SUPPLEMENTAL APPENDIX FOR "INFORMATION SPILLOVER IN MULTI-GOOD ADVERSE SELECTION" (FOR ONLINE PUBLICATION ONLY)

BINGCHAO HUANGFU* AND HENG LIU ${ }^{\dagger}$

In this supplemental appendix, we first state and prove five technical lemmas (Lemmas S.1-S.5), which are stated in the Appendix of the paper and used to prove the results in the main paper. Then we prove the results in Section 6 of the main paper.

TEChnical Lemmas

Let μ_{t}^{i} be the probability of high quality for good $i=1,2$ in period t. Let $\mu_{t}^{i}(h)$ be the probability of high quality for the remaining good $i=1,2$ in period t if the seller's action is $h \in\{r a, a r, r r\}$ in period $t-1$. Let μ_{τ}^{t} be the probability of the seller type $\tau \in$ $\{H H, H L, L H, L L\}$ in period t.

For any $k \in\{r r, a r, r a, a a\}$, let p_{k} be the probability that type $L L$ seller chooses k in period one. Let $p_{H L}$ be the probability that type $H L$ seller chooses $r r$. Let $p_{L H}$ be the probability that type $L H$ seller chooses $r r$. The following expressions describe the updated beliefs in period two when trade happens with positive probability in period one.

$$
\begin{equation*}
\frac{\mu_{H L} p_{H L}+\mu_{H H}}{\mu_{H L} p_{H L}+\mu_{L H} p_{L H}+p_{r r} \mu_{L L}+\mu_{H H}}=\frac{\mu_{L H} p_{L H}+\mu_{H H}}{\mu_{L H} p_{L H}+\mu_{H L} p_{H L}+p_{r r} \mu_{L L}+\mu_{H H}}=\mu^{*} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mu_{H L}\left(1-p_{H L}\right)}{\mu_{H L}\left(1-p_{H L}\right)+p_{r a} \mu_{L L}}=\frac{\mu_{L H}\left(1-p_{L H}\right)}{\mu_{L H}\left(1-p_{L H}\right)+p_{a r} \mu_{L L}}=\mu^{*} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mu_{H L}\left(1-p_{H L}\right)}{\mu_{H L}\left(1-p_{H L}\right)+p_{r a} \mu_{L L}} \geq \mu^{*}, \frac{\mu_{L H}\left(1-p_{L H}\right)}{\mu_{L H}\left(1-p_{L H}\right)+p_{a r} \mu_{L L}} \geq \mu^{*} \tag{3}
\end{equation*}
$$

The following five lemmas are originally stated in the Appendix of the main paper (pages 22-23). Here we list them for completeness.

Lemma S.1. (i) If $\mu^{*} \leq \frac{1}{2}$, there are solutions to (1) and (2). (ii) If $\mu^{*}>\frac{1}{2}$, then there are solutions to (1) and (2) if and only if $\frac{\mu_{H H}}{2 \mu^{*}-1}+\frac{\mu_{L L}}{1-\mu^{*}} \geq 1$. (iii) If $\mu^{*}>\frac{1}{2}$ and $\frac{\mu_{H H}}{2 \mu^{*}-1}+\frac{\mu_{L L}}{1-\mu^{*}}<1$, there is a solution to (1) and (3), in which $p_{r r}=0$.

[^0]Lemma S.2. Under refinement D1, suppose $\mu^{*}>\frac{1}{2}$ and Assumption 3 holds, if the belief in period $t=1$ satisfies Assumption 1 or the belief in period $t \geq 2$ satisfies $\left(\mu_{t}^{1}, \mu_{2}^{2}\right) \in \mathcal{B}$, then $\mu_{t+1}^{1}(r r) \leq \mu^{*}$ and $\mu_{t+1}^{2}(r r) \leq \mu^{*}$.

Lemma S.3. Under refinement D1, suppose $\mu^{*} \leq \frac{1}{2}$ and $\delta>\bar{\delta}$, if the initial belief in pe$\operatorname{riod} t=1$ satisfies Assumption 1 or the belief in period $t \geq 2$ satisfies $\left(\mu_{t}^{1}, \mu_{2}^{2}\right) \in \mathcal{B}$, then $\mu_{t+1}^{1}(r r) \leq \mu^{*}$ and $\mu_{t+1}^{2}(r r) \leq \mu^{*}$.

Lemma S.4. Suppose $\delta>\frac{v_{L}-\mathcal{C}_{L}}{c_{H}-c_{L}}$, if there are three types: $H H, H L$ and $L H$ in period $t \geq 2$ and the belief satisfies $\left(\mu_{t}^{1}, \mu_{t}^{2}\right) \in \mathcal{B}$ in period $t \geq 2$, then the equilibrium continuation payoff of $L H$ and $H L$ in period t is $v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)$.

Lemma S.5. Suppose Assumptions 1-3 hold. Let $n+1$ be the first period in which $L L$ does not choose $r r$. If $n \geq 1$, then we have the following:
(1) $n<+\infty$;
(2) if $n \geq 2$, all types of the seller choose $r r$ in period t, where $2 \leq t \leq n$;
(3) $\left(\mu_{t+1}^{1}(r r), \mu_{t+1}^{2}(r r)\right) \in \mathcal{B}$ for $1 \leq t \leq n$;
(4) under refinement D1, $\mu_{t+1}^{1}(r a)=\mu_{t+1}^{2}(a r)=\mu^{*}$ for $1 \leq t \leq n$;
(5) $L L$ does not choose $a a$ in period 1.

Proof of Lemma S. 1

Proof. Step 1: There are solutions to (1) and (2) if $\mu^{*} \leq \frac{1}{2}$.
We start with the case that $\mu^{*}<\frac{1}{2}$. Since $\mu^{*}<\frac{1}{2}, \mu^{*} \geq \mu_{H H}+\mu_{H L}$ and $\mu^{*} \geq \mu_{H H}+\mu_{L H}$, then $1>2 \mu^{*} \geq 2 \mu_{H H}+\mu_{H L}+\mu_{L H}$. Therefore, $\mu_{H H}<\mu_{L L}$. Note that (2) implies that

$$
\begin{align*}
& p_{r a}=\frac{\mu_{H L}}{\mu_{L L}} \frac{1-\mu^{*}}{\mu^{*}}\left(1-p_{H L}\right) . \tag{4}\\
& p_{a r}=\frac{\mu_{L H}}{\mu_{L L}} \frac{1-\mu^{*}}{\mu^{*}}\left(1-p_{L H}\right) . \tag{5}
\end{align*}
$$

In addition, (1) implies that

$$
\begin{align*}
& p_{H L}=\frac{\mu^{*}}{1-2 \mu^{*}} \frac{\mu_{L L}}{\mu_{H L}} p_{r r}-\frac{1-\mu^{*}}{1-2 \mu^{*}} \frac{\mu_{H H}}{\mu_{H L}} . \tag{6}\\
& p_{L H}=\frac{\mu^{*}}{1-2 \mu^{*}} \frac{\mu_{L L}}{\mu_{L H}} p_{r r}-\frac{1-\mu^{*}}{1-2 \mu^{*}} \frac{\mu_{H H}}{\mu_{H L}} . \tag{7}
\end{align*}
$$

Finally, (4), (5), (6) and (7) imply that

$$
\begin{align*}
& p_{r a}=\frac{\mu_{H L}}{\mu_{L L}} \frac{1-\mu^{*}}{\mu^{*}}-\frac{1-\mu^{*}}{1-2 \mu^{*}} p_{r r}+\frac{\left(1-\mu^{*}\right)^{2}}{\mu^{*}\left(1-2 \mu^{*}\right)} \frac{\mu_{H H}}{\mu_{L L}} . \tag{8}\\
& p_{a r}=\frac{\mu_{L H}}{\mu_{L L}} \frac{1-\mu^{*}}{\mu^{*}}-\frac{1-\mu^{*}}{1-2 \mu^{*}} p_{r r}+\frac{\left(1-\mu^{*}\right)^{2}}{\mu^{*}\left(1-2 \mu^{*}\right)} \frac{\mu_{H H}}{\mu_{L L}} . \tag{9}
\end{align*}
$$

