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OA Proofs for Section I

Proof of Lemma 1. Before we begin, as a matter of notation, when we consider the
concatenation ht t hτ = (xs,ds)s<t+τ of two histories ht and hτ , with hτ = (x̃s, d̃s)s<τ , then
for all s = 0, ..., τ − 1 we take (xt+s,dt+s) to be (P−1

zt (x̃s), d̃s), where zt is the status quo at
time t under the history ht.

Fix an SPE σ and a history ht with status quo z = z(ht). Consider strategy profile σ̂
such that, for i = 1, 2 and for each history hτ , σ̂i(hτ ) = σi(htthτ ). Assumption 1 guarantees
that σ̂ is a SPE of the game. We now show that, for i = 1, 2,

V σ
i (ht) = zi + (1− z1 − z2)V σ̂

i (h0).

Suppose for a contradiction that the result is not true. Then there exists ε > 0 and
j ∈ {1, 2} such that |V σ

i (ht)− zj − (1− z1 − z2)V σ̂
j (h0)| > ε. Pick T such that (1− δ)δT <

ε/4. Consider strategy profiles σT and σ̂T such that: (a) for all histories hs with s ≤ T ,
σT (ht t hs) = σ(ht t hs) and σ̂T (hs) = σ̂(hs), and (b) for all histories hs with s > T , both
players reject all proposals at history ht t hs under σT , and both players reject all proposals
at history hs under σ̂T .1

Since (1 − δ)δT < ε/4, for i = 1, 2 we have |V σ
i (ht) − V σT

i (ht)| < ε/4 and |V σ̂
i (h0) −

V σ̂T

i (h0)| < ε/4. Therefore, since |V σ
j (ht)− zj − (1− z1 − z2)V σ̂

j (h0)| > ε, we have

|V σT

j (ht)− zj − (1− z1 − z2)V σ̂T

j (h0)| > ε/2.

For each history hT of length T , let (V σ̂T

i (hT ))i=1,2 (resp., (V σT

i (ht t hT ))i=1,2) denote
players’ continuation payoffs at history hT under σ̂T (resp., at history ht t hT under σT ).
Let z(hT ) denote the status quo under history hT , and z(ht t hT ) = z + (1− z1 − z2)z(hT )
the status quo under history ht t hT . Note that:

V σ̂T

i (hT ) = probz(hT )(x ∈ Aσ̂(hT ))Ez(hT )[xi|x ∈ Aσ̂(hT )]

+ (1− probz(hT )(x ∈ Aσ̂(hT )))zi(hT ),

where Aσ̂(hT ) is the set of policies that both players accept under σ̂, and where the equality
follows since policy doesn’t change after time T under σ̂T . Similarly,

V σT

i (ht t hT ) = probz(htthT )(x ∈ Aσ(ht t hT ))Ez(htthT )[xi|x ∈ Aσ(hτ t hT )]

+ (1− probz(hτthT )(x ∈ Aσ(hτ t hT )))zi(hτ t hT )

= probz(hT )(x ∈ Aσ(hT ))Ez(hT )[zi + (1− z1 − z2)xi|x ∈ Aσ(hT )]

+ (1− probz(hT )(x ∈ Aσ(hT )))(zi + (1− z1 − z2)zi(hT ))

= zi + (1− z1 − z2)V σ̂T

i (hT ),

where the second equality uses Assumption 1.

1We stress that σT and σ̂T need not be equilibria of the game.
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Suppose that V σ̂T

i (ht t hs) = zi + (1 − z1 − z2)V σT

i (hs) for histories hs of length s =
τ + 1, ..., T . Consider a history hτ of length τ . Let z(hτ ) be the status quo under hτ , and
z(ht t hτ ) = z + (1 − z1 − z2)z(hτ ) the status quo under ht t hτ . For each x ∈ X, let hxτ+1

denote the history of length τ + 1 that follows hτ if policy x is implemented at time t. Then

V σ̂T

i (hτ ) = probz(hτ )(x ∈ Aσ̂(hτ ))Ez(hτ )[(1− δ)xi + δV σ̂T

i (hxτ+1)|x ∈ Aσ̂(hτ )]

+ (1− probz(hτ )(x ∈ Aσ̂(hτ )))((1− δ)zi(hτ ) + δV σ̂T

i (h
z(hτ )
τ+1 ))

