
Online Supplementary Appendix to
Preference Conditions for Invertible Demand Functions

By THEODOROS M. DIASAKOS AND GEORGIOS GERASIMOU

Some additional technical results are presented herein that support and
extend the analysis in the main paper. We also revisit the well-known
results in Katzner (1970) and Hurwicz and Uzawa (1971) on sufficient
conditions for an invertible demand function and homothetic preferences
generating a non-invertible demand function, respectively, placing them
in context as special cases of our analysis.

I. Preliminaries

In what follows, we maintain the notation introduced in the main text but
extend the setting to the consumption set X being a convex subset of Rn

+ with
int (X) 6= ∅ - where int(X) denotes the interior of X. That is, we allow also for
consumption bundles on the boundary of Rn

+.
To account for such bundles, we relax slightly the standard notions of strict

convexity and strict monotonicity given in the main text. In particular, we will
say that a continuous weak order % on X is strictly convex if, for all (x, y) ∈
X × int (X) ∪ int (X)× X and any α ∈ (0, 1), x % y implies αx + (1− α)y � y.
Similarly, we will say that % is strictly monotonic if, for all (x, y) ∈
X× int (X)∪ int (X)×X, x > y implies x � y. This slight weakening of the stan-
dard definitions in the main text refers to a restriction (of measure zero in Rn

+) on
the domain where the standard notions of strict convexity and strict monotonic-
ity apply; namely, we consider these notions on X without requiring though that
they hold also on the boundary of X. For instance, letting X = Rn

+, our notions of
strict convexity and strict monotonicity coincide with those in the main text for
pairs of bundles when at least one bundle lies in Rn

++; yet, they are not imposing
any restrictions when both bundles lie on the boundary of Rn

+. This allows our
analysis to include preferences that are strictly convex and strictly monotonic
on Rn

++ but for which the boundary of Rn
+ is an indifference set, a well-known

example being the Cobb-Douglas preferences on Rn
+ (see Section II below).

For the more general case where X is a convex subset of Rn
+ (with non-empty

interior) all of our results in the main text continue to hold, subject to trivial ad-
justments in the respective statements. Specifically, the expression x ∈ X should
be replaced everywhere by x ∈ int (X) while the demand function should be
written as x : Y → int (X). Furthermore, % being differentiable or weakly
smooth of order 1 should apply only on int (X). The latter should also be the
domain on which the utility function u : X → R is C1 in Proposition 4.

The only non-trivial adaptation of our arguments concerns the first part of
1



2 AMERICAN ECONOMIC JOURNAL MONTH YEAR

the proof for Proposition 1. For the more general case, we must complement
Lemma II.1 in the main text with the following result. This provides now the
desired contradiction for the argument in the proof of Lemma II.2 in the main
text to remain valid.

LEMMA I.1: Let % be a strictly convex, continuous weak order on X. For any x ∈
int (X), p ∈ Rn \ {0} supports Ux at x only if x ∈ max% {z ∈ X : pz ≤ px}.

PROOF:
Let p ∈ Rn \ {0} support Ux at x. It suffices to show that z ∈ X \ {x} and

pz ≤ px implies x % z. As this is obvious when pz < px, suppose that pz = px
and assume to the contrary that z � x. Define zλ = λz + (1− λ) x for λ ∈ (0, 1)
and observe that, since ||zλ − x|| = λ||z − x||, for any given ε > 0 we have
zλ ∈ Bε (x) for sufficiently small λ. And as x ∈ int (X), we have in fact zλ ∈
Bε (x) ⊂ int (X) for sufficiently small ε. However, by the strict convexity of %,
it must be zλ � x and thus x 6∈ max% {z ∈ int (X) : pz ≤ px}, a contradiction of
Lemma II.1 in the main text. �

II. Onto Demand Functions with Full Price Domain

A special case of particular interest corresponds to the domain of the demand
function being the entire orthant of strictly positive prices. When X = Rn

+, we
get that Y = Rn

++ in Proposition 1 in the main text if and only if % is in addition
self-contained in Rn

++ in the sense that

(1) ∀ (z, x) ∈ Rn
++ × X, z ∼ x ⇒ x ∈ Rn

++

PROPOSITION 1: Let the onto demand function x : Y → Rn
++ for some Y ⊆ Rn

++
be generated by the continuous weak order % on X = Rn

+. Then Y = Rn
++ if and only

if % is self-contained in Rn
++.

The full price domain requires that the consumption domain includes the en-
tire orthant of strictly positive bundles (see Lemma II.1 below). To obtain also
a sufficient condition for the full price domain, we must extend X to the entire
Rn

+. In fact, the extension can be done in only one way: under the maintained
assumption of strict monotonicity,% being self-contained in Rn

++ means that the
boundary Rn

+ \ Rn
++ (which we will denote also by bd (Rn

+) below) forms an
indifference set (see Lemma II.2 below). The latter property implies in turn that
the preference relation is indeed self-contained in Rn

++. For this is the relevant
consumption set if one assumes –as is often the case in the literature– that the
main interest of the analysis is in strictly positive consumption bundles: extend-
ing the preference domain from Rn

++ to Rn
+ adds an indifference set which lies

at the very bottom of the preference ranking over indifference sets, leaving the
non-trivial part of the ranking unaffected. Put differently, restricting the pref-
erence domain to Rn

++ instead of Rn
+ is without loss of generality because no
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additional information about demand can be obtained by examining how pref-
erences “behave” on the boundary Rn

+ \Rn
++.