As $p_{a r} \geq 0, p_{r a} \geq 0, p_{H L} \geq 0$ and $p_{L H} \geq 0$, then (8), (9), (6) and (7) imply that

$$
\begin{aligned}
& \frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}} \leq p_{r r} \leq \frac{\mu_{H L}}{\mu_{L L}} \frac{1-2 \mu^{*}}{\mu^{*}}+\frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}} . \\
& \frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}} \leq p_{r r} \leq \frac{\mu_{L H}}{\mu_{L L}} \frac{1-2 \mu^{*}}{\mu^{*}}+\frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}} .
\end{aligned}
$$

The above two equations have a solution $p_{r r}$ since $\mu^{*}<\frac{1}{2}$.
As $p_{a r}+p_{r a}+p_{r r} \leq 1$, then (8), (9) imply that

$$
p_{r r} \geq\left(\frac{1-\mu^{*}}{\mu^{*}} \frac{1-\mu_{L L}-\mu_{H H}}{\mu_{L L}}-1\right)\left(1-2 \mu^{*}\right)+\frac{\left(1-\mu^{*}\right)^{2}}{\mu^{*}} \frac{2 \mu_{H H}}{\mu_{L L}}
$$

We need to find $p_{r r} \in[0,1]$ to satisfy all above three inequalities. We first check that there exists $p_{r r}$ to satisfy all above three inequalities. It is equivalent to show that

$$
\frac{1-\mu^{*}}{\mu^{*}} \frac{1-\mu_{L L}-\mu_{H H}}{\mu_{L L}}-1<\frac{\min \left\{\mu_{H L}, \mu_{L H}\right\}}{\mu_{L L} \mu^{*}}-\frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}}
$$

The above inequality holds if $\mu^{*} \geq \mu_{L H}+\mu_{H H}$ and $\mu^{*} \geq \mu_{H L}+\mu_{H H}$, which are true. Next, we prove that $p_{r r} \in[0,1]$, which is equivalent to show that the lower bound of $p_{r r}$ is less than 1: $\left(\frac{1-\mu^{*}}{\mu^{*}} \frac{1-\mu_{L L}-\mu_{H H}}{\mu_{L L}}-1\right)\left(1-2 \mu^{*}\right)+\frac{\left(1-\mu^{*}\right)^{2}}{\mu^{*}} \frac{2 \mu_{H H}}{\mu_{L L}} \leq 1$ and $\frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}}<1$. The first inequality is equivalent to $\left(1-\mu^{*}\right)\left(\mu^{*}-\frac{\mu_{H L}+\mu_{L H}}{2}-\mu_{H H}\right)>0$, thus $\mu^{*} \geq \frac{\mu_{H L}+\mu_{L H}}{2}+\mu_{H H}$, which is true. The second inequality is equivalent to $\mu^{*}>\frac{\mu_{H H}}{\mu_{H H}+\mu_{L L}}$. By the fact that $\mu_{H H}<\mu_{L L}$, we have $\mu_{H H}+\frac{\mu_{H L}+\mu_{L H}}{2}-\frac{\mu_{H H}}{\mu_{H H}+\mu_{L L}}=\frac{\mu_{H L}+\mu_{L H}}{2} \frac{\mu_{L L}-\mu_{H H}}{\mu_{H H}+\mu_{L L}}>0$. Therefore, $\mu^{*}>$ $\mu_{H H}+\frac{\mu_{H L}+\mu_{L H}}{2}>\frac{\mu_{H H}}{\mu_{H H}+\mu_{L L}}$.

Next, we prove that there exist solutions to (1) and (2) if $\mu^{*}=\frac{1}{2}$. Since $\mu^{*}=\frac{1}{2}$ implies that $\mu^{*}>\mu_{H H}+\mu_{H L}$ and $\mu^{*}>\mu_{H H}+\mu_{L H}$, then $1=2 \mu^{*}>2 \mu_{H H}+\mu_{H L}+\mu_{L H}$, and thus $\mu_{H H}<\mu_{L L}$.

By calculation, $p_{r r}=\frac{\mu_{H H}}{\mu_{L L}}<1, p_{r a}=\frac{\mu_{H L}}{\mu_{L L}}\left(1-p_{H L}\right), p_{a r}=\frac{\mu_{L H}}{\mu_{L L}}\left(1-p_{L H}\right), \mu_{H L} p_{H L}=$ $\mu_{L H} p_{L H}$. In order to satisfy $p_{r a}+p_{a r}+p_{r r} \leq 1$, we need $\frac{1}{2} \leq \mu_{L L}+\mu_{H L} p_{H L}$. Assume without loss of generality that $\mu_{H L} \leq \mu_{L H}$, then let $p_{H L}=1$ and $p_{L H}=\frac{\mu_{H L}}{\mu_{L H}}$. Then, we only need to show that $\frac{1}{2} \leq \mu_{L L}+\mu_{H L}$, which holds since $\frac{1}{2}=\mu^{*}>\mu_{H H}+\mu_{L H}$. To summarize, we construct a solution: $p_{r r}=\frac{\mu_{H H}}{\mu_{L L}}, p_{r a}=0, p_{a r}=\frac{\mu_{L H}-\mu_{H L}}{\mu_{L L}}, p_{H L}=1$ and $p_{L H}=\frac{\mu_{H L}}{\mu_{L H}}$.
Step 2: If $\mu^{*}>\frac{1}{2}$, then there exist solutions to (1) and (2) if and only if $\frac{\mu_{H H}}{2 \mu^{*}-1}+\frac{\mu_{L L}}{1-\mu^{*}} \geq 1$.
Since $p_{a r} \geq 0, p_{r a} \geq 0, p_{H L} \geq 0$ and $p_{L H} \geq 0$, then (6), (7), (8) and (9) implies that

$$
\begin{aligned}
& \frac{\mu_{H L}}{\mu_{L L}} \frac{1-2 \mu^{*}}{\mu^{*}}+\frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}} \leq p_{r r} \leq \frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}} . \\
& \frac{\mu_{L H}}{\mu_{L L}} \frac{1-2 \mu^{*}}{\mu^{*}}+\frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}} \leq p_{r r} \leq \frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}} .
\end{aligned}
$$

As $\mu^{*}>\frac{1}{2}$, the above two equations make sense. By $p_{a r}+p_{r a}+p_{r r} \leq 1$, (8) and (9) implies that

$$
p_{r r} \leq\left(\frac{1-\mu^{*}}{\mu^{*}} \frac{1-\mu_{L L}-\mu_{H H}}{\mu_{L L}}-1\right)\left(1-2 \mu^{*}\right)+\frac{\left(1-\mu^{*}\right)^{2}}{\mu^{*}} \frac{2 \mu_{H H}}{\mu_{L L}}
$$

We need to find $p_{r r} \in[0,1]$ to satisfy all above three inequalities. First, there is $p_{r r}$ to satisfy the above three inequalities. It is equivalent to show that

$$
\frac{1-\mu^{*}}{\mu^{*}} \frac{1-\mu_{L L}-\mu_{H H}}{\mu_{L L}}-1<\frac{\min \left\{\mu_{H L}, \mu_{L H}\right\}}{\mu_{L L}} \frac{1}{\mu^{*}}-\frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}} .
$$

The above two equations hold if $\mu^{*} \geq \mu_{L H}+\mu_{H H}$ and $\mu^{*} \geq \mu_{H L}+\mu_{H H}$, which are true.
Next, there exists $p_{r r} \in[0,1]$. We first prove that the lower bound of $p_{r r}$ is less than 1 : $\frac{\mu_{H L}}{\mu_{L L}} \frac{1-2 \mu^{*}}{\mu^{*}}+\frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}} \leq 1$ and $\frac{\mu_{L H}}{\mu_{L L}} \frac{1-2 \mu^{*}}{\mu^{*}}+\frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}}<1$. It is equivalent to $\mu^{*}>\frac{\mu_{H H}+\mu_{H L}}{\mu_{L L}+\mu_{H H}+2 \mu_{H L}}$ and $\mu^{*}>\frac{\mu_{H H}+\mu_{L H}}{\mu_{L L}+\mu_{H H}+2 \mu_{L H}}$. Assume without loss of generality that $\mu_{H L} \geq \mu_{L H}$. Then, $\mu_{L L}+\mu_{H H}+2 \mu_{H L}>1$, so $\mu^{*} \geq \mu_{H H}+\mu_{H L}>\frac{\mu_{H H}+\mu_{H L}}{\mu_{L L}+\mu_{H H}+2 \mu_{H L}} \geq \frac{\mu_{H H}+\mu_{L H}}{\mu_{L L}+\mu_{H H}+2 \mu_{L H}}$. The second inequality is implied by $\mu_{L L}>\mu_{H H}$ and $\mu_{L H} \leq \mu_{H L}$. Next, we show that the upper bound of $p_{r r}$ is not less than 0 : $\left(\frac{1-\mu^{*}}{\mu^{*}} \frac{1-\mu_{L L}-\mu_{H H}}{\mu_{L L}}-1\right)\left(1-2 \mu^{*}\right)+\frac{\left(1-\mu^{*}\right)^{2}}{\mu^{*}} \frac{2 \mu_{H H}}{\mu_{L L}} \geq 0$, which is equivalent to $\frac{\mu_{H H}}{2 \mu^{*}-1}+\frac{\mu_{L L}}{1-\mu^{*}} \geq 1$. To summarize, there exists $p_{r r} \in[0,1]$.