Similarly,

V σT

i (ht t hτ ) = probz(htthτ )(x ∈ Aσ(ht t hτ ))×

× Ez(htthτ )[(1− δ)xi + δV σT

i (ht t hxτ+1)|x ∈ Aσ(ht t hτ )]
+ (1− probz(htthτ )(x ∈ Aσ(ht t hτ )))((1− δ)zi(ht t hτ ) + δV σT

i (ht t hz(htthτ )
τ+1 ))

= probz(hτ )(x ∈ Aσ̂(hτ ))×

× Ez(ht)[zi + (1− z1 − z2)((1− δ)xi + δV σ̂T

i (hxt+1))|x ∈ Aσ̂(hτ )]

+ (1− probz(hτ )(x ∈ Aσ̂(hτ ))×

× (zi + (1− z1 − z2)((1− δ)zi(hτ ) + δV σ̂T

i (h
z(hτ )
τ+1 ))) = zi + (1− z1 − z2)V σ̂T

i (hτ ).

Hence, V σT

i (ht)− zi − (1− z1 − z2)V σ̂T

i (h0) = 0, a contradiction.
In the case of RME, the same contradiction follows if we take σ̂ = σ. �

OB Proofs for Section III

Proof of Lemma 3. We start with part (i). For each z ∈ X, Ez[·] is the expectation
operator under distribution Fz. Let E[·] be the expectation operator under distribution
F0 = F . We prove the result by induction.

Consider a subgame starting at period t = T with status quo zT = z ∈ X. Note that

Vi(z, T ;T ) = Ez[xi] = zi + (1− z1 − z2)E[xi],

where the first equality follows since, at time T both players accept any policy, and the
second equality follows from Assumption 1.

Now, consider the game with deadline T = 0. Player i’s equilibrium payoffs satisfy
Wi(0) = E[xi]. Hence,

Vi(z, T ;T ) = zi + (1− zi − zj)Wi(0)

which establishes the basis case.
For the induction step, suppose that (5) holds for all t such that T − t = 0, 1, ..., n − 1

and for all z ∈ X. Fix a subgame starting at period t̃ with T − t̃ = n and with status quo
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zt̃ = z ∈ X. We abuse previous notation and in this proof let Az(t̃) be the set of policies
that both players accept at period t̃ when zt̃ = z; that is,

Az(t̃) =
{
x ∈ X(z) : (1− δ)xi + δVi(x, t̃+ 1;T ) ≥ (1− δ)zi + δVi(z, t̃+ 1;T ) for i = 1, 2

}
=
{
x ∈ X(z) : (xi − zi) ≥ (x1 + x2 − z1 + z2)δWi(T − t̃− 1) for i = 1, 2

}
,

where the second line follows since, by the induction hypothesis, (5) holds for t = t̃+1. Note
then that

Vi(z, t̃;T ) = prob(x ∈ Az(t̃))Ez

[
(1− δ)xi + δVi(x, t̃+ 1;T )

∣∣x ∈ Az(t̃)
]

+ prob(x /∈ Az(t̃))
(
(1− δ)zi + δVi(z, t̃+ 1;T )

)
= prob(x ∈ Az(t̃))Ez

[
xi + (1− x1 − x2)δWi(T − t̃− 1)

∣∣z ∈ Az(t̃)
]

+ prob(x /∈ Az(t̃))
(
zi + (1− z1 − z2)δWi(T − t̃− 1)

)
= prob(x ∈ Az(t̃))Ez

[
(xi − zi) + (z1 + z2 − x1 − x2)δWi(T − t̃− 1)

∣∣x ∈ Az(t̃)
]

+ zi + (1− z1 − z2)δWi(T − t̃− 1) (O1)

where the second equality follows since, by the induction hypothesis, (5) holds for t = t̃+ 1,
and the last inequality follows since prob(x /∈ Az(t̃)) = 1− prob(x ∈ Az(t̃)).