The requirement that X = Rn
+ while the preference relation is self-contained

in Rn
++ has appeared in the literature as Assumption 3.1-4 in Katzner (1970). It

is satisfied, for example, by Cobb-Douglas and Leontieff preferences, but not by
quasilinear preferences. Theorem 3.1-13 in Katzner (1970) states that a demand
function x : Rn

++ → Rn
++ is bijective if it is generated by a preference relation

% on Rn
+ which is self-contained in Rn

++ and representable by a strictly concave
and strictly increasing utility function u : Rn

+ → R that is twice continuously
differentiable on Rn

++. Proposition 1 above underlines the limits of the scope of
Katzner’s theorem: the price domain of the demand function under considera-
tion must be the entire Rn

++.

LEMMA II.1: Let the demand correspondence x : Y � X for some Y ⊆ Rn
++ be

generated by the strictly monotonic, continuous weak order % on X ⊆ Rn
+. Then

Y = Rn
++ only if Rn

++ ⊆ X.

PROOF:
We will show first that Xi is unbounded above. To establish this arguing ad

absurdum, let there be b > 0 such that xi ≤ b for all x ∈ X. Take also any p ∈ Y
and let x ∈ x (p). As the strict monotonicity of % guarantees Walras’ law, we
have 1 = px ≤ bpi + p−ix−i; equivalently, pi ≥ (1− p−ix−i) /b. Recall though
that, by hypothesis, Y = Rn

++. That is, Y−i = Rn−1
++ and we can take |p−i| to be ar-

bitrarily small. For the last inequality above, therefore, to hold for all p−i ∈ Y−i,
it cannot but be pi ≥ 1/b for all p ∈ Y. But this is absurd given that Yi = R++.
We will show next that infx∈X xi = 0. To establish this arguing again ad absur-
dum, let there be a > 0 such that xi ≥ a for all x ∈ X. Taking again an arbitrary
p ∈ Y and letting x = x (p), we now have 1 = px ≥ api + p−ix−i; equivalently,
pi ≤ (1− p−ix−i) /a < 1/a. Which is again absurd given that Yi = R++.
Observe finally that, X being convex, so is Xi. It follows thus that Xi is path-
connected; hence, connected. Clearly, Xi is an interval on R++ - see for instance
Theorem 6.76 in Bowder (1996). And given the observations in the preceding
two paragraphs, the claim follows. �

PROOF OF PROPOSITION 1We observe first that% is necessarily strictly convex and
strictly monotonic (recall Proposition 1 in the main text).
“if”. Take an arbitrary p ∈ Rn

++. Being a continuous weak order on X = Rn
+,

% can be represented by a continuous utility function u : Rn
+ → R. As a result,

B (p) := {x ∈ X : px ≤ 1} being compact, the solution set of maxz∈B(p) u (z) is
guaranteed to be non-empty; it is also a singleton by the strict convexity of %.
We will also make use of the following result.

LEMMA II.2: Let % be a strictly monotonic, continuous weak order on X = Rn
+.

Then % is self-contained in Rn
++ if and only if I0 = bd (Rn

+).



4 AMERICAN ECONOMIC JOURNAL MONTH YEAR

PROOF:
That a strictly monotonic weak order on X = Rn

+ satisfies (1) if I0 = bd (Rn
+)

is obvious. For the “only if” part, observe first that, since z � 0 for any z ∈ Rn
++,

it must be I0 ⊆ bd (Rn
+). To show that also bd (Rn

+) ⊆ I0, suppose that there
exist x, x′ ∈ bd (Rn

+) \ {0} such that x � x′ and let x′′ ∈ Rn
++ be given by

x′′i := xi for i ∈ N+
x and x′′i := ε for i ∈ N \ N+

x and for some ε > 0. By
the strict monotonicity of %, we have that x′′ � x. Define then the function
z : [0, 1]→ Rn

+ by z (λ) := λx′′+ (1− λ) x′. Since z (1) = x′′ while x′ = z (0), we
have that u (z (0)) < u (x) < u (z (1)); the intermediate-value theorem ensures
the existence of λ0 ∈ (0, 1) such that z (λ0) ∈ Ix. As z (λ0) ∈ Rn

++, however, %
cannot be self-contained in Rn

++. We just established that % is self-contained in
Rn

++ only if x ∼ x′ for any x, x′ ∈ bd (Rn
+) \ {0}. That it must be also 0 ∼ x for

any x ∈ bd (Rn
+) \ {0} follows from the continuity of %. �

Let now x0 := maxz∈B(p) u (z). As the strict monotonicity of % guarantees
Walras’ law, we have that 1 = px0. Clearly, x0 ∈ X \ {0} and thus x0 � 0 (again
by the strict monotonicity of %). As though X = Rn

+ while % is self-contained
in Rn

++, x0 � 0 requires in fact that x0 ∈ Rn
++ (Lemma II.2). The latter being the

image set of the onto function x (·), that p ∈ Y follows from the very definition
of Y.

