i+1 11 k+1

13



E(n] nys(Ns))
02*)0 E(7r1 Ps(Ni’»))
k=i—1 2k+4+1

k+1

i =n — 1, it is sufficient to show that v, = ﬁ? 12kkj11>nf0rn>4 Forn_4 Py =3 >4,

Suppose it holds that 1, > n for some n > 4. We want to show that ,,41 > n + 1, which requires

27;?11 ¥n >mn+1. As 1, > n by the initial supposition, it is sufficient to show that "(7211"{1) >n+1.

This inequality should hold because n? > n+1 at n > 4. This finding concludes the induction step.

In addition, lim,z_,q E(7} pg(N)) = (gffl)b > lim,z o E(} yg(IN)) = 0 by analogous calcula-

E(nins(N) _ o Elrins (V)

tions to the above. Moreover, lim,2_,q Bt (V) — iMo2 00 m > 1 by the above finding.
€ Ti,Ps Ti,pPs

ii) Using Lemma A5-7i7) and Lemma A5-iv), direct computations show that for n > 2,

where the equality is due to the above findings. lim = l'mazﬁo % 2>1
2,PS

at n = 3. Now suppose n > 4. It is clear that [], > 1. As 5 gets its minimum at

o2og(n—1)
2t1b(02 + 0}) (02 + noj)

E(r1 rs(N)) — E(mi ps(N)) = > 0.

Lastly, we show that E(m) pg(N)) < E(7); pg(N)) < E(m; xyg(N)) by induction. For n = 2,

30202 % *
E(Wz,PS(NQ)) - E(Wz,Fs(N2)) = 16b(o’2+03)(§§+20—g) > 0 and E(Wz,NS(N2)) - E(WQ,PS(N2)) =

2 2 4 2 2 )2
(305+5091)é;2§i‘750§‘;§)(a+9) ) > 0 by Lemmas A2 and AS5.

Suppose that E(m} pg(Nk)) < E(mf ps(Ni)) < E(7}; x5(Ng)) for some k& < n. We want to
show that E(7m},; pg(Nk+1)) < E(miyy ps(Net1)) < E(my 1 yg(Nk+1)). Using Lemmas A2-idd),

A5-iii), and A5-iv), this claim is equivalent to

E(rnE Ny E(m N,
(Thrs M) | AN o BirsM) | A(N,) < wd (N E (s (Ne)) + A(NR),

0204 * * ey o
where A(Nk) 4b(02+kag)(af+(k+l)g - As E(n} ps(Nk)) < E(m}; ps(Ng)) by the initial supposition
(

and (Ng), the left inequality holds. Similarly, the right inequality should hold because
E(ﬂ-k,PS(Nk)) < E(m; ns(Ni)) by the initial supposition and w3 (Ny) — = (o +fgf£ﬁ2ﬂ§i+;’k)a")

0. Our induction proof is now complete. O

Proof of Proposition 4: i) (Total Output Rankings) We can use Corollary 2 to show that
E(Qps(N)) = E(Qpg(N)) = 3121 4. Using simple algebra,

Gl +0 _ (2" —1)(a+9)
; 2nb '

Moreover, E(Qys(N)) < E(QL(N)) = Z((sif)) by the proof of Proposition 1 of Cumbul (2021).

Therefore, it is sufficient to show that E(Q}¢(N)) > Z((Z_tf)) or 21 > 41- Rearranging terms

yields 2" > n + 1. By induction, one can show that this inequality holds for n > 2. Altogether,

E(QFs(N)) = E(Qps(N)) > E(QE(N)) > E(Qys(N)).
ii) (Total Surplus Rankings) The expected total surplus can be divided into two as

E(TS) = (a+0)E(Q) — b(E(Q))*/2+ Cov(f, Q) — bVar(Q)/2.

=E(TS1) =E(TS2)

14



We prove the proposition in two steps.

STEP 1: We claim that E(T'S] pg(N)) = E(TS} ps(N)) > E(T'S] (N)) > E(T'S] xs(N)).
Let g(E(Q)) = (a + 0)E(Q) — b(E(Q))?/2. Note that 525 = (a+ 0) — bE(Q) and a‘zé’fcﬁ) =
—b < 0. Therefore, g(.) is concave in E(Q) and it is maximized at F(Q) = “£%. E(Qys(N)) =
E(Qps(N)) > E(QE(N)) > E(Qysg(N)) by part i). To conclude the proof, it is sufficient to
show that %é > E(Qrg(N)) = (227‘”0 by the concavity of g(.). This should hold because
2" —1 < 2™

STEP 2: We claim that E(T'S5 ng(N)) > E(TS3 ps(N)) > E(TS; o(N)) > E(TS3 xs(N)). Tt
holds that E(T'S3 o(N)) > E(T'S3 x5(N)) by Proposition 1 of Cumbul (2021). Next, we will show
that E(T'S5 pg(N)) > E(T'S3 ps(N)) > E(T'S5 o(N)) by using the induction method. For k = 2,

o5(120% 4 28002 + 27020} + 1408)

E(T33,ps(N2)) = E(T'S3,0(N>)) = 32b(02 + 02)(02 + 202)(202 + 302)2

>0

and
2_4
oo,

32b(c2 + 03) (02 + 203)
by Lemmas A3-ii) and A6. Suppose it holds that E(T'S5 pg(Ni)) > E(T'S3 pg(Ng)) > E(T'S5 o(Ny))
for some k < n. We want to prove that E(T'S5 pg(Nik+1)) > E(TS5 pg(Ni+1)) > E(T'S5 o(Nk+1))-

> 0.

E(TS5 ps(Na)) — E(T'S; ps(Na)) =

As E(TS3 pg(Nit1)) = E(TS;‘ES(N'“)) + Sb(fg(f(_;ﬁ%ag) by Lemma A6-ii), it is sufficient to show that
\ E(TS3 ps(Nk)) 3(k+1)op
T1 = E(T% ps(Nit)) = 1 7 802+ (kt f)a2)
€ 0
and
8b(o2 + (k+1)02) ~ ° 2,001k 4

by using the initial supposition. By using Lemmas A3-ii), A6-ii), and A6-iii), we can show that

" 3(k+1)o B (4% —1)o20y -0
" 8b(02 + (k+1)02)  228F3b(02 + ko?) (02 + (k + 1)02)
and
3(k+1)o; T, = gak(1208 4408 (74+3k) i +02 (284-3k(8+k))og+02 (16+5k(4+k))oe+(1+k)(4+3k)og) >0
8b(af+(k+1)a§) 2= Sb(ag+(k+1)o’§)(20§+(k+1)0’3)2(203+(k+2)03)2 .
iii) (Total Profit Rankings) In general, the expected total profit reduces to
E(Il) = B(pQ) = (a+0)E(Q) — b(B(Q))* + Cov(6, Q) — bVar(Q) - (20)

=E(H1) =E(H2)

Note that Cumbul (2021, Proposition 1) shows that E(II(N)) < E(ITy¢(N)). We prove that
E(IThge(N)) < E(ITg(N)) < E(IT4(N)) in two steps.
STEP 1: First, we claim that E(II] pg(N)) = E(II] pg(N)) < E(II] o(N)). It holds that

15



E(IT} pg(N)) = E(IT} pg(N)) because E(Q5(N)) = E(Qpg(N)) by part i). Lastly, we show that
(a + 0)B(Qu(N) — HEQu(N)? > (a -+ 0)E(@ps(N)) — b(E(@ps(N)))? to conclude the proof.
To see this, let f(E(Q)) = (a + 0)E(Q) — b(E(Q))%. Note that 5 Js = (a + 0) — 20E(Q) and
82%((5) = —2b < 0. Therefore, f(.) is concave in E(Q) and it is maximized at E(Q) = (a + 0)/(2b).
By part i), E(Q%g(N)) > E(Q&(N)). It is then sufficient to show that %bé < E(QL(N)) = Z((Zif;
by the concavity of f(.). This should hold at n > 1.