Consider next a game with deadline T − t̃. Let Ã be the set of policies that both players
accept at the first period of the game:

Ã =
{
x ∈ X : (1− δ)xi + δVi(x, 1;T − t̃) ≥ δVi(0, 1;T − t̃) for i = 1, 2

}
=
{
x ∈ X : xi ≥ (x1 + x2)δWi(T − t̃− 1) for i = 1, 2

}
,

where the second line follows since, by the induction hypothesis, for all Vi(x, 1;T − t̃) =
xi + (1− xi − xj)Wi(T − t̃) for all x. Player i’s payoff in this game is equal to

Wi(T − t̃) = prob(x ∈ Ã)E
[
(1− δ)xi + δVi(x, 1;T − t̃)

∣∣∣x ∈ Ã]+ prob(x /∈ Ã)δVi(0, 1;T − t̃)

= prob(x ∈ Ã)E
[
xi − (x1 + x2)δWi(T − t̃− 1)

∣∣∣x ∈ Ã]+ δWi(T − t̃− 1) (O2)

Assumption 1 implies that

prob(x ∈ Az(t̃))Ez

[
xi − zi + (z1 + z2 − x1 − x2)δWi(T − t̃− 1)

∣∣x ∈ Az(t̃)
]

=(1− z1 − z2)prob(x ∈ Ã)E
[
xi − (x1 + x2)δWi(T − t̃− 1)

∣∣∣x ∈ Ã] .
Combining this with (O1) and (O2),

Vi(z, t̃;T ) = zi + (1− z1 − z2)Wi(T − t̃).

which establishes the result.
Now let us turn to part (ii). The proof is again by induction. Consider the game with

deadline T = 0. Since it is optimal for both players to accept any alternative x ∈ X that
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is drawn, player i’s payoff in this game satisfies Wi(T ) = E[xi] = Φi(0). Suppose next that
Wi(τ) = Φτ+1

i (0) for all τ = 0, ..., T − 1, and consider game with deadline T . The set of
alternatives that both players accept in the initial period are given by

Ã = {x ∈ X : (1− δ)xi + δVi(x, 1;T ) ≥ δVi(0, 1;T ) for i = 1, 2}
= {x ∈ X : xi ≥ (x1 + x2)δWi(T − 1) for i = 1, 2} ,

where the second line follows from part (i). Player i’s payoff Wi(T ) satisfies

Wi(T ) = prob(x ∈ Ã)E
[
(1− δ)xi + δVi(x, 1;T )

∣∣∣x ∈ Ã]+ prob(x /∈ Ã)δVi(0, 1;T )

= prob(x ∈ Ã)E
[
xi − (x1 + x2)δWi(T − 1)

∣∣∣x ∈ Ã]+ δWi(T − 1) (O3)

where the equality follows after using part (i). By the induction hypothesis, W(T − 1) =
ΦT (0), and so Ã = A(ΦT (0)). Using this in (O3), Wi(T ) = Φ(ΦT (0)) = ΦT+1(0). �

Proof of Proposition 5. We start with part (i) and recall various facts from the proof
of Proposition 2. First, recall that V δ is the smaller of the two solutions to the quadratic

equation 1
3
g (1−δV δ)2

1−δ = V δ, where g ∈ (0, f).2 Also from the proof of Proposition 2, for

i, j = 1, 2, i 6= j,
∂Φδi (W)

∂Wi
is given by (A3) and lies in the interval [δ − f

3
δ(1− δ(W1 +W2)), δ]

while
∂Φδi (W)

∂Wj
is given by (A4) and lies in [−f

3
δ(1− δ(W1 +W2)), 0]. The proof of Proposition

2 also showed that for all δ > δ and all W ∈ Y δ,
∂Φδi (W)

∂Wi
≥ 0 ≥ ∂Φδi (W)

∂Wj
. Finally, it showed

that for all δ > δ and all W ∈ Y δ, Φδ(W) ∈ Y δ.
Now fix δ > δ. Towards establishing the result, we first show that if W ∈ Y δ, then

(Φδ)T (W) converges to a fixed point of Φ as T → ∞. To see why, fix W0 ∈ Y δ, and let
{Wt}∞t=0 be such that, for t = 1, 2, ..., Wt = (Φδ)t(W) = (Φδ)(Wt−1). Note then that
Wt ∈ Y δ for all t.3