Since $\frac{\mu_{H H}}{2 \mu^{*}-1}+\frac{\mu_{L L}}{1-\mu^{*}}<1$ implies $p_{r r}<0$, there is no solution to (1) and (2).
Step 3: There exist solutions to (1) and (3), if $\mu^{*}>\frac{1}{2}$ and $\frac{\mu_{H H}}{2 \mu^{*}-1}+\frac{\mu_{L L}}{1-\mu^{*}}<1$.
Let $p_{r r}=0$. Given $p_{r r}=0$ and (1),

$$
p_{H L}=\frac{1-\mu^{*}}{2 \mu^{*}-1} \frac{\mu_{H H}}{\mu_{H L}}, p_{L H}=\frac{1-\mu^{*}}{2 \mu^{*}-1} \frac{\mu_{H H}}{\mu_{L H}} .
$$

From the above equations, (3) and $p_{a r}+p_{r a}=1$, we can show that $\frac{\mu_{H H}}{2 \mu^{*}-1}+\frac{\mu_{L L}}{1-\mu^{*}}<1$.
Note that $p_{H L}=\frac{1-\mu^{*}}{2 \mu^{*}-1} \frac{\mu_{H H}}{\mu_{H L}}<1$ and $p_{L H}=\frac{1-\mu^{*}}{2 \mu^{*}-1} \frac{\mu_{H H}}{\mu_{L H}}<1$, which is implied by $\mu^{*}>$ $\mu_{H L}+\mu_{H H}, \mu^{*}>\mu_{L H}+\mu_{H H}$ and $\frac{\mu_{H H}}{2 \mu^{*}-1}+\frac{\mu_{L L}}{1-\mu^{*}}<1$.

Proof of Lemma S. 2

Proof. We argue by contradiction that $\mu_{t+1}^{1}(r r) \leq \mu^{*}$. Assume the contrary that $\mu_{t+1}^{1}(r r)>$ μ^{*}. Assume that period $t+k$ is the first period such that both goods remain untraded and $H H$ or $H L$ accepts the offer for good 1 with positive probability, where $k \geq 1$. Therefore, if $k \geq 2$, the belief of good 1 is larger than μ^{*} in period $t+1, \cdots, t+k-1$. In the following steps except step 1, if not specified, the actions of sellers and buyers are taken in period $t+k-1$. The proof is broken into following 6 steps.
Step 1: In period $t+k$, the offer for good 1 is at least c_{H} (we assume that the actions of the players are taken in period $t+k$ in this step).

Since $H H$ or $H L$ accepts the offer for good 1 with positive probability, by skimming properties in Lemma 3, LH and LL accepts the offer for good 1 for sure. Then, HH and $H L$ choose pure strategy with respect to good 1 , since otherwise buyer 1 can increases the offer a little bit to make a profit. There are four cases to consider: (1) HH chooses $r r$ with positive probability and $H L$ accepts the offer for good 1. HH is the only type to choose $r r$, and $L H$ will deviate to $r r$, instead of accepting the offer for good 1. (2) HH chooses $r a$ and $H L$ accepts the offer for good 1. HL gets $\delta\left(v_{H}-c_{H}\right)$ from good 1 by choosing $r a$. By skimming properties in Lemma 3, HL chooses $a a$ with positive probability in period $t+k$. Therefore, the offer for good 1 in period $t+k$ is at least c_{H}, since otherwise $H L$ gets negative profit from good 1 by choosing $a a$, and consequently $r a$ dominates $a a$ for $H L$, a contradiction. (3) HH chooses $a a$ with positive probability and HL rejects the offer for good 1. By skimming properties in Lemma 3, HL chooses $r a$ with positive probability. Since HH strictly prefers $a a$ to $r a$, then HL also strictly prefers $a a$ to $r a$, a contradiction. (4) $H H$ chooses $a r$ and $H L$ rejects the offer for good 1 . Since $\mu_{t+1}^{1}(r r)=1$, then by choosing $r r, H H$ can guarantee at least $\delta\left(v_{H}-c_{H}\right)$. Therefore, the offer for good 1 in period $t+k$ is at least c_{H}, since otherwise $H H$ gets a negative payoff from good 1 , so $H H$ gets less than $\delta\left(v_{H}-c_{H}\right)$ by choosing $a r$, and consequently $r r$ is a profitable deviation for $H H$, a contradiction. In all, the offer for good 1 in period $t+k$ is at least c_{H}.
Step 2: If $k \geq 2$, show that there is a losing offer for good 1 in period $t+k-1$, and both $H H$ and $L H$ choose $r r$ for sure in period $t+k-1$.

First, we prove that $\mu_{t+k-1}^{2} \leq \mu^{*}$. Otherwise, by Lemma $4, \mu_{t+k-1}^{2}>\mu^{*}$ and $\mu_{t+k-1}^{1}>\mu^{*}$ imply that all seller types choose $a a$, a contradiction to the definition of $t+k-1$.

Next, we argue that $L H$ rejects the offer for good 1. Assume the contrary that $L H$ accepts the offer for good 1 with positive probability. Therefore, in period $t+k-1$, only the low type seller accepts the offer for good 1 and consequently the offer in period $t+$ $k-1$ is v_{L} by zero profit condition of buyer 1 . By choosing aa, LH gets at most $v_{L}-c_{L}$ since $\mu_{t+k-1}^{2} \leq \mu^{*}$; by choosing ar, LH gets at most $\left(v_{L}-c_{L}\right)+\delta\left(v_{H}-c_{H}\right)$; by choosing $r r, L H$ gets at least $\delta\left(c_{H}-c_{L}\right)$, by Step 1. $\delta>\frac{v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)}{c_{H}-c_{L}}$ implies that LH prefers $r r$ to $a r$ and $a a$, a contradiction to the assumption that $L H$ accepts the offer for good 1 with positive probability.

We next prove that $L L$ rejects the offer for good 1 . We have shown that all three types other than $L L$ choose to reject the offer for good 1 . If $L L$ chooses to accept the offer for good 1 with positive probability, then this will reveal $L L$'s type and is the worst possible strategy for $L L$, and thus $L L$ will deviate to rejecting the offer for good 1, a contradiction.

Finally, we prove that HH and LH choose $r r$ for sure. Assume to the contrary that HH or $L H$ chooses $r a$ with positive probability. Skimming properties A and B. 2 imply that $H L$
and $L L$ also choose $r a$ for sure. If only $r a$ is on the equilibrium path in period $t+k-1$, then by the result of one-good model, there is a winning offer for good 1, a contradiction to the definition of k. If $r r$ is the equilibrium path in period $t+k-1$, then $\mu_{t+k}^{2}(r r)=1$. Moreover, HH and LH can only choose pure strategy: $r r$ or $r a$, since otherwise it is a profitable deviation for buyer 2 by increasing the offer for good 2 a little bit to attract $H H$ or $L H$ to accept the offer for sure. If $H H$ chooses $r r$ for sure, then $L H$ also chooses $r r$, and hence, the offer for good 2 in period $t+k-1$ is v_{L}. Then, HL gets a payoff at most $v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)$. It is a profitable deviation for $H L$ to choose $r r: \delta\left(v_{H}-\right.$ $\left.c_{L}\right)>v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)$, a contradiction. If $H H$ chooses $r a$ for sure, then $L H$ also chooses $r a$ to get at least $\delta\left(c_{H}-c_{L}\right)$, which is higher than the payoff from choosing $r r$: $\delta\left(v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)\right)$. In all, all four types choose $r a$ for sure, a contradiction to the assumption that $r r$ is on the equilibrium path in period $t+k-1$.
Step 3: If $k \geq 2$, then $H L$ mixes between $r r$ and $r a$ and $L L$ is indifferent between $r a$ and $r r$ in period $t+k-1$.