STEP 2: We now claim that E(II; o(N)) > E(II5 pg(N)) > E(II5 pg(N)), where

. kag(ongU?)
E(I; ¢(Ni)) = U(Ny) = b(202+(k+1)03)*”
i—k j=i—1 024
E(II3 pg(Nk)) = X (Ny) = Z Z b2i=23%k (62 + jo2) (02 + (j + 1)o3)’

i=1 j=0
k ko
E( 2 FS(Nk)) ( ) Zi:l b2i+k(a-€20+k-0-§)

2 _4

using Lemmas A3-ii), Ab-iii), Ab-iv), and A6-i). For k = 2, X(Na) — T'(N2) = 16b(02+’; ()7(02+20 7

6 (4084200502 4250502 +100F .
and U(Na) — X(N2) = fgb((a?_:;g)?2;;1;03?52?;3:;))2 are both positive. Now, suppose that U(Ny) >

X (Ng) > T(Ny,) for some k < n. We want to show that U(Ngy1) > X(Ngy1) > T(Ng41). We have
that

W(Ng) > Y (Ng) > Z(Ng) =
W(Ng) + Y0 > y () 4 20 5 7)) 4 L0k
= U(Nk+1) > X(Nk+1) > T(Nk+1),

where the first line inequalities follow by Lemma A7, the first implication is a result of our initial
supposition, and the second implication follows because U(Ng11) = W(Nk) +U(Ng)/2, X (Ngt1) =
Y (Ni) + X(Ng)/2, and T (Ng41) = Z(Ng) + T(Ny)/2 by definition. Our induction proof is now
complete. O

2 Proofs of n;—leaders and ns—followers model of Section 11

Lemma AS8. Provided that b + X\ + bnoBy > 0, there exists a unique linear PRE, where each
leader i € Ny and each follower j € Ny produce G;sq = Ao + Ai(si — 0) and §; 50 = Bo +
B ZzeNl Gi.sq + Ba2(h; — 0), respectively, where Ag = By + G1Gr(a+ 0)/G5, Ay = 02G3/(G2Gy),
By = o? (o + 0)Gs/Gs, By = (b+2)\)G1/G3, By = o2 0'0/G2, where

Go = (b+2\)(2XA+b(ny +nz + 1)) — b®ning,  Gi =202 (b+ ) (03 +02) — bojo?,

Go =202 (b+ A) (02 +ni0}) + ofo? (2>\ +b(nz +1)), Gs=Ga(b+2X) —bna(Gy + bojo?),
Gy = Gs(0f +02) —b(n1 —1)(b+ 2)\) 61, Gs = G2Gs — 2b%ny(ny — 1)(b+ N)o2 o2,

Ge = Ggog —2(n; — 1)(b+ A)(b+2N\)o2, G7=2An1 +b(ny —na), Gs=Go+b’na(ng —1).

62 ?
When ny =b =1, ng =n, and A = 0, this result coincides with a result in Nakamura (2015).

Proof of Lemma A8: Let the sum of leaders’ signals be S;, = ZZ—GNI s;. For QQp = ZieNl qi,
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let ¢; = Ao + Ai(s; — 0) and ¢; = Bo+ B1Qr + Ba(h; — f) in a linear PRE for some constants
Ag, A1, By, B1, By € R. Our aim is to derive these five constants.

STEP 1: First, we derive the conditional expectations E(8|h;, s1, S2, ..., Sn, ) and E(hy|h;, s1, s2,
vy Sny ) Tor some k,j € Na, k # j. As the values are common and the conditional expectations are
linear, we have E(0|h;, s1, S2,...,5n,) = E(0|h;,Sr) and E(hy|h;, 1,52, ..., 5n,) = E(hg|hj, Sr). By
the projection theorem for the multivariate normally distributed random variables, for ¢ € {6, hy},

Var(Sz)  Cov(Si.hy)\  (Sn— E(SL)
Cov(h;,Sr)  Var(hy) \h;—Ehy) ]’

E(tlSL,hj) = E(t) + <COV(t, SL), COV(t,hj)>. <

For each i € Ny and j € Na, s, = 0 + ¢, hj = 0 +¢;, E(0) = E(s;) = E(hj) =0, Var(e;) = o2

€17

Var(ej) = 02, and E(e;) = Cov(e;, €;) = Cov(hy,€;) = Cov(f, ex) = Cov(s;,e;) =0 for k € {i,j}

by assumption. Thus, E(SL) = n16, Cov(0,S,) = Cov(h;, Sr) = nio3, Cov(0,h;) = o3, Var(SL) =

n1(cZ +nioj) and Var(h;) = o + o2,. Inserting these derivations into the above expression,

o5(0? (hj —0) + 02, (Sp — m10))

E V=E V=10
(015 ) = Bl ) = 04 s o2 (02, + o)

(21)

Similar calculations to the above yield that for 4,1 € Ny, j € Ny, and ¢t € {0, s;, h;} such that [ # ¢,

O’g(sz — é)

BE(0]si) = E(silsi) = B(hylsi) = E(t) + Cov(t, s;)(Var(si)) ™ (si — E(s:)) = 0 + - €2)
6 €1
STEP 2: Consider any follower firm j € Ny. It maximizes
rr}]axE(wﬂIj) :rr}zaxE((a—&-Q—bQ)qj —)\q?-|Ij), (23)

where I; = hj,q1,¢2; ..., gn, is the information set of follower j. Thus, the FOC from (23) yields the

best response of any follower j to the changes in the total quantity of leaders (Qr) as

4;(QL) = Bo+ B1QL + Ba(hj — 0) ~
_a+ B(0]I;) — b(Bo(na — 1) + (1 + Bi(nz — 1)Qr + Ba(na — 1)(E(hi|I;) — 0)) (24)
N 2(b+ ) ’

where k € Ny, k # j, by the symmetry among followers. In a PRE, the follower firm j learns
the sum of the signals of its leaders from the leaders’ output choices. As for each leader i € Ny,
g = Ao+ Ai(si —0), Qr =n1Ag —n1A10 + A ZZENI s;. Thus, each follower infers that

+n1A10 —n A
SL: ZSZ-:QL nlAll ™ 0. (25)

i€Nq

Any leader firm i € Ny solves max,, F(m;|s;) = E(qi(a + 60 — bQ) — \g?|s;), where

Q= Z @+ Z 7;(Qr) = (¢ + Z @) (1 +n9Bi1) 4 na(Bo — B2f) + By Z h;

leN; JEN2 leN1\1 JEN>
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by the symmetry among followers. Thus, the FOC from the leader i’s problem simplifies to

g = Ao + A1(si — 0)

a + E(9|81) — b(’l’Lg(Bo — BQé—F BQE(h]|SZ)) + (n1 — 1)(1 + ngBl)(AO — Alé—l- AlE(Sl‘Sl)))

2(b+)\+bn2B1) ’
(26)
where | € Ny and | # i, by the symmetry among leaders. Moreover, for & € N> such that
k # j, E(0|I;) = E(hi|l;) = E(0|S,hj) = E(hg|Sc,h;) by Step 1, where Sp is given by
(25). After substituting (22) into (26) and (21) into (24) using (25), we obtain five equations
with five unknowns Ag, Ay, By, By and B;. We find the constants by solving these five equa-

tions simultaneously as stated in the lemma. The second-order conditions hold because for each
i € N1, *mi((qe)kenys (45(QL))jen,)/0%q = —2(b+ XA + bnaBy) < 0 and for each j € N,
0%m;/9%q; = —2(b+ ) < 0 because b+ A +bnaBy > 0, b > 0, and A > 0 by assumption. O

Proposition 9. i) As ny — 0o or na — 00, the expected PRE total output, consumer surplus
and total surplus approach their first best efficient levels of (a + 0)/b, ((a + 0) + 2)/(2b), and
((a +0)% + 02)/(2b), respectively, and the expected total profit approaches 0 at any X > 0.

ii) Suppose that the demand is replicated and it is given by pp,+n, = a + 0 — BQ/(n1 + na).
As ny — oo, the expected PRE consumer and total surpluses over ny + ny converge to their second

. B(a+6)? Bo}§ (a+6) g .
best efficient levels of sBTo0? T 2(2/\0214_(394_2/\)0 By + 2(2/\0214_(%4_2/\)”3), respectively,
if A >0 and 02 > 0.