There are two cases to consider: (a) there exists s ≥ 1 and i = 1, 2, i 6= j such that
W s
i ≥ W s−1

i and W s
j ≤ W s−1

j , and (b) for all s ≥ 1, either W s
1 ≥ W s−1

1 and W s
2 ≥ W s−1

2 or

W s
1 ≤ W s−1

1 and W s
2 ≤ W s−1

2 .
Consider first case (a), so there exists s ≥ 1 and i = 1, 2, i 6= j such that W s

i ≥ W s−1
i and

W s
j ≤ W s−1

j . Since Φδ
i (Wi,Wj) is increasing in Wi and decreasing in Wj whenever W ∈ Y δ,

it follows that W s+1
i = Φi(W

s) ≥ Φi(W
s−1) = W s

i and W s+1
j = Φj(W

s) ≤ Φj(W
s−1) = W s

j .
Applying the same argument inductively, we get that {W t

i } is an increasing sequence and
{W t

j} is a decreasing sequence for all t ≥ s. Since Wt ∈ X for all t, Wt converges to some
W∗ as t→∞.

Consider next case (b). For i, j = 1, 2, j 6= i, define

Mi,i := sup
W∈Y δ

∣∣∣∣∂Φδ
i (W)

∂Wi

∣∣∣∣ Mi,j := sup
W∈Y δ

∣∣∣∣∂Φδ
i (W)

∂Wj

∣∣∣∣
2For this proof, we don’t need Assumption 3 to hold, and we also don’t need g > 3

4γ.
3Indeed, for all δ > δ and all W ∈ Y δ, Φδ(W) ∈ Y δ.
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Note that, for δ > δ, we have that Mi,i ∈ [0, δ] and Mi,j ∈ [0, δ].4 Recall that, in this case,
for all t ≥ 1, either W t

i ≥ W t−1
i for i = 1, 2 or W t

i ≤ W t−1
i for i = 1, 2. Since Φi(W) is

increasing in Wi and decreasing in Wj, for all t ≥ 1 and for i = 1, 2, we have

|W t+1
i −W t

i | = |Φδ
i (W

t)− Φδ
i (W

t−1)|
= |Φδ

i (W
t)− Φδ

i (W
t−1
i ,W t

j ) + Φδ
i (W

t−1
i ,W t

j )− Φδ
i (W

t−1)|
≤ max{|Φδ

i (W
t)− Φδ

i (W
t−1
i ,W t

j )|, |Φδ
i (W

t−1
i ,W t

j )− Φδ
i (W

t−1)|}
≤ max{Mi,i,Mi,j}||Wt −Wt−1||
≤ δ||Wt −Wt−1||,

where the first inequality follows since Φδ
i is increasing in Wi and decreasing in Wj. Hence,

{Wt} is a Cauchy sequence, and so it is convergent.
We now show that the finite-horizon games are convergent whenever δ > δ. Fix δ > δ.

There are two cases to consider: (bi) Φδ(0) ∈ Y δ, and (bii) Φδ(0) /∈ Y δ. Consider case (bi).
By our arguments above, W(T ) = (Φδ)T (Φδ(0)) converges as T →∞.

Consider next case (bii), so that Φδ(0) /∈ Y δ. By equation (A2), for all W we have

Φδ
1(W) + Φδ

2(W)− (W1 +W2) ≥ δ(W1 +W2) +
1

3
g(1− δ(W1 +W2))2 − (W1 +W2)

+
1

3
(f − g)(1− δ(W1 +W2))2. (O4)

For all W ∈ X\Y δ, we have that

δ(W1 +W2) +
1

3
g(1− δ(W1 +W2))2 > W1 +W2.

Using (O4), for all W ∈ X\Y δ we have

Φδ
1(W) + Φδ

2(W)− (W1 +W2) >
1

3
(f − g)(1− δ(W1 +W2))2 ≥ 1

3
(f − g)(1− δ)2,

where the last inequality follows since W1 + W2 ≤ 1. This implies that, when Φ(0) /∈ Y δ,
there exists t ≥ 1 such that Φδ

1((Φδ)t(0)) + Φδ
2((Φδ)t(0)) ≥ V δ. Hence, by our arguments

above, (Φδ)t+s(0) converges as s→∞, and so the games are convergent.
Consider next part (ii). Note that when F is symmetric, both players have the same

equilibrium payoffs for all deadlines, i.e. W1(T ) = W2(T ) for all T ≥ 0. Let Ŵ (T ) =
W1(T )+W2(T ), and note that Ŵ (T ) = ΨT+1(0) (where Ψ is the operator defined in equation
(4)).