“only if”. To establish the contrapositive statement, we will make use of the
following results.

LEMMA II.3: Let % be a strictly monotonic, continuous weak order on X = Rn
+.

Then % is self-contained in Rn
++ if it satisfies the following condition1

A 1: For all z ∈ Rn
++ and x ∈ bd(Rn

+) \ {0}, z− x is an improvement direction at x.

PROOF:
We will establish the contrapositive statement. To this end, observe first that,

as z � 0 for any z ∈ Rn
++, it must be I0 ⊆ bd (Rn

+). By Lemma II.2, therefore,
there exists x ∈ bd (Rn

+) \ {0} with x � 0 if % is not self-contained in Rn
++.

Letting e denote the vector of ones in Rn, define now the function z : [0, 1]→ Rn
+

by z (µ) = µe. Since limµ→0 u (z (µ)) = u (0) < u (x), the continuity of u (·)
ensures that x � z (µ0) for small enough µ0 > 0. Define next the function z0 :
[0, 1]→ Rn

+ by z0 (λ) = λx + (1− λ) z (µ0). As limλ→0 u
(
z0 (λ)

)
= u (z (µ0)) <

u (x), the continuity of u (·) ensures now the existence of λ0 ∈ (0, 1) such that
x � λx + (1− λ) z (µ0) = x + (1− λ) (z (µ0)− x) for all λ ∈ (0, λ0). But this
means that z (µ0)− x is not an improvement direction at x. �

LEMMA II.4: Let % be a strictly monotonic and strictly convex, continuous weak or-
der on X = Rn

+. Let also x ∈ bd (Rn
+) \ {0}. There exists z ∈ Rn

++ such that

1We thank Phil Reny for suggesting condition A1 to us.
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z − x is not an improvement direction at x only if there exists p ∈ Rn
++ such that

x = max% {z ∈ X : pz ≤ px}.

PROOF:
Observe first that, % being convex and continuous, Ux is convex and closed.

Suppose now that, for some z ∈ Rn
++, z− x is not an improvement direction at

x. We must have then x % (1− λ) x + λz ∈ X for arbitrarily small λ > 0. Given
this and the strict monotonicity of %, it is trivial to check that the convex and
compact set

Lx,z :=
{

z̃ ∈ Rn
++ : z̃i ∈

{
[xi/2, xi] i ∈ N+

x
[zi/3, zi/2] i ∈ N \N+

x

}
gives x � (1− λ) x + λz̃ for any z̃ ∈ Lx,z. That is, (1− λ) {x}+ λLx,z ∩ Ux = ∅
and by the separating hyperplane theorem (see for instance Theorem 1.F.2.2 in
Mas-Colell (1985)) there exists p̃ ∈ Rn \ {0} such that p̃ ((1− λ) x + λz̃) < p̃x̃
for any (z̃, x̃) ∈ Lx,z ×Ux.
It must be in fact p̃ ∈ Rn

+ \ {0}. To see this arguing ad absurdum, suppose first
that p̃i < 0 for some i ∈ N+

x . Let z′ ∈ Lx,z be given by z′i := xi/2, z′j := xj

for j ∈ N+
x \ {i} and z′j := zj/2 for j ∈ N \ N+

x . Let also x′ ∈ Ux be given by
x′i := xi for i ∈ N+

x and x′j := λzj/2 for j ∈ N \ N+
x . It is trivial to verify that

this leads to the absurdity p̃ ((1− λ) x + λz′) > p̃x′. Suppose next that p̃i < 0
for some i ∈ N \N+

x . Let z′′ ∈ Lx,z be given by z′′i := zi/3, z′′j := xj for j ∈ N+
x

and z′j := zj/2 for j ∈ N \ (N+
x ∩ {i}). Let also x′′ ∈ Ux be given by x′′j := xj

for j ∈ N+
x and x′′j := λzj/2 for j ∈ N \ N+

x . This implies now the absurdity
p̃ ((1− λ) x + λz′′) > p̃x′′.
Take now any i ∈ N+

x . Let z′ be defined as above, and observe that (z′ − x)i =
−xi/2, (z′ − x)i = 0 for j ∈ N+

x \ {i} while (z′ − x)j = (1− λ) zj/2 for j ∈
N \ N+

x . As 0 > p̃ ((1− λ) x + λz′ − x) = λ p̃ (z′ − x) reads also p̃ixi/2 >
(1− λ)∑j∈N\N+

x
p̃jzj/2 ≥ 0, it must be p̃i > 0.