72 and

Proof of Proposition 9: Using §; sqo = Ao + A1(s; — 0) and §j.s0 = Bo + B1Qsq + Bz(hj — 6)

from Lemma AS,

@39 = Dien, 6i.5Q T Xjen, 45.5Q; E(CSsq) = bE(Q%q)/2,
E(llsq) = E((a+0 — bs0)@sq) — MXLien, BE(3s0) + Xjen, E(d5 50))s (27)
E(TSsq) = (a+0)E(Qsq) — bE(Qg)/2 = MY ien, E(d}s0) + X jen, E(d 50))-

To find the covariance parts of expected total profit, consumer surplus, and total surplus, we let
0= 0= 0, B(s?) = o, + 03, B(2) = 0%, + 03, B($3) = ma(0?, + mod). B(H3) = na(o?, + nacr),
E(SpHp) = ningog, E(0SL) = E(h;SL) = nio}, E(0Hp) = ngoj, and E(h;s;) = E(6h;) =
E(0si) = oj for Sp = oy, si and Hr = 3.y
multiple-follower large markets aggregate information efficiently because at any A > 0, i € {1, 2},

h; in their definitions. The multiple-leader and

lim B(Qso) = 0 and  lim E(CSsq) = lim E(T'Ssq) =

ni—00 b n; —00

(a+0)*+ a3
2b ’

Thus, lim,, e E(Ilsq) = lim,, e E(T'Sso—CSsq) = 0. We now assume that the demand is repli-
cated and let pp, 4n, = a+60— BQ/(n1 +n2). After replacing b with B/(n; +ns) in the equilibrium
outcomes of the non-replicated demand model, we obtain the expected PRE total profit, consumer
surplus and total surplus in the replicated demand market as E(fISQ,R) = E(f[SQ)|b:B/(m+n2),
E(CSsq,r) = E(CS50)|b=8/(mi+ns) and E(TSsq.r) = E(TS5Q)|b=B/(n4ns)- AS n1 — 00, ex-

pected consumer and total surpluses over m; + ny converge to their second best efficient levels
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(Vives, 1988, Table I) when A > 0 and 02, > 0 because

- E(CSsqr)  Bla+0)? Bo$
nm—oo np+ng  2(B+2X)2  2((B+2\)o3 +2X02)?’
. E(TSso.r) (a + 9)2 03
lim = + 5 5 5
ni—oo  my + Mg 2(B+2)\)  2(Boj +2X(02 +03))
E(lsg.r) Ala+0)? Aog(of +02)

li = :
mos ny+ny  (B42V2 | ((B+2\)02 + 202, )2

Lastly, the limit values can be smaller or greater than the above ones when ny approaches oco.

-~ E(CASSQ,R) _ B(a + 0)? 303(4)\2n10621 032 +02((B+ 2)\)031 + 2)\n10622)2)
n2=oo g + My 2(B+20)?  2(B+2)0)*((B+ 2X)o502 +2X02 (niojf +02))?’
lim E(TSsq.r) _ (a+0)? 05 ((B+2X)o?Z + 2xn10?)
na—oo My + Mo 2(B+2X)  2(B+2X)((B+2X)ogo2 + 2\, (moj +02))’
E(Mlsq.r) _ AMa+0)% | Acde3((B+230)0? +2An10%)) +(B+2))%0%, 0t +4X°nio? 0% )

lim = 24 SLES
na—oo M + N (B+2/\)2 (B+20)2((B+2X\)o502, +2X02, (n10j+02)))?

The supportive calculations in Mathematica 12.1 can be found in online Appendix B. O

3 Proofs of the private value model of Section IV

Lemma A9. We have that
_ Ago? (51— 0) + Az(se — 0) + 28402 (2 — 0
E(03|51,52,2) =0 + 20, (51 ) 3(A2 ) 1%, ),
_ 6 _
o5(A1(s1 = 0) + 202 (14 p)(z — 0))

_ Ap+ A5 ’
AQ(Sl — 9) + 2A4(Z — 9)

A4+ As ’

E(@l\sl,z) = 0_+

E(sa|s1,2) =0+

where

Ay = (1—=p?) o} +402, Ay=0}(4po2 — (1—p?)0}), Az=0}(A1o2 +4(1—p?)oja?),

€z €

Ay =03(1+p) (1 —p)og +02), As =402 (03 +02) + (1 + p)ofol, A¢ = Az + (Ay+ As)o?.

Proof of Lemma A9: The proof of this lemma can be done similarly to the proof of Lemma
1 of Gal-Or (1987). Alternatively, one can apply the projection theorem to find the conditional
expectations for the normally distributed random variables as Vives (2011) or Rostek and Weretka

(2012). Supplementary calculations in Mathematica 12.1 are provided in online Appendix B. O

Lemma A10. Ay 2 0ifp 2 p= (y/oj + 402 —202 ) /03, and f(p) =2—p(4—p) Z 0 if p S 2—V/2.

Proof of Lemma A10: A is quadratic and convex in p because 02Ay/9%p = 205 > 0. Moreover,

two roots of Ay in p are p = (y/og 4+ 402 — 202 )/0j and p = —(y/o§ + 40t + 202 )/0;. Clearly,
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p < —lat o2 >0, and it is not binding. The binding root p € (0,1) because p > 0 and (07 +

202 )? — (04 + 402 ) = 40302 > 0. So, the claim goes through using the convexity of Ay in p.
Similarly, f(p) = 2 — p(4 — p) is quadratic and convex in p because 9%f(p)/0%p = 2 > 0. Two
roots of f in p are p; = 2 — /2 and py = 2 + /2. Note that p; € (0,1) and py > 1. Only the first

root is binding and the claim is valid using the convexity of f in p. O
Proof of Lemma 5: i) Let q1 = &o+&1(51—0)+&(2—0) and g2 = Yo +101 (52 —0) +1baqy +103(2—0)
in the PRE of the no-sharing game. Using backwards induction, the follower firm maximizes

II}Z?XE(W2|827Q17Z) = E((a+ wb2 — b(q1 + ¢2))q2]52, q1, 2)- (28)

The FOC provides the best response of the follower to the changes in ¢; as

a — bq1 + WE(92|52a q1, Z)

a2(q1) = tho + ¥1(s2 — 0) + thaqr + ¥3(z — 0) = 5 . (29)

In a PRE, the follower perfectly infers the private signal of the leader from the leader’s strategy
q1 = 50 + §1(51 — 9_) + €2(Z — é) as s1 = (q1 - {o + 519_ — 52(2 — 9_))/51, which implies that

a1 — &+ 60— &(2—0)

E(92|527Q1,Z) = E(92|52,$1 = 3

,2). (30)

In the first stage, the leader maximizes its expected profit after inserting ¢2(¢1) from above
H}I?XE(Wl(ql, a2(q1))]s1,2) = E(qi(a + wby — b(qr + vo + P1(s2 — 0) + vaqu + ¥3(z — 0)))|s1, 2).

The FOC is

0 = o+ E1(51—0)+Ea(2—0) = a+ wE(61]s1,2) — bt ;b??:__;f)lE(SﬂShZ) +p3(z — 9)) 31)

First, we substitute E(02]s1, s2,2) from Lemma A9 into (29) in light of (30). Second, we substitute
E(601]s1,2) and E(s2|s1,2) from Lemma A9 into (31). Then, we get 7 equations with 7 unknowns
by (29) and (31). By solving them, we derive the constants &g, &1, &2, %o, Y1, 12, and 3 as stated in
the lemma. The second-order conditions would hold because 9*E(m2(q1,¢2))/9*qa = —2b < 0 and

O'g (Aj(Al + A7) + 2A1(A4 + A5)O’E22)
286(As + As)(&1/w)

O*E(mi(q1,q2(q1)))
82(11

— (1 + ¢hy) = — <0

because A1, Az, A5, Ag > 0, Ay, A7 >0, & /w > 0 at p € [-1,1] and b > 0. The expected PRE
price and output levels are derived after letting E(s;) = E(z) = 0 in the equilibrium outcomes.

ii) Let g1 = Do+ Di(s1—0)+ Dy(z—0) and go = Eg+ E1(s1 —0) + Ex(s2 —0) + Esq1 + Ea(2 —0)
in the equilibrium of the partial-sharing game, where only the leader firm partially shares its private

information (s1) with the follower firm. Using backwards induction, the follower firm maximizes

H}IijE(W2|81,82,(J1,Z) = E((a+wby — b(q1 + q2))qz2|51, 52, q1, 2)- (32)
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The best response of the follower follows from its FOC.

a—bg1 + wE (62|51, 52,q1, 2)

a2(q1) = Eo + E1(s1 — 0) + Ea(s2 — 0) + Esqy + Ea(z — 0) = %

(33)
As the information of the leader remains the same between no-sharing and partial-sharing regimes,
the FOC of the leader is similar to (31) and it becomes

q1 = Do + D1(s1 — 0) +D2(Z—?)

a+ wE(91|51, Z) — b(Eo — 9(E1 + FEs + E4) + Eis1 + EQE(SQlSl, Z) + E4Z) (34)
- 2b(1 + E3)

We first substitute E(63]s1, s2,2z) from Lemma A9 into (33). Second, we substitute E(6;|s1, z) and
E(s2]s1, ) from Lemma A9 into (34). Then, we get 8 equations with 8 constants by (33) and (34). By
solving them, we derive the constants as stated in the lemma. The second order conditions would hold
because 02 E(ma(q1,q2))/0%q2 = —2b < 0 and 9*E(m1(q1,92(q1))) /%1 = —2b(1+E3) = —=b< 0. O