First, we prove that $\mu_{t+k}^{2}(r r) \leq \mu^{*}$. Assume by contradiction that $\mu_{t+k}^{2}(r r)>\mu^{*}$. Since $\mu_{t+k}^{1}>\mu^{*}$, then Lemma 4 implies that there is a winning offer for good 2 in period $t+k$, which is larger than c_{H}. Therefore, in period $t+k-1$, by choosing $r r, H L$ gets at least $\delta\left(c_{H}-c_{L}\right)$; by choosing ra, HL gets at most $\left(v_{L}-c_{L}\right)+\delta\left(v_{H}-c_{H}\right)$. Since $\delta\left(c_{H}-c_{L}\right)>$ $\left(v_{L}-c_{L}\right)+\delta\left(v_{H}-c_{H}\right)$, then $H L$ chooses $r r$ for sure in period $t+k-1$. Also, $L L$ chooses $r r$ for sure in period $t+k-1$. Bayes rule implies that $\mu_{t+k}^{2}(r r) \leq \mu_{t+k-1}^{2} \leq \mu^{*}$, a contradiction to $\mu_{t+k}^{2}(r r)>\mu^{*}$. A corollary is that in period $t+k$ with two goods, $L H$ and $H H$ get zero profit from good 2.

We next argue by contradiction that HL mixes between $r r$ and $r a$. Assume the contrary. We consider the following two cases. First, HL chooses $r a$ for sure in period $t+k-1$. It is straightforward to show that $L L$ also chooses $r a$ with positive probability. Therefore, $\mu_{t+k}^{2}(r r)=1$, and consequently, $L L$ deviates to $r r$ to make a higher profit, a contradiction. Second, $H L$ chooses $r r$ for sure in period $t+k-1$. Then $L L$ also chooses $r r$ for sure, since otherwise by choosing $r a, L L$ would reveals its type and gets a lower payoff than $r r$. In all, there are two losing offers in period $t+k-1$. Given $r r$ in period $t+k-1$, there is no belief updating: $\mu_{t+k}^{1}(r r)=\mu_{t+k-1}^{1}$. Therefore, in period $t+k-1$, buyers of good 1 can deviate to make an offer $V\left(\mu_{t+k-1}^{1}\right)-\epsilon$ (small enough ϵ) so that all type would prefer ar to $r r$, for the following two reasons: (i) for good 1, all types of seller would accept the offer $V\left(\mu_{t+k-1}^{1}\right)-\epsilon$ in period $n+k-1$ instead of waiting for one more period and get an offer $V\left(\mu_{t+k-1}^{1}\right)$; (ii) $\mu_{t+k}^{2}(r r) \leq \mu^{*}$ implies that $r r$ gives $L H$ and $H H$ zero profit for good 2, so ar is a strictly better choice than $r r$, for $L H$ and HH. However, ar is not a strictly better choice for $H L$ and $L L$ if $\mu_{t+k}^{2}(a r)=0$. Therefore, refinement D 1 implies
that $\mu_{t+k}^{2}(\operatorname{ar})>\mu_{t+k}^{2}(r r)=\mu_{t+k-1}^{2}$, and thus all four types strictly prefers $a r$ to $r r$. In all, buyer 1 in period $t+k-1$ gets a positive profit ϵ by making an offer $V\left(\mu_{t+k-1}^{1}\right)-\epsilon$, a contradiction.

We thus have proved that $H L$ mixes between $r a$ and $r r$ in period $t+k-1$. Then, $L L$ is also indifferent between $r a$ and $r r$ in period $t+k-1$. This is because $H L$ and $L L$ get the same payoff from good 2 by choosing either $r r$ or $r a$, and for good 1 , the payoff difference between choosing $r r$ and $r a$ is $\delta\left(V\left(\mu_{t+k}^{1}(r r)\right)-V\left(\mu_{t+k}^{1}(r a)\right)\right.$, for both $H L$ and $L L$.
Step 4: If $k \geq 2$, it is not possible that there are three types: $H H, H L$ and $L H$ in period $t+k-1$.

Assume by contradiction that there are three types: $H H, H L$ and $L H$ in period $t+k-1$. By Step 1, HH and LH choose $r r$ for sure. Bayes rule implies that $\mu_{t+k}^{1}(r r) \leq \mu_{t+k-1}^{1}$. In period $t+k-1$, buyer 1 is willing to offer $V\left(\mu_{t+k-1}^{1}\right)-\epsilon$ (small enough ϵ) so that $H H$ and LH chooses ar instead of $r r$, and HL chooses $a=$ instead of $a r$, because the new choices bring all three types a weakly higher payoff from good 2 , and a strictly higher payoff from good 1. This is a profitable deviation for buyer 1, a contradiction to buyer 1's zero profit condition.
Step 5: Show that $k=1$.
We argue by contradiction that $k \geq 2$. Now, we first show that $H L$ chooses $r r$ for sure in period $t+k-2$. Assume the contrary $H L$ chooses $r a$ with positive probability in period $t+k-2$. Note that we have $\mu_{t+k-1}^{1}(r a)>\mu^{*}$, since otherwise $L L$ strictly prefers $r r$ and thus $\mu_{t+k-1}^{1}(r a)=1$, a contradiction. By skimming property B.1, LL strictly prefers $r a$ to $r r$ in period $t+k-2$. Therefore, in period $t+k-1$ with two goods, there are at most three types: HH, HL and LH, a contradiction to Step 4. Next, we prove that $L H$ chooses $r r$ for sure in period $t+k-2$. Assume the contrary LH chooses ar with positive probability in period $t+k-2$. If $\mu_{t+k-1}^{2}($ ar $)>\mu^{*}$, then by skimming property B.3, $L L$ strictly prefers ar to $r r$ in period $t+k-2$, which also reaches a contradiction to Step 3. If $\mu_{t+k-1}^{2}(a r) \leq \mu^{*}$, then $L H$ gets $v_{L}-c_{L}$ by choosing ar in period $t+k-2$; LH gets at least $\delta^{2}\left(c_{H}-c_{L}\right)$ by chooses $r r$ in period $t+k-2$. Since $\delta>\left(\frac{v_{L}-c_{L}}{c_{H}-c_{L}}\right)^{\frac{1}{2}}$, then LH chooses $r r$ in period $t+k-2$, a contradiction. It follows that all four types choose $r r$ in period $t+k-2$.

An immediate conclusion is that $\mu_{t+k-1}^{1}(r r)=\mu_{t+k-2}^{1}$. If $k=2$, then $\mu_{t+1}^{1}(r r)=\mu_{t}^{1}<\mu^{*}$, a contradiction to $\mu_{t+1}^{1}(r r)>\mu^{*}$. If $k \geq 3$, then we will show that buyer 1 has a profitable deviation in period $t+k-2$. In period $t+k-2$, buyer 1 can deviate to make an offer $V\left(\mu_{t+k-2}^{1}\right)-\epsilon($ small enough $\epsilon)$ so that all types chooses ar in period $t+k-2$, for the following two reasons: all four types get higher payoff from good 1 by accepting offer for good 1 immediately in period $t+k-2$; ar brings all four types higher payoff than $r r$ from good 2 in period $t+k-2$. This is because, for $H H$ and $L H$, ar dominates $r r$ in
period $t+k-2$, but not for $H L$ and $L L$, then refinement D 1 implies that $\mu_{t+k-1}^{2}(a r)=1$. In all, buyer 1 gets a profit $\epsilon>0$ in period $t+k-2$ by making the offer $V\left(\mu_{t+k-2}^{1}\right)-\epsilon$, a contradiction to buyer 1's zero profit condition.
Step 6: We reach a contradiction to $\mu_{t+1}^{1}(r r)>\mu^{*}$.
By Lemma 5, in period $t, H H$ and HL rejects the offer for good 1, and any serious offer for good 1 in period t is v_{L}. As a result, ar gives $L H$ at most $v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)$ in period t. By $k=1$ (see Step 5), LH gets at least $\delta\left(c_{H}-c_{L}\right)$ by choosing $r r$ in period t. By the assumption that $\delta>\frac{v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)}{c_{H}-c_{L}}$, LH strictly prefer $r r$ to $a r$ in period t. Also, $L L$ does not choose $a a$ or ar in period t, since either choice reveals $L L$'s type and leads to a payoff lower than choosing $r r$. Next, $L L$ does not choose $r r$ for sure, since otherwise $\mu_{t+1}^{1}(r r) \leq \mu_{t}^{1} \leq \mu^{*}$, a contradiction. As a result, $L L$ chooses $r a$ with positive probability in period t. Notice that $\mu_{t+1}^{1}(r a) \geq \mu^{*}$, since otherwise $L L$ would strictly prefers $a a$ to $r a, \mathrm{a}$ contradiction. However, since only $r r$ and $r a$ are on the equilibrium path in period t, then $\mu_{t+1}^{1}(r a) \geq \mu^{*}$ and $\mu_{t+1}^{1}(r r)>\mu^{*}$ violate Bayes rule.