For any Ŵ ∈ [0, 1], define

H(Ŵ ) := prob(x ∈ A(Ŵ ))E[x1 + x2|x ∈ A(Ŵ )],

4For all δ > δ and all W ∈ Y δ, δ − f 2
3δ(1 − δ(W1 + W2)) ≥ 0 (see Step 2 in the proof of Proposition

2). Since
∂Φδi (W)
∂Wi

∈ [δ − f
3 δ(1 − δ(W1 + W2)), δ] and

∂Φδi (W)
∂Wj

∈ [− f3 δ(1 − δ(W1 + W2)), 0], we have that

Mi,i ∈ [0, δ] and Mi,j ∈ [0, δ] for all δ > δ.
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so that Ψ(Ŵ ) = δŴ + H(Ŵ )(1 − δŴ ). Note that H ′(Ŵ ) ≤ 0. Indeed, Ŵ ′′ > Ŵ ′ implies
that A(Ŵ ′′) ⊂ A(Ŵ ′), so for any Ŵ ′′ > Ŵ ′,

prob(x ∈ A(Ŵ ′′))E[x1 + x2|x ∈ A(Ŵ ′′)] ≤ prob(x ∈ A(Ŵ ′))E[x1 + x2|x ∈ A(Ŵ ′)].

It then follows that Ψ′(Ŵ ) = δ(1 − H(Ŵ )) + H ′(Ŵ )(1 − δŴ ) ≤ δ < 1 for all Ŵ ∈ [0, 1].
When Ψ′(Ŵ ) > −1 for all Ŵ ∈ [0, 1], |Ψ′(Ŵ )| < 1 for all Ŵ ∈ [0, 1]. This implies that Ψ
is a contraction, and the sequence {Ŵ (T )} converges to its unique fixed point. Hence, the
games are convergent. �

Proof of Proposition 6. First we prove that if F is symmetric, then the fixed point of Ψ
is unique. Operator Ψ is continuous and maps [0, 1] onto itself, so by Brouwer’s fixed point
theorem, it has a fixed point.

Let Ŵ be a fixed point of Ψ. Then, Ŵ satisfies

Ŵ =
prob(x ∈ A(Ŵ ))E[x1 + x2|x ∈ A(Ŵ )]

1− δ + δprob(x ∈ A(Ŵ ))E[x1 + x2|x ∈ A(Ŵ )]
. (O5)

Note that A(Ŵ ′′) ⊂ A(Ŵ ′) for any Ŵ ′′ > Ŵ ′. Therefore, for any Ŵ ′′ > Ŵ ′,

prob(x ∈ A(Ŵ ′′))E[x1 + x2|x ∈ A(Ŵ ′′)] ≤ prob(x ∈ A(Ŵ ′))E[x1 + x2|x ∈ A(Ŵ ′)].

Thus, the right side of (O5) is decreasing in Ŵ , and so Ψ has a unique fixed point.
Next, the sum of the players’ equilibrium payoffs in a game with deadline T is Ŵ (T ) =

ΨT+1(0). By standard results in dynamical systems (e.g., Theorem 4.2 in ?), under condi-
tions (i) and (ii) in the statement of the proposition the sequence {Ŵ (T )} does not converge.
So the games must be cycling. �

OC Proofs and Details for Section IV

OC.1 Proofs for Stated Results

Proof of Proposition 7. We start with part (i).
Fix λ ∈ [0, 1], and let Wλ be the largest fixed point of Πλ(·). We start by showing that

there exists an SPE σλ in which the λ-weighted sum of players’ payoffs is Wλ. Strategy
profile σλ is as follows. Along the path of play, at each period t with status-quo zt, player
i = 1, 2 accepts policy draw x ∈ X if and only if

λx1 + (1− λ)x2 + δ(1− x1 − x2)Wλ ≥ λz1 + (1− λ)z2 + δ(1− z1 − z2)Wλ

which is equivalent to

λ(x1 − z1) + (1− λ)(x2 − z2) ≥ δ(x1 + x2 − z1 − z2)Wλ.
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If at any period t a player rejects a policy that was supposed to be accepted, then from time
t + 1 onwards both players reject all policies. Note that the payoff player i obtains from
rejecting a policy at time t that should have been accepted is zti . Since her continuation
payoff at time t from playing according σλ is weakly larger than zti , this strategy profile
constitutes an SPE. Moreover, players’ λ-weighted sum of payoffs under σλ is Wλ. Hence,
Uλ ≥ Wλ.