We have established the existence of p̃ ∈ Rn
+ \ {0} which supports Ux at x and

has p̃i > 0 for any i ∈ N+
x . Define now p ∈ Rn

++ by pi := p̃i for i ∈ N+
x and

pj := p̃j + ε for j ∈ N \ N+
x and for some ε > maxj∈N\N+

x
| p̃j|. Since p � p̃, we

have (p− p̃) z ≥ 0 for any z ∈ X. Moreover, as xj = 0 for j ∈ N \ N+
x , we also

have px = p̃x. And as p̃ supports Ux at x, it follows that pz ≥ p̃z ≥ p̃x = px for
any z ∈ Ux. Clearly, p also supports Ux at x. That x = max% {z ∈ X : pz ≤ px}
follows now from Lemma II.4 in the main text. �

Suppose now that % is not self-contained in Rn
++. By Lemma II.3, it does

not satisfy condition A1 either. There exist thus (z, x) ∈ Rn
++ × bd(Rn

+) \ {0}
such that z− x is not an improvement direction at x. But then, by the preceding
lemma (and the strict convexity of %), there exists also p ∈ Rn

++ such that x =
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max% {z ∈ X : pz ≤ px}; equivalently, x = max% {z ∈ X : p̂z ≤ 1} where p̂ :=
p/px.
Suppose then that Y = Rn

++. The function x (·) being onto, there exists x ( p̂) ∈
Rn

++. And as obviously x 6= x ( p̂), we can define the function x : [0, 1] → Rn
+

by x (λ) := λx + (1− λ) x ( p̂). Since the strict monotonicity of % guarantees
Walras’ law, we have p̂x ( p̂) = 1 = p̂x; thus p̂x (λ) = 1 for all λ ∈ (0, 1).
Moreover, as limλ→0 x (λ) = x ( p̂), we also have x (λ) ∈ Rn

++ for small enough
λ. A contradiction now obtains because, due to the strict convexity of %, x ∼
x ( p̂) means that x (λ) � x ( p̂). �

III. Supporting Results on Preference Gradients

In this section, we present some results that support our attempt in the main
text to give an intuitive geometric inerpretation of preference differentiability via
the notions of supporting hyperplanes and ordients.

LEMMA III.1: Let % be a weak order on X and x ∈ int (X). The collection of p ∈
Rn \ {0} that support Ux at x is a subset of the collection of decreasing ordients at x.

PROOF:
Since x ∈ int (X), for any z ∈ X, we have x + λ (z− x) ∈ int (X) ⊆ X for

sufficiently small λ > 0. Let now p ∈ Rn \ {0} support Ux at x and take z ∈ H−p,x.
As p (z− x) < 0 is equivalent to p (x + λ (z− x)) < px, it must be x � x +
λ (z− x) for any λ > 0. That is, z− x must be a worsening direction at x and p
a decreasing ordient at x. �

LEMMA III.2: Let % be a convex weak order on X and x ∈ int (X). The collection of
p ∈ Rn \ {0} that support Ux at x coincides with the collection of decreasing ordients
at x.

PROOF:
Since x ∈ int (X), for any z ∈ X, we have x + λ (z− x) ∈ int (X) ⊆ X for

sufficiently small λ > 0. By Lemma III.1, moreover, it suffices to establish the
collection of decreasing ordients at x as subset of the collection of p ∈ Rn \
{0} that support Ux at x. To this end, take z ∈ Ux and let p ∈ Rn \ {0} be a
decreasing ordient at x. As % is convex, any λ ∈ [0, 1] gives x + λ (z− x) =
λz + (1− λ) x ∈ Ux. Clearly, z− x is not a worsening direction at x and thus we
must have p (z− x) ≥ 0. �

For the next result, we should point out that Lemma II.7 in the main text re-
mains valid in the present more general case without any changes in the state-
ment.

LEMMA III.3: Let% be a strictly convex [resp. strictly convex and strictly monotonic]
weak order on X and x ∈ int (X). The collection of preference gradients at x is a subset
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of the collection of p ∈ Rn \ {0} [resp. p ∈ Rn
++] that support Ux at x properly. As a

result, the collection of preference gradients at x is a subset of the collection of ordients
at x.

PROOF:
Since x ∈ int (X), for any z ∈ X, we have x + λ (z− x) ∈ int (X) for suffi-

ciently small λ > 0. The first part of the claim follows from Lemma II.7 in the
main text [resp. Lemmas II.2 amd II.7 in the main text]. For the second part,
observe that, in light also of Lemma III.2 above, a preference gradient at x is a
decreasing ordient at x. The claim now follows from the fact that, by definition,
a preference gradient at x is necessarily an increasing ordient at x. �

LEMMA III.4: Let % be a continuous weak order on X ⊆ Rn
+ and suppose that p ∈

Rn \ {0} supports Ux at x ∈ int (X). Then v ∈ Rn \ {0} is an improvement direction
at x only if pv > 0.

PROOF:
Since x ∈ int (X), we have Bx (ε0) ⊂ int (X) for sufficiently small ε0 > 0.

Suppose now that p ∈ Rn \ {0} supports Ux at x, and let v ∈ Rn \ {0} be an
improvement direction at x. There exists then λ∗ > 0 such that x + λv � x for
all λ ∈ (0, λ∗). Taking thus λ0 ∈ (0, min {λ∗, ε0/ (2||v||)}), we have x + λ0v � x
while x + λ0v ∈ int (X). Yet x + λ0v � x can be only if 0 ≤ p (x + λ0v− x) =
λ0 pv.
It suffices therefore to rule out the case pv = 0. To establish this ad absurdum
recall first that, % being complete and continuous, Ux \ Ix is open. As a result,
x + λ0v � x necessitates that z � x for any z ∈ Bx+λ0v (ε1) for sufficiently small
ε1 > 0. More specifically, letting ε2 ∈ (0, min {ε1, ε0/2}), we have z � x for all
z ∈ Bx+λ0v (ε2) ⊂ int (X). Taking then z = x + λv− εp for some ε ∈ (0, ε2/||p||)
ensures that x + λv− εp ∈ int (X) while x + λv− εp � x. And the latter relation
implies in turn that 0 ≤ p (x + λv− εp− x) = p (λv− εp) = λpv − εpᵀp =
−εpᵀp, a contradiction. �

LEMMA III.5: Let % be a strictly convex and strictly monotonic, continuous weak
order on X ⊆ Rn

+ and x ∈ int (X). The collection of preference gradients at x coincides
with the collection of increasing ordients at x that support Ux at x properly. And either
collection coincides also with the collection of ordients at x.