Proof of Lemma S. 3

Proof. It is without loss of generality to check the belief updating in period 1. We need to show that $\mu_{2}^{1}(r r) \leq \mu^{*}$.

We first prove that it is impossible that $\mu_{2}^{1}(r r)>\mu^{*}$ and $\mu_{2}^{2}(r r)>\mu^{*}$. Assume the contrary. In period 1, LL that does not choose $a a$, since $r r$ dominates $a a$ for $L L$. If $r a$ is on the equilibrium path in period 1 , then $\mu_{2}^{1}(r a) \geq \mu^{*}$, since otherwise $a a$ dominates $r a$ for LL. Also, LH chooses ar with positive probability in period 1, since otherwise only $r r$ and $r a$ can be on the equilibrium path, and it is impossible that $\mu_{2}^{1}(r r)>\mu^{*}$ and $\mu_{2}^{1}(r a) \geq$ μ^{*}. Therefore, $L H$ weakly prefers $a r$ to $r r$ in period 1: $v_{L}-c_{L}+\delta\left(V\left(\mu_{2}^{2}(a r)\right)-c_{H}\right) \geq$ $\delta\left(V\left(\mu_{2}^{1}(r r)\right)+V\left(\mu_{2}^{2}(r r)\right)-c_{L}-c_{H}\right)$.

It follows that

$$
\begin{equation*}
\mu_{2}^{1}(r r)+\mu_{2}^{2}(r r)-\mu_{2}^{2}(a r) \leq \frac{1-\delta}{\delta} \frac{v_{L}-c_{L}}{v_{H}-v_{L}} . \tag{10}
\end{equation*}
$$

Moreover, we have $\mu_{2}^{1}(r r)>\mu^{*}, \mu_{2}^{2}(r r)>\mu^{*}$ and $\mu_{2}^{2}(a r)=\mu_{2}^{1}(r a)>\mu^{*}$:

$$
\begin{gathered}
\frac{\mu_{H L} p_{H L}+\mu_{H H}}{\mu_{H L} p_{H L}+\mu_{L H} p_{L H}+p_{r r} \mu_{L L}+\mu_{H H}}>\mu^{*}, \frac{\mu_{L H} p_{L H}+\mu_{H H}}{\mu_{L H} p_{L H}+\mu_{H L} p_{H L}+p_{r r} \mu_{L L}+\mu_{H H}}>\mu^{*}, \\
\frac{\mu_{H L}\left(1-p_{H L}\right)}{\mu_{H L}\left(1-p_{H L}\right)+p_{r a} \mu_{L L}}=\frac{\mu_{L H}\left(1-p_{L H}\right)}{\mu_{L H}\left(1-p_{L H}\right)+p_{a r} \mu_{L L}}>\mu^{*} .
\end{gathered}
$$

The above conditions imply that

$$
\left(p_{H L} \mu_{H L}+p_{L H} \mu_{L H}\right)\left(1-2 \mu^{*}\right)>\frac{2 \mu^{*}}{1-2 \mu^{*}} \mu_{L L} p_{r r}-\frac{2\left(1-\mu^{*}\right)}{1-2 \mu^{*}} \mu_{H H}
$$

$$
p_{H L} \mu_{H L}+p_{L H} \mu_{L H}<\frac{\mu^{*}}{1-\mu^{*}} \mu_{L L} p_{r r}+1-\mu_{H H}-\frac{\mu_{L L}}{1-\mu^{*}}
$$

If there exists a solution, we can show that

$$
\begin{equation*}
\mu_{2}^{1}(r r)+\mu_{2}^{2}(r r)-\mu_{2}^{2}(a r)>\frac{2 \mu^{*}-1-\mu_{H H}+\mu_{L L}}{1-\frac{\mu_{H H}}{\mu^{*}}} \tag{11}
\end{equation*}
$$

and the upper bound is attained when $p_{r r} \rightarrow \frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}}$ and $p_{H L} \mu_{H L}+p_{L H} \mu_{L H} \rightarrow 0$. However, when $\delta>\left(1+\frac{2 \mu^{*}-1-\mu_{H H}+\mu_{L L}}{\mu^{*}-\mu_{H H}} \frac{c_{H}-v_{L}}{v_{L}-c_{L}}\right)^{-1}$, (10) and (11) cannot hold simultaneously.

Next, we argue that it is impossible that $\mu_{2}^{1}(r r)>\mu^{*}$ and $\mu_{2}^{2}(r r) \leq \mu^{*}$. Assume the contrary.

The first observation is that $L H$ gets at least $\delta\left(c_{H}-c_{L}\right)$ by choosing $r r$ in period 1. If the seller of high quality good 1 accepts the offer for good 1 with positive probability in period 2 , then the offer for good 2 in period 2 is at least c_{H}. Then, $L H$ can guarantee a payoff of $\delta\left(c_{H}-c_{L}\right)$ by choosing $r r$ in period 1 . If the seller of high quality good 1 rejects the offer for good 1 in period 2, then we continue our proof by two cases:

Case 1: LL chooses $r r$ with positive probability in period 1.
Assume that LH chooses $r r$ in period 1, then $L L$ chooses $r r$ for sure in period 1, a contradiction to $\mu_{2}^{1}(r r)>\mu^{*}$. Therefore, $L H$ chooses $a r$ with positive probability in period 1. If $L L$ chooses $r r$ for sure in period 1 , then $\mu_{2}^{2}(a r)=1$, and thus $L H$ gets a payoff $v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)>\delta\left(c_{H}-c_{L}\right)$ (by $\left.\delta>\frac{c_{H}-v_{L}}{v_{H}-c_{H}}\right)$ in period 1. The remaining case is that $L L$ mixes between $r r$ and $a r$. In order that $L H$ choosing $a r$ with positive probability, skimming property B. 1 shows that both $L H$ and $L L$ choose to accept the offer for good 2 for sure in period 2. If $\mu_{2}^{2}(r r)=\mu^{*}$, then there is a winning offer c_{H} for good 2, and there is a winning offer $V\left(\mu_{2}^{1}(r r)\right)>c_{H}$ for good 1. Then, LH gets at least $\delta\left(c_{H}-c_{L}\right)$ in period 2. If $\mu_{2}^{2}(r r)<\mu^{*}$, then $H H$ chooses $r r$ in period 2 , since otherwise $H H$ chooses $r a$ with positive probability in period 2 , then skimming property A shows that $H L$ chooses $r a$ for sure, and thus the offer for good 2 is less than c_{H}, by $\mu_{2}^{2}(r r)<\mu^{*}$. Therefore, $H H$ would rather choose $r r$, a contradiction. Therefore, $\mu_{3}^{1}(r r)=1$. LH can guarantee a payoff $\delta\left(v_{H}-c_{L}\right)>c_{H}-c_{L}$ (by $\delta>\frac{c_{H}-c_{L}}{v_{H}-c_{L}}$) in period 2, and thus LH can guarantee a payoff of $\delta\left(c_{H}-c_{L}\right)$ by choosing $r r$ in period 1 .