Proof of Proposition 5: The total output, the profit of firm 4, consumer surplus, and total
surplus are defined by Q = q1 + q2, m = (a — bQ + wb;)q;, CS = bQ?/2, and TS = CS + 71 + 7 =
a@Q — bQ?/2 + w(f1q1 + 02q2), respectively. We can derive the non-covariance parts of the expected
equilibrium outcomes in no-sharing and partial-sharing regimes after letting F(6;) = E(s;) = E(z) =
0, where z = (01 +603)/2+e¢.. To find the covariance parts of equilibrium outcomes, we let a = 6 = 0,
E(61s1) = 03, E(012) = E(s12) = E(s22) = 03(1+p)/2, E(b152) = E(s152) = poj, E(s) = o3+0?2 ,

E(s3) = 0g +02,, and E(2%) = 05(1 + p)/2 + 02, according to our information structure. First, let
A7 =2(1-p) (202 +05(1+p) and  Ag=(1+p)* (o7, +05(1-p)?).

i) Using Lemma 5, the subtraction of expected equilibrium total output, consumer surplus and total

surplus in the no sharing game from the partial sharing game are

o e 0'622(A4—|-A5) a+w9
E( PS)_E( Ns): 4b0§A6(A13—A7) ) X Ag,

02 (Aa+05)(a+w0)? (685(A1+A7)+(5A1+7A7)(As+A5)02))

E(CSEs) — B(CSKs) = ( 32603 A2(A1+ A7)
+w2agogz(032(A4+As)((1+p)2<5A1+7A7)o?1+F1)+2A3<A1+A7>(3(A1p2+ﬁs)+16(1—P2)0i))) < A
320AZ(A1+Ar7)2 25
x . 02 (As+45)(a+w8)? (285(A1+A7)+(BA1+A7) (As+A5)02
E(TSps) — E(TSys) = (=2 a) gzbagAg(A1+A7)2 .
w2ogo? (02, (Aat+25)((140)?(BA1+A7)02 +F2)+2A5(A1+A7) (4(1—p) (2A1+A7)+A1p*+Ag)) A
320A%(A1+A7)2 ) X Az,

respectively, where

Fi = (23 —4p)(1 — p?)%05 +4(1 — p*)(24 + (1 = p)(16 + p))ogo? +16(4 + p)(2 — p)’a? ,
Fy = (97— 92p)(1 — p?)?05 + 4(8 + T1(1 — p) + 57(1 — p)?)(1 — p*)ogo? +48(2 — p)*(4 — 3p)o? .

€z

Note that a + wf > 0 by assumption, b, Ay, A5, Ag, Fy, Fr > 0 and Ay, A7, Ag > 0 at p € [—1,1].
Accordingly, E(Q¥s) 2 E(QNs), E(CSEs) 2 E(CSYs), or E(TSYs) 2 E(TSYs) if Ay 2 0. The

21



proof follows because Ay 2 0 if p 2 p by Lemma A10. Moreover, the leader’s expected profit always

increases after it shares its private information with the follower because

E(”T,*Ps) - E(WT,*NS) =

— 2
1 (02,82(80 + A5) (a+wh) |\ Aol (Aa + As) (As(2 = p)? + As)
8b Ag(Ar + Ar)og 8bA2(A; + A7)2

is positive because b, A1, A5, Ag > 0 and Ay, A7, Ag >0 at p € [-1,1].

Finally, let J = (E(715%p5) — E(757ys))/A2 and H = (E(II5y) — E(I1ys))/A2. We show below
that J < 0 at a > 5og —wf and H < 0 at a > 40y — wh. Thus, sign{E(r3%g) — E(m3ns)} =
sign{ E(IT}) — E(Ilyg) } = sign{—As}, and the expected profit of follower and expected total profit
are smaller (greater) in the partial-sharing game than in the no-sharing game at sufficiently large a
if Ay >0 (A <0)orifp>p(p<p).

Using Lemma 5 and the definitions of the profit formulas, it follows that

oJ . 720'622 (CL + wé)(A4 + A5) (2A3(A1 + A7) + (3A1 + A7)(A4 + A5)O’€22)

da 16602A2(A; + Aq)2 <0

and _
OH . 720'522 (a + w@)(A4 + A5) (2A3(A1 + A7) + (Al + 3A7)(A4 + A5)0’€22)

T 0
a 16602 A2 (A; + Ar)2 <

because a > —wf, b, A1, Az, As >0 and Ay, A7 >0 at p € [~1,1]. Moreover, when a = 509 — w¥),

J(a = 5oy — wh) = 02, (285(A1 + A7)go + 02, (Ag + As) (20795 + (3A1 + A7)o?, g1))
160AZ(A; 1 A7)?

and when a = 409 — w0,

0622 (2A3(A1 + A7) (052194 + 0'395) + 0522 (A4 + A5) (96 + (A1 + 3A7)052194))
16bAZ(A, + A7)?

H(a =409 — wl) = — .
Both of these derivations are negative because b, A1, As, As, g1, 92, 93, 94, g5, g6 > 0 and Ay, A7 >
0 at p € [-1,1], where
g1 = 2501 +26(1+ p)?0}, g2 =2A81(9+4p)oj + gio2, +12 (1 — p?) oj02
g3 = (1—p?) (1303 (1 — p?) (602 + (3+2p)oj) + 52(5 + 3p)ogo? + (200 + 56(1 — p))o? )
+208(2 + p)ol
g4 = 16A1 +17(1 4 p)?03, g5 =12(1—p?) 02 + A1(9+ 8p),
96 =16 (17+7(1 = p) + (19 + 5(1 = p)) (1 = p*)) 002,
+oy (L= p?) (07 (1= p?) (3L +44(1 + p)) +40?_ (62+37(1+p) +29 (1 —p?))).

As 8J/0a < 0 and OH/Da < 0, J <0 at a > 509 —wl and H < 0 at a > 4oy — wh, as claimed.
ii) Using Lemma 5 and the associated expected profit formulas, it follows that as b > 0,
OE(ti7ps) WAy + Ag)oh OE(my7ps)  wob(Ano? + 40202 (1 - p?))?

902 8b(Ag g A2 A T = 1A <0
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iii) Using Lemma 5, we can derive that

OE(qi’ys) 28E(q;,*NS) _ A3o?, (a+wh)
do2 T 902 200202(A + A7)
IE(diins) 6E(q2 NS) _ A0A3(As+ As) (a+ wh)
do2, 902, 2003A2(A1+ A7) (35)
OE(QNs) Ajo?, (a—l—w@)
902 4boZAZ(A + Ar)
8E(Q7\?§) . AgAz(Ay+ As) (a + wé)
902, 4bogAZ(A + Ay)

As a > —wl, b,A1,A3,As5 > 0 and Ay, A7 > 0 at p € [-1,1], the above derivations reveal that

9E(qi ns) 9E(q3ns) 9E(q1 ns) 9E(q3)n5s) oE IE(QY .
g 2 0, Tt S0, Tl S0, Tl 2 0, PHENS 2 0 and HEE S0 Ay 20

or p 2 p by Lemma Al0.
iv) First define

U=o05(4A1A702 + 02 (1+p) (A1 +3A7 +4(4 — 3p)o?)
+02(1—p)3 (1= p?)  ob +8(2 = p) (1 — p2) 0202 +16 (2 + p2) o).

We can show that

OE(qi*ys) _ 28E( i) OE(q5*Ns) _ OE(Q¥s)

do2 302 ’ do2 a 802 ,  and
OE(QNs) _ 030 2 {a+wh) (1+p) (1= p) (202 (Ag + A5)2 +U) + 160204 04 (2 — p(4 — p)))
30622 bAG(Al +A7) .

Tt is clear that 22Wins) _ 9Bhns) _ 9B(QNs) _  jf p=—1. Asa > —wh, b,A1,A5,U > 0,

o2, o2, o2,
Ay, Ay >0and 2—p(4—p) > 0if p < 2—+/2 by Lemma A10, we can see from the above derivations
that aE(ql NS) <0, aEa(QNS) < 0 and %@NS) >0at p € (—1,2 —+/2]. The signs of these partial

€z

. _
.. . OE(QYs) _ 6402 0l ol og(atw)
derlvatlves are reversed at p = 1 because —5 5% = b(A) Ag)? > 0.