PROOF:
By definition p ∈ Rn \ {0} is a preference gradient at x if it is an increasing

ordient at x that satisfies “v ∈ Rn \ {0} is an improvement direction at x only if
pv > 0.” For the first part of the claim, that the collection of increasing ordients
at x that support Ux at x properly is a subset of the collection of preference gradi-
ents at x follows from Lemma III.4. The opposite set inclusion is due to Lemma
III.3.
For the second part of the claim, again due to Lemma III.3, we only need to show
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that the collection of ordients at x is a subset of the collection of preference gradi-
ents at x. By definition though the former collection is a subset of the collection
of decreasing ordients at x, which coincides with the collection of p ∈ Rn

++ that
support Ux at x properly (see Lemmas III.2 above as well as II.2 and II.4 in the
main text). Hence, the collection of ordients at x is a subset of the collection of
increasing ordients at x that support Ux at x properly. That the latter collection
is a subset of the collection of preference gradients at x is due to the first part of
the claim. �

IV. A Very Short Introduction on Local Subgradients

Recall that a set A ⊆ Rn is said to be locally convex if for every x ∈ A there is
ε > 0 such that Bε (x) ∩ A is convex. Given a locally convex A ⊆ Rn, a function
f : A → R is said to be locally convex if for every x ∈ A there exists ε > 0 such
that f is convex on Bε (x) ∩ A.

Consider now an open and locally convex A ⊆ Rn. Taking any x0 ∈ A and any
h ∈ Rn \ {0}, we have that x0 + λh ∈ Bε0 (x) ⊂ A for sufficiently small ε0 > 0
and for any λ ∈ (−ε0/||h||, ε0/||h||). If the function f : S→ R is locally convex,
then the directional derivative of f at x0 in any direction h ∈ Rn is well-defined
(see Theorem 3.3.4 in Jahn (2007)) and given by

f ′ (x0) (h) := lim
λ↘0

f (x0 + λh)− f (x0)

λ

Let next {e1, . . . , en} be the orthonormal basis of Rn. The ith partial derivative of
f at x0 is given by

∂ f (x0) /∂xi := lim
λ→0

f (x0 + λei)− f (x0)

λ

if this limit exists. And f is said to be partially differentiable at x0 if ∂ f (x0) /∂xi
exists for all i ∈ {1, . . . , n}. Observe also that

lim
λ↘0

f (x0 + λei)− f (x0)

λ
= f ′ (x0) (ei)

lim
λ↗0

f (x0 + λei)− f (x0)

λ
= − lim

λ↘0

f (x0 − λei)− f (x0)

λ
= − f ′ (x0) (−ei)

Clearly, the ith partial derivative of f at x0 exists if and only if f ′ (x0) (ei) =
− f ′ (x0) (−ei). More precisely, f is partially differentiable at x0 if and only if
f ′ (x0) (ei) = ∂ f (x0) /∂xi = − f ′ (x0) (−ei) for all i ∈ {1, . . . , n}.

We will let also ∂ f (x0) denote the local subdifferential of f at x0. This is the set
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of vectors q ∈ Rn such that

f (x) ≥ f (x0) + q (x− x0) ∀x ∈ Bε0 (x0)

Each q ∈ ∂ f (x0) will be called a local subgradient of f at x0. And f being locally
convex, it is also continuous at x0 (see Theorem 6.2.14 in de la Fuente (2000)).
Which ensures in turn that ∂ f (x0) 6= ∅ (see Theorem 3.26 in Jahn (2007)), while

(2) f ′ (x0) (λh)max {λqh : q ∈ ∂ f (x0)}

for any direction h ∈ Rn and any λ ∈ (−ε0/||h||, ε0/||h||) - see Theorem 3.28 in
Jahn (2007). In particular, taking λ0 ∈ (0, ε0) we have

f ′ (x0) (λ0ei) = λ0 max {qei : q ∈ ∂ f (x0)}

and, thus, also

f ′ (x0) (−λ0ei) = λ0 min {qei : q ∈ ∂ f (x0)}

It is trivial then to check that f is partially differentiable at x0 if and only if ∂ f (x0)
is a singleton; more precisely, if and only if ∂ f (x0) = {q} for some q ∈ Rn {0}
while ∂ f (x0) /∂xi = qi for all i ∈ {1, . . . , n}. In this case, (2) reads

f ′ (x0) (h) = qh

while f is actually differentiable at x0 - see Theorem 25.1 in Rockafellar (1970); that
is, we have

0 = lim
x→x0

f (x)− f (x0)−∇ f (x0) (x− x0)

||x− x0||
where ∇ f (x0) := (∂ f (x0) /∂x1, . . . , ∂ f (x0) /∂xn). And as differentiability im-
plies partial differentiability, we conclude that f is in fact differentiable at x0 if
and only if ∂ f (x0) is a singleton.