Case 2: $L L$ does not choose $r r$ in period 1.
In period 2, there are at most three types $H H, H L$ and $L H$. By choosing ar in period 2, LH guarantees a payoff $v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)>c_{H}-c_{L}\left(\right.$ by $\left.\delta>\frac{c_{H}-v_{L}}{v_{H}-c_{H}}\right)$ in period 2, and thus a payoff of $\delta\left(c_{H}-c_{L}\right)$ by choosing $r r$ in period 1.

The next observation is that $L H$ chooses ar with positive probability in period 1. Otherwise, HH and LH choose $r r$ in period 1, and only $r r$ and $r a$ are on the equilibrium path
in period 1. If $r a$ is on the equilibrium path, then $\mu_{2}^{1}(r a) \geq \mu^{*}$. However, $\mu_{2}^{1}(r a) \geq \mu^{*}$ and $\mu_{2}^{1}(r r)>\mu^{*}$ violate Bayes rule.

Combining the above two observations, we get $v_{L}-c_{L}+\delta\left(V\left(\mu_{2}^{2}(a r)\right)-c_{H}\right) \geq \delta\left(c_{H}-\right.$ c_{L}). As a result,

$$
\begin{equation*}
\mu_{2}^{2}(a r) \geq 2 \mu^{*}-\frac{1-\delta}{\delta} \frac{v_{L}-c_{L}}{v_{H}-v_{L}} \tag{12}
\end{equation*}
$$

Bayes rule implies that

$$
\begin{gathered}
\frac{\mu_{H L} p_{H L}+\mu_{H H}}{\mu_{H L} p_{H L}+\mu_{L H} p_{L H}+p_{r r} \mu_{L L}+\mu_{H H}}>\mu^{*} . \\
\frac{\mu_{H L}\left(1-p_{H L}\right)}{\mu_{H L}\left(1-p_{H L}\right)+p_{r a} \mu_{L L}}=\frac{\mu_{L H}\left(1-p_{L H}\right)}{\mu_{L H}\left(1-p_{L H}\right)+p_{a r} \mu_{L L}}>\mu^{*} .
\end{gathered}
$$

By $p_{L H} \geq 0$, the above conditions imply that

$$
\frac{\mu^{*}}{1-\mu^{*}} \mu_{L L} p_{r r}-\mu_{H H}<p_{H L} \mu_{H L}<\frac{\mu^{*}}{1-\mu^{*}} \mu_{L L} p_{r r}+1-\mu_{H H}-\frac{\mu_{L L}}{1-\mu^{*}}
$$

If $\mu_{L L} \geq 1-\mu^{*}$, there is no solution. If $\mu_{L L}<1-\mu^{*}$, then there is a solution and

$$
\begin{equation*}
\mu_{2}^{2}(\text { ar })<\mu^{*} \frac{1-\mu_{H H}-\mu_{L L}}{\mu^{*}-\mu_{H H}} \tag{13}
\end{equation*}
$$

where the upper bounded is attained if $p_{r r} \rightarrow \frac{1-\mu^{*}}{\mu^{*}} \frac{\mu_{H H}}{\mu_{L L}}$ and $p_{H L} \rightarrow 0$.
As long as $\delta>\left(1+\frac{2 \mu^{*}-1-\mu_{H H}+\mu_{L L}}{\mu^{*}-\mu_{H H}} \frac{c_{H}-v_{L}}{v_{L}-c_{L}}\right)^{-1}$, (12) and (13) do not hold simultaneously.

Proof of Lemma S. 4

Proof. By Lemma 5, the seller of high-quality good $i=1,2$ rejects the offer for good i in period t. Therefore, $H H$ chooses $r r$, LH chooses $a r$ or $r r$, and $H L$ chooses $r a$ or $r r$ in period t. Assume without loss of generality that $\mu_{t}^{1}<\mu^{*}$.

We first prove that $L H$ chooses ar with positive probability in period t. Assume the contrary that $L H$ chooses $r r$ for sure in period t. Bayes rules show that $\mu_{t+1}^{1}(r r) \leq \mu_{t}^{1}<\mu^{*}$. Assume that $t+k_{1}$ is the first period that LH chooses ar with positive probability, where $k_{1} \geq 1$. In period $n+k_{1}, \mu_{t+k_{1}}^{1}(r r) \leq \mu_{t}^{1}<\mu^{*}$. Therefore, $L H$ gets at most $v_{L}-c_{L}+$ $\delta\left(v_{H}-c_{H}\right)$ in period $t+k_{1}$. However, by deviating to ar in period t, LH guarantee a payoff $v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)$ in period t, since D1 implies that $\mu_{t+1}^{2}(a r)=1$. In all, ar is a profitable deviation for $L H$ in period t, a contradiction.

Next, we argue that $H L$ chooses $r a$ with positive probability in period t. Assume by contradiction that HL chooses $r r$ for sure in period t. Since $L H$ chooses ar with positive probability in period t, then Bayes rules show that $\mu_{t+1}^{1}(r r)<\mu_{t}^{1} \leq \mu^{*}$. Assume that $t+k_{2}$ is the first period that $H L$ chooses $r a$ with positive probability, where $k_{2} \geq 1$. In period
$n+k_{2}, \mu_{t+k_{2}}^{1}(r r)<\mu_{t}^{1} \leq \mu^{*}$. Therefore, $H L$ gets at most $v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)$ in period $t+k_{2}$. However, by deviating to $r a$ in period t, HL guarantee a payoff $v_{L}-c_{L}+\delta\left(v_{H}-\right.$ c_{H}) in period t, since D1 implies that $\mu_{t+1}^{2}(r a)=1$. In all, $r a$ is a profitable deviation for $H L$ in period t, a contradiction.

To summarize, $L H(H L)$ is the only type to choose $\operatorname{ar}(r a)$ in period t, and thus $L H(H L)$ gets a payoff $v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)$ in period t.

Proof of Lemma S. 5

Proof. Define $n+1$ as the first period in which $L L$ does not choose $r r$. In this lemma, we study the case that $n \geq 1$. The proof is broken into the following eight steps.
Step 1: $L L$ does not choose aa in period $2 \leq t \leq n+1$.
If $n \geq 1$, then $L L$ does not choose aa with positive probability in period $2 \leq t \leq n+1$, since otherwise $L L$ would rather choose $a a$ instead of $r r$ in period 1, a contradiction to the fact there is a positive probability that $L L$ remains in period $n+1$.
Step 2: In any period $t \geq 1$, if $\mu_{t+1}^{1}(r r)=\mu_{t+1}^{2}(r r)=\mu^{*}$ and $\left(\mu_{t}^{1}, \mu_{t}^{2}\right) \in \mathcal{B}$, then $L L$ does not choose $r r$ in period t.

In this step, actions are taken in period t, if not specified.
First, LL chooses ar with positive probability. Assume the contrary, then in period t, $a r$ is off the equilibrium path, because otherwise $L L$ can deviate to $a r$ to get a profit. Therefore, only $r r$ and $r a$ is on the equilibrium path. Because $\mu_{t+1}^{1}(r r)=\mu^{*}$ and $\mu_{t}^{1}<\mu^{*}$, then Bayes rule implies that $\mu_{t+1}^{1}(r a)<\mu^{*}$, which means that $r a$ is dominated by $a a$, a contradiction.

Second, LL chooses ra with positive probability. Assume the contrary, then in period $t, r a$ is is off the equilibrium path, because otherwise $L L$ can deviate to $r a$ to get a profit. Therefore, only $r r$ and $a r$ is on the equilibrium path. Because $\mu_{t+1}^{2}(r r)=\mu^{*}$ and $\mu_{t}^{2} \leq \mu^{*}$, then $\mu_{t+1}^{2}(a r) \leq \mu^{*}$, and thus LH gets $v_{L}-c_{L}$ in period t. Since $t \geq 1$, then $L H$ would rather choose ar instead of $r r$ in period 1. Therefore, in period $t+1$, there are at most two seller types that remain: $H H$ and $L H$, a contradiction to Lemma S.2.

Next, HL chooses $r a$ with positive probability, since otherwise by choosing ra, LL reveals its type and gets a profit lower than $2\left(v_{L}-c_{L}\right)$, which is the payoff of choosing aa in period t, a contradiction. Similarly, LH chooses ar with positive probability.