O

Lemma All. Letp=1, 6 =020 (O'g +02) +o05 (02 +02) 02, 6, =030 + 02 (07 +02),

z’

03 = agafz + 0622 (crg + o2 ) 84 =108, + 02 02, and 05 = d2(a + wh)? —|—r,g12crf91(cr€21 + afz).

) . 02 0?2 o3(a+ wh) » d4(a + wb
i) Blattyg) = 2205200 F W) e - Gilated) ), and B(II5g) = ¥,y , E(rys).
2b(51 4b6
. (T (54(55 4w (51 + 646r
E. $ok _ €1 e E * % 61 6
i) (7T1,NS) 8b52§2 and E(m3 NS) 166(5252
4? 3 ol 0461 + (64 + 202 02 05)%6
iii) B(CSYys) = : 1+ 044 206,05,0)s E(TSys) = E(CSys) + E(INs).

32b62 55
Proof of Lemma A11: When p =1, 0; = 6 = 0. The expected profit of firm 4, consumer sur-
plus, total surplus are calculated from E(7%g) = E((a+wf —b(qi"vs + 3 Ns)) Ns)s E(CSNs) =
bE((¢i"vs + @5ins)?)/2 and E(TS¥s) = E(niys) + E(m3%ys) + E(CSys), respectively. Further-
more, we use E(0) = E(s;) = 0, E(0s;) = E(s;s;) = E(s;z) = 0} + 0%, E(s?) = 02 4+ 0} + 6% and

E(z?) = afz +02+462 in these calculations in light of our assumptions to prove the stated results. [J
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Proof of Proposition 6: First, let

= —LUQO'SO'El 0%, po = —30wogol ot p3 = 203(d5 — wQUeafl 02), pa = 02(205 — wioho? ol),
M5 = 03‘761 Oc, ((Sr — 2w 0—90-6210-622) He = /1/3/627 M7 = _09051 e M4, M8 = _46%w203031062

Mo = —452(,0 , M10 = 352(2550 €10'62 30&)2030'211 21 )

Y1 = 1 + p20?, + psol,, = pia /02 + pao?, 4+ 20500l Ys = s + peo’,,

Yy = —p + 702, + pisog, + po0?l,, Y5 = 5p1 4 piooe, + 405 ps0¢, /(0502 02.) + pool,,

Yo = 3u1 + (2u7 + pi0)o?, + (2us + 4035/ (0502, 02 )0, + g0,

i) Using Lemma A11, for each h € {q{*vg, @ 'ns: T ngs Mo g CONs, TSN}, OE(h)/002, =
(o2 Jol ) x OE(h)/00? . The claim follows from these derivations.
ii) Using Lemma A1ll, we have that

OE(m{'ys) o040l Vi an OE(nyins) 0408 (20207, + 0g0? 02 )Ya

R gt 1669732 (36)

As b,01,05 > 0, sign{0E(m}"yg)/002 } = sign{Y1} and sign{0E(n5%)/00? } = sign{-Y2}. As
Yi=pu + /120622 + ugafz and Ya = pa/d2 + u40622 + 25§w20327 Y1 and Y5 are quadratic in 0522

As 3 > 0, it is clear that py, s < 0. Moreover, ps is increasing in a when a obtains its lowest

possible value of oy — wé by assumption, us reduces to

ps(a = g —wh) = 283 (05(1 +w?)(02 +02) + (1~ w?)ojo? o? ), (37)
which is positive because w? = 1 as w € {-1 1} In summary, Y7 = p1 + ,uga + ugaﬁz, w1 <0,
e < 0, and psz > 0. Y7 has two real roots in a and by the Descartes’ rule of 51gns one root of Y
is positive (call it 052) and the other root is negatlve and it is not binding. As O’ >0, 01 >0 and
Yi(02, =0) = 1 <0, dE(m,ns)/002, 2 0if Y1 2 0 or 02, 2 52, as claimed.

Similarly, j2/82 < 0 and 203w? > 0 because d > 0. The number of sign changes in the sequence
of quadratic polynomial Y3 (o? ,)’s coefficients change exactly once irrespective of 4 being p051t1ve
or negative. By the Descartes’ rule of signs, there is exactly one positive real root of Y5 in 0 . As
Yz(02, = 0) = pa/d2 <0, 8E(71'2 *vg)/002 >0 if and only if 07, is sufficiently low (or 7, = 1/062 is
sufficiently high). By part i), sign{E(x} NS)/@JSI} = sign{ E(r; NS)/aUEQZ} fori =1,2.

iii) Using Lemma A11,

OE(m%* 2.
( 2,Ns) _ Ueael""; 3 (38)
do?, 8b07

2
€2

As b,6, > 0, sign{ E(n3*5)/002,} = sign{Y3}. Moreover, Y3 = 5 + ps0¢, has one real root in o

ps(a =209 —wh) = oyol o2 (262 + 30; (02 + 02)) and pe(a = op — wh) = 46205 (02 + 07,)

are both positive. As us and pg are increasing in a, s > 0 when a > 209 — w8 and g > 0 when
a > 0g —wf. These findings imply that if a > 209 — wf, then Y3 > 0 and E(n3%g)/002, > 0
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However, if a = 09 —wf and 0} < 02 02 /(2(02 +02)), Y3(02, = 0) = ps < 0 and we can show that

OE(m5 v g) 02 0% (02 02 —202(02 +02))
) <0=YV2<0= 2 < €€z €1 € AN €1 39
80622 = 3= O, > 452(0-€2z+0—€21) ( )
iv) Using Lemma A1l direct computations show that
6E(7TT,*NS) _ _5265030—621 0622052z 0
do? 4b63 T
0E(CSNs) 03031 0522 (26102((a + wh)? + w?03) + 55‘73‘75210622) -0 (40)
do2, 16b63 ’
OE(TSyg) 040202 (2020502, + 0502 02 (601w + 05)) -0
do2, 16653 ’
because a + wh > 0 by assumption and b, 61, da, 95 > 0. Similarly, we have
OB(lys) _ 030202 (15 — 200w’0j0?, 02,02 4 OB(IY) _ ogocYa (41)
= . an =
do2, 8b63 do2 1665362

by Lemma All. Note that us > 0 when a > 20y — wf by our proof in part 4ii). Thus, when
a > 209 — wh, we have that E(Ilxg)/002, 2 0 if 02, S ps5/(26,w0302 02) by (41). Moreover,
sign{ E(ITYg) /002 } = sign{Y,} because b, 81,82 > 0. As Yy = —puy + 702, 4 pso, + pool , -pq > 0,
png < 0 and pg < 0, the number of sign changes in the sequence of polynomial Y4(0€22)’s coeflicients
change exactly once irrespective of 7 being positive or negative. By the Descartes’ rule of signs,
there is exactly one positive real root of Y; in 02,. As Yy(02 =0) = —py > 0, 0E(ITxg) /002 > 0
if and only if o2, is sufficiently low. By part i), sign{ E(II}g)/002 } = sign{E(Il}y¢)/00? }.
v) Using Lemma All, we can compute that
OE(CSys) o040l Ys OE(TSYs) o040t Ys

— d = . 42
002, 3200902 002, 3200302 (42)

Moreover, using b, 1, 0, > 0 and our finding in part i), sign{ E(CSy’) /002 } = sign{E(CS3's)/002 }
= sign{Ys} and sign{E(T'S¥s)/002 } = sign{ E(T'S}/s)/002 } = sign{Ys}.

Note that ps > 0 at a > 209 — wf by part iii), gy < 0 and pg < 0. Thus, irrespective of the sign
of 19, the number of sign changes in the sequence of polynomial Y5(0€22)’s coefficients change is two.
So, Y5 has zero or two positive real roots in 0622 by the Descartes’ rule of signs. To see that it has two
positive real roots at a > 209 — w6, limg2 o 8E(CS}"\}"S){80621 = 1.25lim,2 o OE(CS¥s) /002 =
—5w?ogod /(32b63) < 0 and when 02 = 07, a = 209 — wh, and w € {—1,1},

OB(CSYs) 1408 08 + 690502 ol (02, +02)) + 66050202 (02, + 02.)* + 160§ (02 + 02 )?

€1 "€z €1 "€z €1 "€z

> 0.
do? 32b0, ‘o 03 (0302 + 02 (03 + 202))3

Since OE(CSyg)/0a > 0, 0E(CS3s)/002 > 0at 02 = o} and a > 209—wf. Thus, IE(CSyy) /002
< 0if 7, = 1/02, is sufficiently low or high and it becomes positive if 7, takes intermediate values.