V. Supporting Results on Indifference-Projection Functions

Recall Lemma II.5 (and more importantly the corresponding proof) in the main
text. It is noteworthy that our argument leads to li (·|x) being locally strictly
convex because we are able to establish only that I−i

x is locally convex at x−i.
Indeed, it turns out that li (·|x) is strictly convex (globally) on I−i

x if the latter set
is (globally) convex.

LEMMA V.1: Let % be a strictly monotonic and strictly convex, continuous weak or-
der on X. For i ∈ N and x ∈ X, suppose also that I−i

x is convex. Then li (·|x) is
strictly convex.
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PROOF:
% being a strictly monotonic and strictly convex, continuous weak order, it can

be represented by a continuous, strictly monotonic and strictly quasi-concave
utility function u : X → R. Take now any z, y ∈ Ix and any λ ∈ (0, 1). I−i

x being
convex, there exists z̃i ∈ Xi such that z̃i = li (λz−i + (1− λ) y−i|x). To establish
the claim arguing ad absurdum, observe that

z̃i = li (λz−i + (1− λ) y−i|x) ≥ λli (z−i|x) + (1− λ) li (y−i|x) = λzi + (1− λ) yi

implies the absurdity that

u (x) = u (z̃i, λz−i + (1− λ) y−i) ≥ u (λzi + (1− λ) yi, λz−i + (1− λ) y−i)

= u (λz + (1− λ) y) > u (z) = u (x)

the two inequalities, respectively, due to the strict monotonicity and strict quasi-
concavity of u (·). �

The next result can be applied to verify that % is indeed strictly convex in
our examples in the main text. This can be done of course also by showing di-
rectly that the respective utility functions are strictly quasi-concave. Neverthe-
less, the exercise is much easier if we deploy instead the strict convexity of the
indifference-projection functions.

LEMMA V.2: Let % be a strictly monotonic, continuous weak order on X. Suppose
also that there exist i ∈ N such that I−i

x = X−i for all x ∈ X. Then li (·|x) is strictly
convex on X−i if and only if % is strictly convex on X.

PROOF:
For the “if” direction, by the preceding lemma, it suffices to show that X−i

is convex. But this is obvious: taking any z, y ∈ X and any λ ∈ (0, 1), the fact
that X is convex ensures that λz + (1− λ) y ∈ X, which implies in turn that
λz−i + (1− λ) y−i ∈ X−i.
For the ”only if,” letting u : X → R represent% on X, it suffices to show that u (·)
is strictly quasi-concave on X. To establish this by contradiction, take x, y ∈ X
such that y % x and suppose that u (λx + (1− λ) y) ≤ u (x) for some λ ∈ (0, 1).
Recall also that, % being strictly monotonic, li (·|x) is a well-defined function
(recall Lemma 3.5 in the main text). And its domain being the entire X−i, there
exists zi ∈ Xi such that zi = li (y−i|x). Observe now that, since u (zi, y−i) =
u (x) ≤ u (y), the strict monotonicity of % necessitates also that zi ≤ yi and thus

u (λxi + (1− λ) zi, λx−i + (1− λ) y−i) ≤ u (λxi + (1− λ) yi, λx−i + (1− λ) y−i)

= u (λx + (1− λ) y) ≤ u (x)(3)



VOL. VOLUME NO. ISSUE PREFERENCES FOR INVERTIBLE DEMAND: ONLINE APPENDIX 11

Notice next that, X−i being convex, there exists also z′i ∈ Xi such that

z′i = li (λx−i + (1− λ) y−i|x) < λli (x−i|x) + (1− λ) li (yi|x) = λxi + (1− λ) zi

the inequality due to the strict-convexity of li (·|x). Which implies in turn that

(4) u (λxi + (1− λ) zi, λx−i + (1− λ) y−i) > u
(
z′i, λx−i + (1− λ) y−i

)
= u (x)

again by the strict monotonicity of %. From (3) and (4) we obtain the desired
contradiction. �

LEMMA V.3: Let % be a strictly monotonic and strictly convex, continuous weak or-
der % on X. Suppose also that it is represented by the utility function u : X → R. For
any x ∈ X any z ∈ Ix ∩ int (X) and any i ∈ N , the following statements hold.
(i). If % is differentiable at z, there exist ε0 > 0 such that Ix ∩ Bε0 (z) ⊂ int (X) and a
family of functions {µn : (−ε0, ε0)→ (−ε0, ε0)}n∈N with limε→0 µn (ε) = 0 for all n
such that for any j ∈ N \ {i} we have

∂li (z−i|x)
∂zj

= − lim
ε→0

[
u
(
zj + µj (ε) , z−j

)
− u (z)

]
/µj (ε)[

u
(
zj + µj (ε) , z−j

)
− u

(
zi − µi (ε) , zj + µj (ε) , z−(i,j)

)]
/µi (ε)

(ii). If u (·) is C1 at z then li (·|x) is C1 at z−i; specifically, for any j ∈ N \ {i} we have