Next, we show that Uλ ≤ Wλ. Fix σ ∈ Σ, and let Aσ(h0) denote the set of draws that
both players accept under σ at history h0. For each x ∈ X, let hx0 denote the history that
follows h0 if x is drawn and both players accept it. Then,

λV σ
1 (h0) + (1− λ)V σ

2 (h0)

=prob(x ∈ Aσ(h0))Eσ[(1− δ)(λx1 + (1− λ)x2) + δ(λV σ
1 (hx0 ) + (1− λ)V σ

2 (hx0 )|x ∈ Aσ(h0)]

+ δprob(x /∈ Aσ(h0))Eσ[λV σ
1 (h1) + (1− λ)V σ

2 (h1)|x /∈ Aσ(h0)] (O6)

By Lemma 1, for any x ∈ X it must be that λV σ
1 (hx0 ) + (1−λ)V σ

2 (hx0 ) ≤ (λx1 + (1−λ)x2) +
(1− x1 − x2)Uλ. Therefore, by (O6),

λV σ
1 (h0) + (1− λ)V σ

2 (h0)

≤prob(x ∈ Aσ(h0))Eσ[λx1 + (1− λ)x2 − (x1 + x2)δUλ|x ∈ Aσ(h0)] + δUλ

≤prob(x ∈ Aλ(Uλ))Eσ[λx1 + (1− λ)x2 − (x1 + x2)δUλ|x ∈ Aλ(Uλ)] + δUλ = Πλ(Uλ), (O7)

where the second inequality follows since Aλ(Uλ) = {x : λx1 + (1 − λ)x2 ≥ (x1 + x2)δUλ}.
Since (O7) holds for any SPE σ, it must be that Uλ ≤ Πλ(Uλ).

Finally, we show that Πλ(U) < U for all U > Wλ. To see why, note that

Πλ(1) = prob(x ∈ Aλ(1))Eσ[λx1 + (1− λ)x2 − (x1 + x2)δ|x ∈ Aλ(1)] + δ < 1,

where the strict inequality follows since, for all x ∈ X,

λx1 + (1− λ)x2 − (x1 + x2)δ = (x1 + x2)(1− δ)− (1− λ)x1 − λx2 < (1− δ).

Towards a contradiction, suppose that there exists U > Wλ with Πλ(U) ≥ U . Since Wλ

is the largest fixed point of Πλ, it must be that Πλ(U) > U . Since Πλ(1) < 1, and since
Πλ is continuous, there exists U ′ ∈ (U, 1) such that Πλ(U ′) = U ′, a contradiction. Hence,
Πλ(U) < U for all U > Wλ. Since Uλ ≤ Πλ(Uλ), it follows that Uλ ≤ Wλ.

Now for part (ii). For δ < 1 and λ ∈ [0, 1], let U δ
λ denote the largest fixed point of Πλ

under discount factor δ. To prove the result, we show that for λ ∈ {0, 1}, limδ→1 U
δ
λ = 1.

Note that this implies that payoffs (1, 0) and (0, 1) both belong in limδ→1 Vδ. Since 0 ∈ Vδ
for all δ < 1 (because the game has an SPE in which both players reject all offers), we have
that limδ→1 Vδ = X.

Fix λ = 1 (the proof for λ = 0 is symmetric and omitted). For each δ < 1, U δ
1 solves:

U δ
1 =

prob(x ∈ Aδ1(U δ
1 ))E[x1|x ∈ Aδ1(U δ

1 )]

1− δ + prob(x ∈ Aδ1(U δ
1 ))E[x1 + x2|x ∈ Aδ1(U δ

1 )]
(O8)
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Fix a sequence δn → 1, and suppose by contradiction that limn→∞ U
δn
1 = k < 1 (if

needed, take a convergent subsequence). Note then that Aδn1 (U δn
1 ) → A∗1 := {x ∈ X : x1 ≥