Lastly, 1 < 0, ptg < 0, and g = 27 + 10 > 0 at a > 209 — wh as we show below. Thus, the
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number of sign changes in the sequence of polynomial Y6(0'622)7S coefficients change is two. So, Yj
has zero or two positive real roots in 0522 by the Descartes’ rule of signs. To see that it has two
positive real roots at a > 30y — w8, limgz o OE(TSyg)/002 = 0.25 limgz o OE(TSys)/002 =
—3w?ogo? /(32b63) < 0, and when 02, =03, a = 309 — wh, and w € {—1,1},

OE(TSys) 1608 05 + 840502 02 (02 + 02 )? + Thojol ot (02 + 02) + 280§ (02, + 02.)*

€1 €z €1 " €z €1 " €z

> 0.
do? 32bo, ‘o *03(0302 + 02 (02 + 202))3

€

Since OE(TS}s)/0a > 0, OE(TS¥)/002 > 0 at 02, = 07 and a > 309 — wh. The same result
holds at a > 209 — wf at sufficiently large o3. So, OE(T'Syg)/002 < 0if 7., = 1/02, is sufficiently

low or high and it is positive if 7., takes intermediate values. Lastly, since g increases in a and

g(a =209 — wh) = 60502, 02 ((8 — Tw?)o?2 02 + 205 (4 + w?) (02 +02)) > 0, (43)
it holds that g = 2u7 + p19 > 0 at a > 209 — wé, as claimed above. O

4 Differentiated goods Stackelberg model of Section IV

Let n = 2. Each firm i produces a differentiated product at a price level of p; and at a production

level of ¢;. We consider the following linear inverse demand curve
pi = a+ 0 —bg; — bAg;, i#j, 4,J€{l,2}, (44)

where 6 is a random variable with mean § > 0 and variance 05, a > 0 is the observed demand
parameter, —b < 0 is the known slope parameter, and A € [0, 1] is an inverse measure of product dif-
ferentiation in the market. When A = 1, products are perfect substitutes and no longer differentiable
as in the main text. On the other hand, when A = 0, products are unrelated. We normalize the unit
cost of production to zero. The remaining assumptions of our base model in Section I of the main
text are valid. Consumer surplus is given by CS = (a+0)(q1 + ¢2) — b(quﬂ —bAq1g2 — Z?:l Pjq;-

In the Stackelberg model, firm 1 first chooses its optimal quantity level ¢ after observing its
private signal s;. The follower firm 2 conditions its optimal quantity level on both its private signal

s2 and on the quantity level ¢;. Cumbul (2021) derives the unique linear PRE in this model.

Lemma A12. (Cumbul, 2021) In the two-player differentiated Stackelberg (DS) quantity-setting

game, the unique linear PRE quantities of the leader and the follower are given, respectively, by

(202(1 = \) +02(4 —3\)((a+ 0)o? + (a+ s1)02)
2b(02 + 05)(03 + 203)(2 —\2) ’

qT,DS(Sl) =

. .y _ la+sz)of . (2= XN*)(0Z + 77) A
42.05(52:01.ps) = 3097 202) " os(5T No2 + (1= 3\)oZ 2 )

The equilibrium quantity of the follower is a strategic complement to the leader’s quantity for
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any A € [0,1]. When A = 0, each firm produces the monopoly outcome, i.e., E(q} ps) = E(q5 pg) =
(a+0)/(2b). When X\ = 1, this lemma becomes a special case of Lemma 2 of the main text at n = 2.

Next, we provide our results in our horizontally differentiated goods model.

Proposition 10. Let A € (0,1]. Whereas the expected production and profit of the leader, total
output, consumer surplus, and total surplus increase, the expected production of the follower decreases
with more precise information and higher prior uncertainty. Moreover, the expected total profit

increases with more precise information and higher prior uncertainty if 2 /o2 > (2—X2)/(2A(1—\)).

Thus, our comparative statics in Proposition 2, which were done for A = 1 and n > 2, are robust
at any A € (0,1] and n = 2.

Proof of Proposition 10: i) The PRE outcomes are provided in Lemma B11 of online Appendix
B. These values are from Cumbul (2021). Using this lemma,

9E(qi ps) _ Aog(a+0) 0E(a3.ps) _ A2 (at0)

507 = w2 <O T ot = maEa)erieen? > U
9E(Qps) _ _ _Adg(2=N)(at0) <0
902 T T 4b(2—2%)(02+4202)7 J
OE(ps) _ _ Aog(A(1=No2—(2=X)?03)(a+0)* _ 05(8y102+16ys0705+2y30205+8ya0f)
do2 - 8b(2—>\2)2(052+203)3 32b(2—k2)2(0624-0'5‘)2(0?-&-205)3 ’ (45)
OE(n{ ps) _ W oy (4(1=X)o8+4(6(1=N)+A*) o 02+ (48(1—N)+11A}) o205 +8(2—N)0)) 0
a0z~ Wo— 8b(2—X2)(02+02)2(02+203)° <Y,
OE(CSphg) _ W, — g (dys 08 +8ysotar+yrolos+dysoy) <0
902 1 326(2—X2)2(02+02)2(02+202)3 g
OE(TSps) _ W — 05 (4(2y1+y5) 00 +8(2ys+ys) ot op+(2ys+yr) ot oy +4(2ya+ys) og) <0
902 - 2 326(2—22)2(02+02)2(02+202)3 ’
Where 242 2 243 n\2
WO _ 205\ (0Z+05)° (a+6)
8b(2—>\2)(02—&-0‘3)2(0'?-{-203)3 ’
Wy = Aoa ((6—4A+(1=X)%(24+4X0) o2 +(2=N) (5+(1=N)(3+5N))03) (a+0)?
16b(2—X2)%(02+207)3 i} J
W, = Aog((2(2(1=N)+2-2))o2 +(4—2})(4=3)\)o2) (a+6)>
16b(2—X2)2(024207)3
and

Y1 = 248(1=N)+(1=N)2(24A(4+N)), & Yo = 44+17(1=N)+7(1=N)2(1+)),
Y3 = 37T+H176(1—A)+(1—N)2(139+(70—270)N), & Yq = (2=N)(B+15(1—N)+(1—1)2(6+7N)),
Ys = 24+10(1—N)+A(6+2)(1-1)2, & Yg = 5+23(1—A)+3A(5+A)(1—N)?,

Y7 = 434282+ (1—A2)(162+108(1—A\)+39(1—22)), & yg = 5+6A+(1—A2)(24+14(1—A)+5(1—22)).

As bya+0,0%,02 >0, y; > 0 for each i = {1,2,..,8}, and X € (0, 1], the above inequalities follow.
Moreover, 0E(I1},4)/0c? < 0 if its first summation term is negative, or if 02 /o7 > (2 —\?)/(2\(1 —
A)).

Using our above findings and Lemma A12, for each | € {q¢} pg, 45 ps: @bs}, OE(1)/dof =
—0?/og x DE(l)/00? > 0. For I € {7} pg, Mg, CShg, T'ShHs}, let E(l) = E(l) | ,—j—o be the covari-
ance parts of the related expected equilibrium outcomes. Thus, for each | € {7} pg,CS} s, T'S)s},
OE(l)/003 = E([)/og —02/03 x OE(1)/d0? > 0 because OE(1)/0c? < 0 by our above findings and
E(l) > 0. Lastly, dE(IT}g)/d0f = E(Ilhg) /03 — 02/02 x OE(I}g)/d02 > 0 if 62/0F > K =
(2 = A2)/(2A(1 — \)) because OE(IT ) /802 < 0 if 62 /03 > K and E(IThg) > 0. O
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5 Proofs of the supply chain model of Section VI

Proof of Lemma 6: Let Wns = 1o + M50 + 12z and §;(Wns) = 13 + 1nas; + N5WNs + Nz be the
PRE wholesale price of the manufacturer and output of retailer i € N, respectively. We use the

backwards induction method to solve for the seven constants, 79,71, ..., 7. The retailer i maximizes

Lw, 2) = E((a+ 0 — bQ — w)q; — Ag?|si,w, 2). (46)

max F(
qi

The FOC gives the best response of any retailer ¢ to the changes in w as

+E(0]si,w,z)—w—=b3 . i (n3+maE(sj|ss w,z)+nsw—+ne z)
Qi(w) =N3 + MS; + 5w +Nez = : Lt ‘7€N’§?b+71\3) MR ) (47)

In a PRE, the retailer perfectly infers the private signal of the manufacturer from the manufacturer’s

strategy, w = 1o + n180 + M2z, as so = (w — Ny — N22) /M, which implies that

E(Sj|sivwvz) = E(sj‘sivso = (w — 7o — 7722)/77172)’