∂li (z−i|x)
∂zj

= −
(

∂u (z)
∂zi

)−1 ∂u (z)
∂zj

PROOF:

Take arbitrary x ∈ X, z ∈ Ix ∩ int (X) and (i, j) ∈ N × N \ {i}. Choose
also ε0 > 0 such that li (·|x) is strictly convex on Ix ∩ Bε0 (z) ⊂ int (X). For
ε ∈ (−ε0, 0) ∪ (0, ε0) and µ ∈ [0, 1] let z (ε, µ) ∈ Bε0 (z) be given by z (ε, µ)i :=
zi − (1− µ) ε, z (ε, µ)j := zj + µε and z (ε, µ)k := zk for k ∈ N \ {i, j}. Since

ε [u (z (ε, 0))− u (z)] < 0 < ε [u (z (ε, 1))− u (z)]

while u (·) is continuous, the intermediate-value theorem establishes the ex-
istence of µε ∈ (0, 1) such that z (ε, µε) ∈ Ix ∩ Bε0 (z). By the strict mono-
tonicity of %, moreover, the mapping ε 7→ µ (ε) = µε is a function. For all
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ε ∈ (−ε0, 0) ∪ (0, ε0), therefore, we have

li
(

zj + εµ (ε) , z−(i,j)|x
)
− li (z−i|x)

εµ (ε)
(5)

=
zi − ε (1− µ (ε))− zi

εµ (ε)

= −1− µ (ε)

µ (ε)

= −1− µ (ε)

µ (ε)

×
u
(
zj + εµ (ε) , z−j

)
− u (z)

u
(
zj + εµ (ε) , z−j

)
− u

(
zi − ε (1− µ (ε)) , zj + εµ (ε) , z−(i,j)

)
To establish now statement (i) of the claim, define the functions µ̃, µi, µj : (−ε0, ε0)→
(−ε0, ε0) by µ̃ (0) := 0 while µ̃ (ε) := εµ (ε) on (−ε0, 0) ∪ (0, ε0) as well as
µi (ε) := ε− µ̃ (ε) and µj (ε) := µ̃ (ε). Then (5) gives

lim
ε→0

li
(

zj + µj (ε) , z−(i,j)|x
)
− li (z−i|x)

µj (ε)

= − lim
ε→0

[
u
(
zj + µj (ε) , z−j

)
− u (z)

]
/µj (ε)[

u
(
zj + µj (ε) , z−j

)
− u

(
zi − µi (ε) , zj + µj (ε) , z−(i,j)

)]
/µi (ε)

(6)

And as limε→0 µj (ε) = 0, it suffices to note that, li (·|x) being differentiable at
z−i (recall Proposition 2 in the main text), the limit on the left-hand side of (6)
coincides with ∂li (z−i|x) /∂zj.
To show next statement (ii), notice first that, u (·) being differentiable, the mean-
value theorem ensures the existence of a function λ : (−ε0, ε0) → (0, 1) such
that

u
(
zj + µj (ε) , z−j

)
−u

(
zi − µi (ε) , zj + µj (ε) , z−(i,j)

)
= µi (ε)

∂u
(
zj + λ (ε) µj (ε) , z−j

)
∂zi
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We can re-write therefore (5) as

li
(

zj + µj (ε) , z−(i,j)|x
)
− li (z−i|x)

µj (ε)
= −

(
∂u
(
zj + λ (ε) µj (ε) , z−j

)
∂zi

)−1

×
u
(
zj + µj (ε) , z−j

)
− u (z)

µj (ε)

which gives

lim
ε→0

li
(

zj + µj (ε) , z−(i,j)|x
)
− li (z−i|x)

µj (ε)

= − lim
ε→0

(
∂u
(
zj + λ (ε) µj (ε) , z−j

)
∂zi

)−1

×
u
(
zj + µj (ε) , z−j

)
− u (z)

µj (ε)

= −
(

∂u (z)
∂zi

)−1

×
(

∂u (z)
∂zj

)
(7)

the last equality because u (·) is in fact C1 at z. The latter property ensures that
li (·|x) is also C1 at z−i, for it implies that % is weakly C1 at z (recall Lemma 3.9
in the main text).
It remains only to show that the first limit in (7) coincides with ∂li (z−i|x) /∂zj. To
this end, observe first that µ (·) is strictly increasing everywhere on its domain.
To show this arguing ad absurdum, let ε < ε′ and suppose that µ (ε) ≥ µ (ε′).
Then 1− µ (ε) ≤ 1− µ (ε′) and, by the strict monotonicity of %, it must be

lj

(
zi − ε′ (1− µ (ε)) , z−(i,j)|x

)
< lj

(
zi − ε′

(
1− µ

(
ε′
))

, z−(i,j)|x
)

Moreover, the function lj (·|x) being strictly convex, ε < ε′ implies also that2

lj

(
zi − ε′ (1− µ (ε)) , z−(i,j)|x

)
ε′

>
lj

(
zi − ε (1− µ (ε)) , z−(i,j)|x

)
ε

2Given K ∈ N \ {0} and a strictly convex function f : S → R defined on an open and convex set S ⊆ RK ,
a vector v ∈ RK , and ε ∈ R \ {0}, the ratio [ f (x + εv)− f (x)] /ε is a strictly increasing function of ε (see
Theorem 6.2.15 in de la Fuente (2000)). For the application of this result in the text, let K = n− 1 and vi =
1− µ (ε) while vk = 0 for k ∈ N \ {i, j}.
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Putting these observations together, we get the contradiction that