(x1+x2)k}. Since k < 1, and since f has full support, set A∗ has positive measure. Moreover,
since f has full support, E[x1 + x2|x ∈ A∗] < 1

k
E[x1|x ∈ A∗].5 Using this in (O8), we get

k = lim
n→∞

U δn
1 = lim

n→∞

prob(x ∈ Aδ1(U δ
1 ))E[x1|x ∈ Aδ1(U δ

1 )]

1− δ + prob(x ∈ Aδ1(U δ
1 ))E[x1 + x2|x ∈ Aδ1(U δ

1 )]

=
E[x1|x ∈ A∗1]

E[x1 + x2|x ∈ A∗]
>

E[x1|x ∈ A∗1]
1
k
E[x1|x ∈ A∗]

= k,

a contradiction. Hence, limδ→1 U
δ
1 = 1. �

Proof of Proposition 8. Note that in this case RME payoffs are a fixed point of operator
Φ : X → X, with Φi now given by

Φi(W) = prob(x ∈ A(W))E[xi − (x1 + x2)δiWi|x ∈ A(W)] + δiWi,

where

A(W) =

{
x ∈ X : for i = 1, 2, xi ≥

δiWi

1− δiWi

x−i

}
.

Proposition 1(ii) extends to this environment. When Assumption 3 holds, there exists
δ̂ < 1 such that, if δ1 > δ2 > δ̂, the game has unique RME payoffs. Moreover, as we showed in
the proof of Proposition 5, when players’ discount factors are sufficiently high, RME payoffs
are given by limT→∞ΦT (0).6

Fix δ1 > δ2 > δ̂, and let Wσ = (W σ
1 ,W

σ
2 ) denote the players’ unique RME payoffs.

We first show that W σ
1 > W σ

2 . Define the sequence {WT} with WT = ΦT (0) for each
T = 1, 2, ..., and note that limT→∞WT = Wσ. Note that, for i = 1, 2, W 1

i = Φi(0) = E[xi].
Since distribution F is symmetric, W 1

1 = W 1
2 .

Next, suppose that W T
1 ≥ W T

2 . We now show that this implies that W T+1
1 > W T+1

2 .
Indeed, note that

W T+1
1 −W T+1

2 = Φ1(WT )− Φ2(WT )

= prob(x ∈ A(WT ))E[x1 − x2|x ∈ A(WT )]

+ (δ1W
T
1 − δ2W

T
2 )(1− prob(x ∈ A(WT ))E[x1 + x2|x ∈ A(WT )]).

Since F is symmetric and since W T
1 ≥ W T

2 , we have prob(x ∈ A(WT ))E[(x1 − x2)|x ∈
A(WT )] ≥ 0. Moreover, using prob(x ∈ A(WT ))E[(x1 + x2)|x ∈ A(WT )] < 1, W T

1 ≥ W T
2

and δ1 > δ2, we have

(δ1W
T
1 − δ2W

T
2 )(1− prob(x ∈ A(WT ))E[(x1 + x2)|x ∈ A(WT )]) > 0.

5Indeed, for any x ∈ A∗, x1 ≥ (x1 + x2)k, and so x1 + x2 ≤ 1
kx1. Since f has full support, E[x1 + x2|x ∈

A∗] < 1
kE[x1|x ∈ A∗].

6While the proof of Proposition 5 is written for the case of equal discounting, the arguments can be
readily extended to the case of unequal discounting.
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Hence, W T+1
1 > W T+1

2 . Together with W 1
1 = W 1

2 , this implies that W σ
1 > W σ

2 .
Next, since Wσ is a fixed point of Φ, we have

W σ
1 −W σ

2 = prob(x ∈ A(Wσ))E[x1 − x2|x ∈ A(Wσ)]

+ (δ1W
σ
1 − δ2W

σ
2 )(1− prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)])

= prob(x ∈ A(Wσ))E[x1 − x2|x ∈ A(Wσ)]

+ δ1(W σ
1 −W σ

2 )(1− prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)])

+ (δ1 − δ2)W σ
2 (1− prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)])

≥ δ1(W σ
1 −W σ

2 )(1− prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)])

+ (δ1 − δ2)W σ
2 (1− prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)]),

where the last inequality uses E[(x1−x2)|x ∈ A(Wσ)] > 0, which holds since F is symmetric
and since W σ

1 > W σ
2 . By the inequality above,

W σ
1 −W σ

2 ≥
(δ1 − δ2)W σ

2 (1− prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)])

1− δ1 + δ1prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)]
.