(48)
E0|s;,w, z) = E(0s;, 80 = (w—1n0 — 1n22) /11, 2)-
Similarly, the manufacturer chooses w to maximize
max B (7, |50, 2) (W) gi(w)]s0,2) = E(w(n(ns + nsw +nez) +na Y _ si)|s0.2). (49
i€EN iEN
The FOC is
—((n3 +me2)n + 11 3y E(si]50, 2))
w =1 + MSo + N2z = 5 eN . (50)
ns
Moreover, by Lemma A9 at p =1, for j € N, j # 1,
o2 o o524 02 (05(02 so+ 02 s;)+ 02 o2 6)
E(0|si, 50, 2) = E(sjlsi, 50, 2) = —"— o 5 0 5 5 S,
€Em_ €Ep (Uez + 00) + 0'620'9 (Uem + Uer) (51)

20 2 2 2 2
og(0Z 50 +0Z z)+ ol ol 0
2 52 1 52 (52 2
9¢.% + g, (Uem + ‘70)

E(s;|s0,2) =

We first substitute the first two conditional expectations in (51) into (47) by using (48). Second,
we substitute the third conditional expectation in (51) into (50). Then, we get seven equations
with seven unknowns from (47) and (50). By solving them, one can then derive the equilibrium
constants n;, 1 = 0,1, ...,6 as stated in the lemma. The second order conditions would hold because
2 2 A(w
O EBirr;) gé;"i) =-2(b+ ) <0 and 9 B(matg (w,ai(w)) E(”gg(;f’q‘( ) — 2nns < 0 as 15 < 0 for n,afz,afr,afm,ag,b >0
and A > 0. O
Proof of Lemma 7: Note that Ly = Ly 4+ 202 (b+ M) L3, L1 = 202 (b+ \) L3 + 02 02 072\ +

b(n+1)), and Ly = 062 02 + (02 + 02 )oj by definition in Lemma 6. It follows from the text that

2
1 40 Ly(b+)) .
TP — Ta(2arb(niD)) Which

the wholesale price signaling effect (SE) is measured by SE = ns; +
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is positive as b, Lo, L3 > 0 and A > 0. The claims in the lemma follows because

OSE ol OSE ol OSE 4ol ol og(b+))

— = Ez — — 0
do? ol 002 ol 0o L3 <5
OSE _ —8bog, LiLs(b+2) _ g OSE _402al L Lsb+))
on — L32x+b(n+1)2 902 L2 :

O

In the following lemma, we derive the equilibrium outcomes in the no-sharing supply chain model.

Lemma A13. s 9 o _ B
N no: o’ a+6 - L 0
i) E(Qns) = nB(Gins) = —=7 329( ) ana E(iys) = %
1 1
3 _ no? o2 o2l _ o502 +0%)
“) E(WMU,NS> — %((a_,_ef + ‘“7"1)
AL? Ls
454 gAp ) - 20402 02 4 (02 1+ o2 o2
iii) B(7p, ns) = %92()((@4%)2 L0 + of(402 o2 L(oez aem)a(,))'
1 3
~ bnot ot ot ~ 20402 62 4+ (02 + 02 o2
iv) B(CSys) =~ 7% (n(a+0)? + 402 + 10549, oc, L(% Ten)%0)y
1 3

v) E(TSns) = E(7u,ns) + nE(7R, vs) + E(CSns).
Proof of Lemma A13: By definition, the PRE outcomes are Qng = Yien Gins = n(nz +
NsWNs + 162) + 1Sk, SR = D ey Sis PNs = a+ 0 — bQns, E(7r, ns) = E((Pns — Wns)diNs —
A ns), E(fayns) = E(bnsQns) and E(CSns) = bE((Qns)?)/2, and E(T'Sys) is given by v).
We obtain the stated results by using these definitions, Lemma 6 of the main text, E(s;) = E(z) = 6,
for i # j, 4,5 = 0,1,....n, E(s;s;) = E(sif) = E(s;z) = E(0z) = 0} + 0%, E(z?) = 02 + 0} + 62,

E(s}) = 0% +03+ 0% for retailer i € N, E(s?) = 02 + 0} + 62, Cov(sg, Sg) = Cov(z, Sg) = nof,

Var(Sg) = n(noj + o2 ), and Cov(s;, Sg) = noj + o2 . The auxiliary calculations in Mathematica

12.1 are in online Appendix B. O

Proof of Proposition 7: i) As we show in online Appendix B, the full information equilibrium
production level of each Cournot retailer is ¢; pr = (a+6)/(4A\+2b(n+1)). By the symmetry among

retailers, expected equilibrium total surplus in full information regime becomes

n(6A +b(4 +3n))((a + ) + 02)
8(2\ + b(n + 1))2 '

E(TSpr) = (52)
Similarly, when the retailers produce identical outputs, the full information first efficient level is the
level that maximizes total surplus. At the first best level, each firm produces (a + 6)/(2A + bn) and

the expected total surplus is ~
n((a+0)+o?)

E(TSrp) = =5 1 2n

(53)

Using Lemma A13-v), as n approaches oo, the expected PRE total surplus (E(T~SNS)) in our

incomplete information no-sharing game converges to

€m

~ 9_2 2 4 2 2 3 2/ 9 9
lim E(ingj\/s):g(aJr ) +U‘9( Oc.0c, T 09(06z+06m)).

4
n—o0 8b 8bLs (54)
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Using (52) and (53), limy, o E(TSpp) = S0 F% and lim,, o0 B(TSpr) = 290400 Thys,

S5
. o2 0?2 o

1. E T o E T — €z Em

Jim (E(T'Sns) — E(TSFr)) TSl >0 (55)

and

lim (E(TSpp — E(TSNs))) = (a+0)* (02 +Uem)09

n=roc 8 8Ly " (56)

because b, sz,afm,ag, Ls > 0.

ii) By Proposition 8-iv), 0E(T'Sns)/002 < 0. As 8E(7;SF1)/30627‘ = 0, it becomes a corollary
that (8E(T~SF1 — fSNs))/OU?T > 0. Moreover,

- - 02 02 no2(2\ + b(n +4))
lim E(TSp;—T =t tm 0
o2 50 (T'Srr = T8ns) 8Ls(2X + b(n + 1))2
n(6A +b(3n +4))((a + 0) + 02)
lim E(TSp;—T
i B Srr—TSs) = 82\ + b(n + 1))2

<0

(57)

Altogether, E(TSp;) < E(TSys) if and only if o2 € [0,62) for a unique 62 > 0; that is, the

precision of the retailers’ signals is sufficiently high. O

When the precision of retailer 1’s signal, say 1/ 062”, is different than the precision levels of the
remaining n — 1 retailers, say 1/ crfrz7 the equilibrium strategies of the retailers involve asymmetries

as shown by the next lemma. This lemma will be used in the proof of Proposition 8-ii).

Lemma A1l4. In the no-sharing game with asymmetrically informed retailers, the unique linear
PRE strategies of the manufacturer, retailer 1, and any retailer j # 1 are given by wns = Ty +

Tiso+Toz, qi,ns = T3 +Tysy +Tsns + Tez, and Gj ns = Tr +Tgs; + Tg@Ns +Tioz, respectively,

(aL3+002 o2 )(Hs+Hy+Hs) o2 05Ty o T HoT
where To = L = e e D= T o= ol = g T =
m ez h
n(Hs+Hs) 7T( . 1) T — Hy+Hs 4L306205m09(b+>\)(0671 067'2) T —
(Hs+Ha+Hs)(2A+b(n+1)) 9 9 = (Hs+Hi+Hs)(2 +b(n+1)) Hs+H,+Hs » 46—
2no? o2 o2H
Tio=0, and Ty = - 2Zem 071 aphere

Hs

H;, = 2L3(b+)\)0€2” b+ 2)\)090 02, for i=1,2,

Hs =4n(b+ \) (LgO’ + 02 02 02)Hy + 2bo? 02 o2n(n—1)Hy,
Hy=—202 02 05(2)\ +b(n+1))((n—1)0? oc., T O’€T2)(bL3 +Xo? (02 +0})),
Hs = —02 ot 05(2A+b(n+1))(bo2 n+2X\(02 n+ a?rl (n—1)+ O’?TZ ).