µ (ε) =
zj + εµ (ε)− zj

ε
=

lj

(
zi − ε (1− µ (ε)) , z−(i,j)|x

)
− lj

(
z−j|x

)
ε

<
lj

(
zi − ε′ (1− µ (ε)) , z−(i,j)|x

)
− lj

(
z−j|x

)
ε′

<
lj

(
zi − ε′ (1− µ (ε′)) , z−(i,j)|x

)
− lj

(
z−j|x

)
ε′

= µ
(
ε′
)

Clearly, µ (·) being strictly increasing, µ̃ (·) is injective. It is also continuous. In-
deed, given any ε∗ ∈ (−ε0, ε0) and any δ > 0, choosing ε1 ∈ (0, δ/2) sufficiently
small, the continuity of lj (·|x) in conjunction with the fact that µ (·) is strictly
increasing ensure that

δ/2 > |li
(

zj + εµ (ε) , z−(i,j)|x
)
− li

(
zj + ε∗µ (ε∗) , z−(i,j)|x

)
|

= |li
(

zj + εµ (ε) , z−(i,j)|x
)
− li (z−i|x) + li (z−i|x)− li

(
zj + ε∗µ (ε∗) , z−(i,j)|x

)
|

= |ε∗ (1− µ (ε∗))− ε (1− µ (ε)) |
= |εµ (ε)− ε∗µ (ε∗)− (ε− ε∗) |
> |εµ (ε)− ε∗µ (ε∗) | − |ε− ε∗|
> |εµ (ε)− ε∗µ (ε∗) | − ε1

> |εµ (ε)− ε∗µ (ε∗) | − δ/2

and thus |µ̃ (ε)− µ̃ (ε∗) | < δ everywhere on (ε∗ − ε1, ε∗ + ε1).
Moreover, for any k > 0, µ̃ : (−ε0/k, ε0/k) → (−ε0µ (ε0/k) /k, ε0µ (ε0/k) /k)
is surjective. To see this, observe that there cannot be ε′ ∈ (0, ε0µ (ε0/k) /k)
[resp. ε′ ∈ (−ε0µ (−ε0/k) /k, 0)] such that ε′ < µ̃ (ε) [resp. ε′ > µ̃ (−ε)] for all
ε ∈ (0, ε0/k) because the right-hand side of the inequality vanishes as ε ↘ 0.
Nor can there be ε′ ∈ (0, ε0µ (ε0/k) /k) [resp. ε′ ∈ (−ε0µ (−ε0/k) /k, 0)] such
that ε′ > µ̃ (ε) [resp. ε′ < µ̃ (−ε)] for all ε ∈ (0, ε0/k) since ε′ < ε0µ (ε0/k) /k =
µ̃ (ε0/k) [resp. ε′ > −ε0µ (−ε0/k) /k = µ̃ (−ε0/k)] while µ̃ (·) is continuous.
Hence, µ̃ (·) is invertible. It maps a given (sufficiently small) neighbourhood
around the origin onto a smaller neighbourhood around the origin - with the
latter neighbourhood completely identified by the choice of the former neigh-
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bourhood. It follows thus that

lim
ε→0

li
(

zj + µ̃ (ε) , z−(i,j)|x
)
− li (z−i|x)

µ̃ (ε)
= lim

ε→0

li
(

zj + ε, z−(i,j)|x
)
− li (z−i|x)

ε

=
∂li (z−i|x)

∂zj

To complete the argument it suffices to recall the definition of µj (·). �

Our closing remark refers to Example 2 (and thus also to Proposition 4) in the
main text. Our intuition applies for the more general formulation where % is
represented by

u (x) :=

{
f (x1, x2) , if (x1, x2) ∈ S := {x ∈ X : x1 ≤ x2}
f (x2, x1) , otherwise

for some function f : X → R that is strictly quasiconcave, strictly increasing and
C1 on int (X) \ S0 where S0 := {x ∈ X : x1 = x2}. For as long as ∂ f (x) /∂x1 6=
∂ f (x) /∂x2 %will not be differentiable anywhere on int (X)∩ S0. Indeed, by the
preceding lemma, for any x ∈ int (X) we have

l′2 (x1|x) =

 −
∂ f (x)/∂x1
∂ f (x)/∂x2

, if x ∈ Ix ∩ S \ S0

− ∂ f (x)/∂x2
∂ f (x)/∂x1

, if x ∈ Ix ∩ (X \ S)

Clearly, the quantity limx1→x1 l′2 (x1|x) takes different values as we approach x ∈
int (X)∩S0 from within S as opposed to from outside. Example 2 in the main text
has f (x1, x2) := x1/3

1 x2/3
2 . The example of homothetic preferences generating a

non-invertible demand function in Hurwicz and Uzawa (1971) has f (x1, x2) :=
x2φ (x1/x2) with φ : [0, 1]→ R given by φ (t) := 3− (1− t)

(
2 +
√

1− t
)
.
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