Using H(W) = prob(x ∈ A(W))E[x1 + x2|x ∈ A(W)], this is equivalent to the inequality
stated in the proposition. �

OC.2 Details for Strategic Search

In this appendix we flesh out the extension described in Section IV.C. We make the following
assumptions on the sets of distributions Fx. First, for all x,y ∈ X, card(Fx) = card(Fy);
i.e., all the sets Fx have the same cardinality. Second, for all x ∈ X and all Fx ∈ Fx with
density fx, there exists F ∈ F = F(0,0) with density f such that fx(y) = 1

(1−z1−z2)2
f(Px(y))

for all y ∈ X(x). We further assume that there exists f > f > 0 such that, for all f ∈ F ,

f(x) ∈ [f, f ] for all x ∈ X. Note that these assumptions are a generalization of Assumptions
1 and 2 to the new environment.

Fix an RME σ. For each z ∈ X, let V σ
i (z) be player i’s continuation payoff under σ when

the status quo is z and let W σ
i be player i’s payoff at the start of the game under σ. The

following result extends Lemma 1 to this environment. The proof is identical to the proof of
Lemma 1, and hence omitted.

Lemma OC.1. Fix an RME σ. For all z = (z1, z2) ∈ X,

V σ
i (z) = zi + (1− z1 − z2)W σ

i . (O9)

Lemma OC.1 can be used to obtain a recursive characterization of RME payoffs. Fix an
RME σ. As in our baseline model, under σ player i approves a policy x = (x1, x2) ∈ X(z)
when the status quo is z only if

(1− δ)xi + δV σ
i (x) ≥ (1− δ)zi + δV σ

i (z)
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which, using Lemma OC.1, becomes

xi + (1− x1 − x2)δW σ
i ≥ zi − (1− x1 − x2)δW σ

i ,

Thus, player i accepts policy x when the status quo is z only if

x ∈ Ai,z(W σ
i ) = {x ∈ X(z) : xi ≥ `i,z(x−i|W σ

i )} ,

where `i,z(x−i|W σ
i ) is defined as in the main text. For any pair of payoffs W = (W1,W2)

and for any z ∈ X, the set Az(W) defined in the main text is the set of policies that are
accepted by both players when the status quo is z, and A(W) is the acceptance set at the
start of the game.

Now suppose player i = 1, 2 is recognized to choose the distribution from which the
policy will be drawn at the initial period. If player i chooses distribution F ∈ F , she obtains
payoffs equal to

probF (x ∈ A(W))EF [xi − (x1 + x2)δWi|x ∈ A(W)] + δWi.

For any W ∈ X and for i = 1, 2, let

F ∗W,i ∈ arg max
F∈F

probF (x ∈ A(W))EF [xi − (x1 + x2)Wi|x ∈ A(W)],

and let F ∗W := 1
2
F ∗W,1 + 1

2
F ∗W,2. Note that the initial period policy is drawn from distribution

F ∗W.
Define the operator ΦS : X → X as follows: for i = 1, 2 and for all W ∈ X,

ΦS
i (W) = probF ∗

W
(x ∈ A(W))EF ∗

W
[xi − (x1 + x2)δWi|x ∈ A(W)] + δWi.

Let W∗ denote the players’ RME payoffs at the start of the game. The following result
extends Proposition 1 to the current environment – the proof uses the same arguments as
the proof of Proposition 1, and hence we omit it.

Proposition OC.1. An RME exists, and the players’ equilibrium payoffs under an RME
are a fixed point of ΦS.

This characterization of equilibrium payoffs can be used to generalize the main results
in the main text to the current environment. First, any RME features inefficient delays.
Second, the acceptance regions are nested, and the distribution over long-run outcomes
that an RME induces at a subgame starting with status quo payoff z has support equal to
{x ∈ X : x1 + x2 = 1} ∩ Az(W). Therefore, RME also display path-dependence. It can
also be shown that Proposition 4 continues to hold in this setting, so the RME outcome also
becomes deterministic in the limit as δ → 1.7

7The proofs of all of these results are available upon request.
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