€m ez

Proof of Lemma A1j: The proof of this lemma is done in online Appendix B by following similar

2
steps to the proof of Lemma 6. The second-order conditions would hold because 332 = =2(b+)) <

oty 2n(H4+H,
0 and Ze = 2(Ts + Ty(n — 1)) = grrmomsimmry < 0 as Ha+ Hs < 0, Hy + Hy + Hs > 0,
b>0,A>0,and n > 1. When O'S'rl = 037,2 = 052,,, or n = 1, this lemma coincides with Lemma 5-7)

of the main text. O

Proof of Proposition 8: i) Using Lemma A13 straightforward calculations show that for each
E(h) ol OE(h)

€z

h € {q7 NS,U)NS’T"R N577TM07N5,CSN5,TSN3}, 902 oi. BoZ - The claim follows from these

€m
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derivations.
ii) Using Lemma A13-ii), OE(7py,ns)/002 = nogot Z1/(AL3L3), where

Xo=—(2X+b(n+1))%050¢ b, X;=—6L3(b+ N2\ +b(n+1))ogol ot
X, = 8L§(b—|—/\) (Ls(a+0)2 +03(05(c2 +02)—0? 02)), and Z; = Xo+ X102 + Xp0?

€m

Note that sign{OE(Ta,ns)/002 } = sign{Z1} because Ly, Lz > 0. Moreover, X, < 0 and
X7 < 0 because b > 0, A > 0, and n > 1 by assumption. Here, Xo > 0 because X, is increasing
in a, a > oy — 0 by assumption, and Xz(a = 09 — ) = 16L305(b+ X)?(¢2 + 02 ) > 0. Thus, the
number of sign changes in the sequence of quadratic polynomial Z; (o2 ' )’s coefficients change once.
By the Descartes’ rule of signs, there is one positive real root of Z; in 0 . As Zy(0? =0) = X, <0,
OEma, Ns/00? > 0if and only if o? is sufficiently high (or 7., = 1/0’6T is sufﬁ(nently low).

iii) Without loss of generality, suppose only retailer 1 acquires better information. Thus, the
equilibrium strategies of the retailers become asymmetric and the unique PRE strategies of firms
are given by Lemma Al4. By using this lemma, for ¢ # j, i,j = 1,2, ...,n, the partial derivative of

the PRE expected profit of retailer 1 evaluated at the symmetric precision levels is

OE(TR, NS) —ol ot oj(b+ N)(Ls(b+ N)(a+0)? + Hg + 2n(n — 1)b%c? o2 o4/Hy)
o2 Ty =, n(Hy + bno? o2 03)? ’

67«1

which is negative because b, L3, H1, Hg > 0, n > 1, and A > 0, where
Hg = 2nL3(b+ /\)afr1 + 02X+ b(n+1))ogo? o2 + (b+ A) (02 + o2 )og.

This finding proves the claim. Finally, when n = 1, this derivative naturally coincides with the
partial derivative of E(7g, ns) with respect to o2 from Lemma A13-iii).
iv) It follows by part i) that for each h € {Q,CS, TS}, sign{ 8E(hNS)} = sign{ ag:fs }. By

using Lemma A13, direct computations show that

OE(Qns) _ —moc ot o5Ls(b+))(a+0) 0
do?2 - L3 <0,
BE(CSNS) bno’?zagmag(nLg(b+A)(a+é)2+L1+2aea€22U?m(n 1)(b+2z\)+no’§(b+)\)(afz+ofm)) 0
00'2 2L3 <Y,
OE(TSys) _ 1070t od (LabiN) (Latbo? o2, 03)(a+0)? +3 X ) 0
o2, 2L3 )
dE(QNS) (b+A)(a+9)a o‘eafz 0
do? L2 >0,
8ECS)CSN5) RN —aEa(c;st) oty 00, oblor, Latnol ol 08) o ¢
o L3G’€7n o2, 8L{L3
BEE()TSNS) _ afza%ag _aEa(T;sNS) n nol ol of(4bo? L3+c;€zzg€m09(2A+b(n+4))) <0
o’Em LsoZ o2 8LiL3 ’
~ v 4 ~
o
BES((CTQZNS) _ ;;n % 8E(';(Q2NS) >0,
<o em
OE(CSNs) _ Tep o OE(CSns) | bn0e00,05 o
do? - ot do? 8L7
€g 6 €m
OE(TSns) _ oe.  OE(TSns) WEZUE,,L09(2L2+05206,”09(2/\+b(n+2))) -0
d0%, — oi X 002, SL2 ,
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where
X3 =02 02 Li(b+2\)+205(02 +02 )(b+N)?(202 L3 + 02 02 0})

€m €m €z €m

—|—ba€22 o (b+ )\)(4062TL3 + Ug (40622 o2 + nag(afz + O’?m))).

€m €m

The above inequalities follow because Ly, L2, L3, X1, X3,a,b,0% ,02 02 > 0,n > 1,0 > 0, and

Y E€m? Y €Ep

A>0. O

Proof of Lemma 8: Let Wwpg = o + 6150 + S22 and §;, ps = 3 + S48; + S5Wps + S62 + S7S0 be
the linear equilibrium strategies of the manufacturer and the retailer in the partial-sharing game for

some constants <g, 1, ..., $7 € R. Our aim is to solve for these 8 constants. Retailer i € N maximizes

si,w,z,80) = E((a+60—bQ —w)g; — )\qﬂsi,w, 2,80)- (58)

max E(mg,
qi
The FOC implies the best response of any retailer 7 to the changes in w as
¢i(w) = 63+ 45 + 5w + 62 + $750

a+ E(0|s;,w, z,80) —w — ij;ei,jeN(gfi + G FE(sj|si,w, 2, 50) + 5w + 62 + $750) (59)
2(b+ \) '

The supplier solves max,, E(w ) ;. ¢i(w)) = maxy, E(w Y ;o n(s3 + S48i + 5w + 62 + 5750)[ 50, 2)-
The FOC gives

—((s3+ <6z +srs0)n + <4 2 ;en Elsilso, 2))
2ngs '

w =g+ <150 + 2z = (60)
Note that E(0|s;,w,z,s0) = E(0|si,z,s0) and E(sj|s;,w,z,50) = E(sj|s;, z,50) because so has
already shared to the retailers. First, we substitute the conditional expectations, E(0|s;, so, z) and
E(sjls;, so, z) from (51) into (59). Second, we substitute the value of E(s;|so,z) from (51) into (60).
Then, we get eight equations with eight unknowns from (59) and (60). By solving them, one can

then derive the equilibrium constants ¢;, ¢ = 0,1,...,7 as stated in the lemma. The second order

2 2 i (w
conditions hold because %7;1’) =—-2(b+ ) <0 and W =2n¢s < 0 as ¢5 < 0 for
n,a?z,afr,afm,ag,b>Oand)\ZO. O
Lemma A15. i) E(Qps) = nE(Gi ps) = 2(2%% and E(wpg) = “;é.

s m ooz +az, )

i) B(Tu,ps) = gty (@ + 0)? + =5 =),

- - 172 2 02 02 02 02 9\2 04 02 02

iii) B(7r, ps) = BT, ns) + 20t e e I (14 2 e )
. ~ ~ 2 ~ ~

ZU) E(CSps) = E(CSNs) + % X E(TrRi’ps — 7TR1-,NS)-

v) E(TSps) = E(CSps) + E(7a,.ps) +nE(Rr, ps).

Proof of Lemma A15: The proof of this lemma can be done similarly to the proof of Lemma
A13, and it is contained in online Appendix B. O
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Proof of Proposition 9: i, ii) Using Lemmas A13 and A15, one can obtain

—Lso? ' (b+X)(a+0)

E(wps —Wng) = Ly <0,
. nLso? (b+\)(a+0)
B(Qrs = Qus) = "o > O .
) nL20h (b4N)2(a+8)> og(o2 +o? )
E PS — TMy,NS) = 22(2)\+b(n+1)) (1+ OLS(GJF@)Z ) >0,

tij

Lgogr(b+/\)2(L3:7?T(b+)\)+azza?n103(2/\+b(n+1)))(a+§)2( ag(azz+afm)) =0
9

(w

(

(Tar

( R;,PS — 7TR1,NS) LZ(@A+b(nt1))2 L3(at0)2
(

(

2 - ~
E CSPS —CSNS) = 2(67-11-/\) X E(?TR PS —TR; NS) > 0,
. __ nLgoZ (b+A)(Lgo?, (b+>\)(2>\+bn)+L1(2>\+b(n+2)))(a+9)2 og(o2 +02 )

E TSPS TSNS) - 2L2 (23 +b(n+1))2 (1 L3(at6)2 ) >0

because L1,L3,b>0,n>1, and A > 0. O
) ) ) K
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