Finally, $\mu_{t+1}^{1}(r a)=\mu_{t+1}^{2}(a r)>\mu^{*}$. If $\mu_{t+1}^{1}(r a)<\mu^{*}$, then $a a$ dominates $r a$ for $L L$ in period t, a contradiction. It follows that $\mu_{t+1}^{1}(r a) \geq \mu^{*}$, and similarly, $\mu_{t+1}^{2}(a r) \geq \mu^{*}$. However, it is impossible that $\mu_{t+1}^{1}(r a)=\mu_{t+1}^{2}(a r)=\mu^{*}$, since otherwise $\mu_{t+1}^{1}(r r)=\mu_{t+1}^{2}(r r)=$ $\mu_{t+1}^{1}(r a)=\mu_{t+1}^{2}($ ar $)=\mu^{*}$ violates Bayes' rule.

To summarize, by skimming property B. 1 in Lemma 3, the facts that (i) $\mu_{t+1}^{1}(r a)=$ $\mu_{t+1}^{2}(a r)>\mu^{*}$, (ii) $H L(L H)$ weakly prefers $r a$ (ar) to $r r$ in period t, and (iii) $L L$ does not choose $a a$ in period $t+1$ (step 1), imply that $L L$ strictly prefers $r a(a r)$ to $r r$ in period t. We reach a conclusion that $L L$ does not choose $r r$ in period t.
Step 3: Show that $n<+\infty$.
Assume by contradiction that $n=\infty$, which means that $L L$ chooses $r r$ with positive probability in any period $t \geq 1$. An implication of step 2 is that $\left(\mu_{t}^{1}, \mu_{t}^{2}\right) \in \mathcal{B}$ for any period t, since otherwise there exists $t^{*} \geq 1$ such that $\mu_{t^{*}+1}^{1}(r r)=\mu_{t^{*}+1}^{2}(r r)=\mu^{*}$ and $\left(\mu_{t^{*}}^{1}, \mu_{t^{*}}^{2}\right) \in \mathcal{B}$, and thus $L L$ does not choose $r r$ in period t^{*}, a contradiction.

Since $\left(\mu_{t}^{1}, \mu_{t}^{2}\right) \in \mathcal{B}$ for any period t, then by Lemma 5 , the offer for each good is v_{L}. In period t, the only reason that $L L$ chooses $r r$ with positive probability is that $L L$ expects to choose $a r$ or $r a$ and enjoy a high payoff in a future period $t+k$, which equals to $v_{L}-$ $c_{L}+\delta\left(V\left(\mu_{t+k+1}^{2}(a r)\right)-c_{L}\right)$ or $v_{L}-c_{L}+\delta\left(V\left(\mu_{t+k+1}^{1}(r a)\right)-c_{L}\right)$. Denote the supremum of $\mu_{t+1}^{2}(a r)$ and $\mu_{t+1}^{1}(r a)$ for all $t \geq 1$ as $\bar{\mu}$. For any $\epsilon>0$, there exists a period \bar{t} in which $\mu_{\bar{t}+1}^{2}(a r)>\bar{\mu}-\epsilon$ or $\mu_{\bar{t}+1}^{1}(r a)>\bar{\mu}-\epsilon$. Assume without loss of generality that $\mu_{\bar{t}+1}^{2}(a r)>$ $\bar{\mu}-\epsilon$. In period \bar{t}, ar brings a payoff at least $v_{L}-c_{L}+\delta\left(V(\bar{\mu}-\epsilon)-c_{L}\right)$ and $r r$ brings a payoff at most $\delta\left(v_{L}-c_{L}+\delta\left(V(\bar{\mu})-c_{L}\right)\right.$. For small $\epsilon>0$, ar dominates $r r$ for $L L$ in period \bar{t}, a contradiction to the assumption that $L L$ chooses $r r$ with positive probability in any period $t \geq 1$.
Step 4: Show that $\left(\mu_{n+1}^{1}(r r), \mu_{n+1}^{2}(r r)\right) \in \mathcal{B}$.
Assume the contrary that $\mu_{n+1}^{1}(r r)=\mu_{n+1}^{2}(r r)=\mu^{*}$. Also assume without loss of generality that $\left(\mu_{n}^{1}, \mu_{n}^{2}\right) \in \mathcal{B}$. Step 2 have shown that $L L$ does not choose $r r$ in period n, a contradiction to the definition of $n+1$.
Step 5: If the updated belief is $\mu_{n+2}^{1}(r r)=\mu_{n+2}^{2}(r r)=\mu^{*}$ in period $n+2$, then the equilibrium payoff of $L H$ and $H L$ in period $n+1$ is $v_{L}-c_{L}+\delta\left(V\left(\mu_{n+2}^{2}(a r)\right)-c_{H}\right)$ and the equilibrium payoff of $L L$ in period $n+1$ is $v_{L}-c_{L}+\delta\left(V\left(\mu_{n+2}^{2}(a r)\right)-c_{L}\right)$.

Assume without loss of generality that $\mu_{n+1}^{1}<\mu^{*}$ and $\mu_{n+1}^{2} \leq \mu^{*}$. By the same logic as in step 2 , we can prove that $\mu_{n+2}^{1}(r a)=\mu_{n+2}^{2}(a r)>\mu^{*}$. Therefore, the equilibrium payoff of $L H$ and $H L$ in period $n+1$ is $v_{L}-c_{L}+\delta\left(V\left(\mu_{n+2}^{2}(a r)\right)-c_{H}\right)$ and the equilibrium payoff of $L L$ in period $n+1$ is $v_{L}-c_{L}+\delta\left(V\left(\mu_{n+2}^{2}(a r)\right)-c_{L}\right)$.
Step 6: If the update belief satisfies $\left(\mu_{n+2}^{1}(r r), \mu_{n+2}^{2}(r r)\right) \in \mathcal{B}$ in period $n+2$, then the equilibrium payoff of $L H$ and $H L$ in period $n+1$ is $v_{L}-c_{L}+\delta\left(V\left(\mu_{n+2}^{2}(a r)\right)-c_{H}\right)$ and the equilibrium payoff of $L L$ in period $n+1$ is $v_{L}-c_{L}+\delta\left(V\left(\mu_{n+2}^{2}(\operatorname{ar})\right)-c_{L}\right)$.

Assume without loss of generality that $L L$ chooses ar with positive probability in period $n+1$. We prove that $L H$ chooses ar with positive probability in period $n+1$, since otherwise $\mu_{n+2}^{2}(a r)=0$, and then aa dominated ar for $L L$ in period $n+1$, a contradiction.

We next prove that $L H$ chooses $r r$ with positive probability in period $n+1$, since otherwise there are at most two types in period $n+2$: HL and HH, and thus $\mu_{n+2}^{1}(r r)=1$, a contradiction. Similarly, HL chooses $r r$ with positive probability in period $n+1$.

To summarize, both $H L$ and $L H$ choose $r r$ in period $n+1$, and gets $\delta\left(v_{L}-c_{L}+\delta\left(v_{H}-\right.\right.$ $\left.c_{H}\right)$), since Lemma 5.4 shows that in period $n+2$ with three types $H H, H L$ and $L H$, the equilibrium continuation payoff in period $n+2$ is $v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)$. Moreover, since $L H$ is indifferent between $a r$ and $r r$ in period $n+1$, then both $H L$ and LH get $v_{L}-c_{L}+$ $\delta\left(V\left(\mu_{n+2}^{2}(a r)\right)-c_{H}\right)$ in period $n+1$. Consequently, $L L$ chooses $a r$ in period $n+1$ and gets $v_{L}-c_{L}+\delta\left(V\left(\mu_{n+2}^{2}(a r)\right)-c_{L}\right)$.
Step 7: If $n \geq 2$, all types choose $r r$ in period $2 \leq t \leq n$, and $L L$ does not choose aa in period 1.

Assume by contradiction that LH chooses ar with positive probability in period $2 \leq$ $t \leq n$. Observe that $\mu_{t+1}^{2}(a r)>\mu^{*}$. Otherwise $\mu_{t+1}^{2}(a r) \leq \mu^{*}$, and $L H$ gets $v_{L}-c_{L}$ in period t, which means that $L H$ would rather choose $a r$ instead of $r r$ in period 1. Therefore, given $r r$ in period $n+1$, only $H L$ and $H H$ remain in period $n+2$, a contradiction to Lemma S.2. Under $\mu_{t+1}^{2}(a r)>\mu^{*}$, then the payoffs of $L H$ and $L H$ by choosing ar and $r r$ are as follows: $V_{L H}^{t}(a r)=v_{L}-c_{L}+\delta\left(V\left(\mu_{t+1}^{2}(a r)\right)-c_{H}\right)$ and $V_{L L}^{t}(a r)=v_{L}-c_{L}+$ $\delta\left(V\left(\mu_{t+1}^{2}(a r)\right)-c_{L}\right) ; V_{L H}^{t}(r r)=\delta^{n+1-t}\left[v_{L}-c_{L}+\delta\left(V\left(\mu_{n+2}^{2}(a r)\right)-c_{H}\right)\right]$ and $V_{L H}^{t}(r r)=$ $\delta^{n+1-t}\left[v_{L}-c_{L}+\delta\left(V\left(\mu_{n+2}^{2}(a r)\right)-c_{L}\right)\right]$. Therefore, $V_{L L}^{t}(a r)-V_{L H}^{t}(a r)>V_{L L}^{t}(r r)-V_{L H}^{t}(r r)$. As a result, if $L H$ weakly prefers $a r$ to $r r$ in period t, then $L L$ strictly prefers $a r$ to $r r$ in period t, a contradiction that $L L$ remains in period $n+1$ with positive probability.

We have proved that $L H$ chooses $r r$ for sure in period t, and similarly, HL chooses $r r$ for sure in period t. Therefore, $L L$ does not choose $a r$ or $r a$ in period t, since otherwise it will reveal its type, which is dominated by choosing aa in period t.

Finally, we will show that $L L$ does not choose aa in period 1 . Since $L H$ weakly prefers $r r$ to $a r$ in period 1 and chooses $r r$ for sure in period $2 \leq t \leq n$, then $V_{L H}^{t}(a r)=v_{L}-c_{L} \leq$ $V_{L H}^{t}(r r)=\delta^{n}\left[v_{L}-c_{L}+\delta\left(V\left(\mu_{n+2}^{2}(a r)\right)-c_{H}\right)\right]$. By $\delta>\frac{v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)}{c_{H}-c_{L}}$ and $V\left(\mu_{n+2}^{2}(a r)\right) \leq$ v_{H}, we have $v_{L}-c_{L}<\delta^{n+1}\left[c_{H}-c_{L}\right]$. Summing up the above two inequalities, we get $2\left(v_{L}-c_{L}\right)<\delta^{n}\left[v_{L}-c_{L}+\delta\left(V\left(\mu_{n+2}^{2}(a r)\right)-c_{L}\right)\right]$, which means that $L L$ strictly prefers $r r$ to aa in period 1 .
Step 8: $\mu_{t+1}^{2}(a r)=\mu_{t+1}^{1}(r a)=\mu^{*}$ for period $1 \leq t \leq n$.
In period $2 \leq t \leq n$, we know that $a r$ is off the equilibrium path. If $\mu_{t+1}^{2}(a r)<\mu^{*}$, then $V_{L L}^{t}(a r)-V_{L H}^{t}(a r)=v_{L}-c_{L}<\delta^{n+1-t}\left(c_{H}-c_{L}\right)=V_{L L}^{t}(r r)-V_{L H}^{t}(r r)$, which means that LH prefers $a r$ to $r r$ more than $L L$ in period t. By D1, $\mu_{t+1}^{2}(a r)=1$, a contradiction to $\mu_{t+1}^{2}(a r)<\mu^{*}$. If $\mu_{t+1}^{2}(a r)>\mu^{*}$, then $V_{L L}^{t}(a r)-V_{L H}^{t}(a r)=c_{H}-c_{L}>\delta^{n+1-t}\left(c_{H}-c_{L}\right)=$
$V_{L L}^{t}(r r)-V_{L H}^{t}(r r)$. By refinement D1, $\mu_{t+1}^{2}(a r)=0$, a contradiction to $\mu_{t+1}^{2}(a r)>\mu^{*}$. Therefore, $\mu_{t+1}^{2}(a r)=\mu^{*}$ for $2 \leq t \leq n$.

In period 1, if ar is off the equilibrium path, then by same argument in the previous paragraph, we get $\mu_{2}^{2}(a r)=\mu^{*}$. If ar is on the equilibrium path in period 1 , then $L H$ chooses $a r$ with positive probability in period 1. If $\mu_{2}^{2}(a r)<\mu^{*}$, then $L L$ also chooses ar with positive probability in period 1. Moreover, LH prefers ar to $r r$ more than $L L$ in period 1, which means that LH does not choose $r r$ in period 1. Therefore, only $H L$ and $H H$ remain in period $n+2$, a contradiction to Lemma S.2. If $\mu_{2}^{2}(a r)>\mu^{*}$, then $L L$ prefers ar to $r r$ more than $L H$ in period 1, contradicting the fact that $L L$ chooses $r r$ in period 1.

Hence, we have $\mu_{t+1}^{2}(a r)=\mu^{*}$ and, by symmetry, $\mu_{t+1}^{1}(r a)=\mu^{*}$ for $t=1, \ldots, n$.

Proofs of the Results in Section 6

In this section, we prove the results in Section 6 of the main paper, regarding the robustness of the main insight. The notations in this section follow those in the main paper.

Proof of Proposition 4.

Proof. In any period $m+1$ where $0 \leq m<K$, the equilibrium play is that there is no trade. By symmetry, we only prove that in period $m+1$, it is not profitable for buyer 1 to deviate to a serious offer. There are two types of deviations for buyer 1 :

Case 1: The first deviation is to make an offer for good 1 that all types of the seller accept.
Since $a r$ is off the equilibrium path in period $m+1$, we consider the most pessimistic belief: $\mu_{m+2}^{2}(\operatorname{ar})=0$. For buyer 1, in period $m+1$, a profitable deviating offer for good 1 is $V(\tau)-\epsilon$, for some $\tau>0$ and small $\epsilon>0$. To prevent $H H$ from accepting the offer $V(\tau)-\epsilon$ in period $m+1$, we need $V(\tau)-\epsilon-c_{H}<\delta^{K-m}\left(V(\tau)-c_{H}+V(\tau)-c_{H}\right)$. The right hand side of this inequality is the continuation payoff of $H H$ by choosing $r r$ in period $m+1$. To prevent $H L$ from accepting the offer $V(\tau)-\epsilon$ in period $m+1$, we need $V(\tau)-\epsilon-c_{H}+v_{L}-c_{L}<\delta^{K-m}\left(V(\tau)-c_{H}+V(\tau)-c_{L}\right)$, where the right hand side is the continuation payoff of $H L$ by choosing $r r$ in period $m+1$. By the definition of K, that is, $\delta^{K} \geq \frac{1}{2}$, and $c_{H}-c_{L}>2\left(v_{L}-c_{L}\right)$, which holds since $\mu^{*}>\frac{1}{2}$ and $v_{L}-c_{L}<v_{H}-c_{H}$, it is straightforward to verify that both inequalities hold for any $\epsilon>0$.

Case 2: The second deviation is to make an offer for good 1 that only the low type seller accepts.

Since $a r$ is off the equilibrium path in period $m+1$, we again consider the most pessimistic belief: $\mu_{m+2}^{2}(a r)=0$. For buyer 1, in period $m+1$, a profitable deviating offer for good 1 is $v_{L}-\epsilon$, since only low-quality good 1 is sold. To prevent $L H$ from accepting the
new offer $v_{L}-\epsilon$ in period $m+1$, we need $v_{L}-\epsilon-c_{L}<\delta^{K-m}\left(V(\tau)-c_{L}+V(\tau)-c_{H}\right)$. To prevent $L L$ from accepting the new offer $v_{L}-\epsilon$ in period $m+1$, we need $v_{L}-\epsilon-c_{L}+$ $v_{L}-c_{L}<\delta^{K-m}\left(V(\tau)-c_{L}+V(\tau)-c_{L}\right)$. Since $\delta^{K} \geq \frac{1}{2}$ and $c_{H}-c_{L}>2\left(v_{L}-c_{L}\right)$, which follows from $\mu^{*}>\frac{1}{2}$ and $v_{L}-c_{L}<v_{H}-c_{H}$, both inequalities hold for any $\epsilon>0$.

Finally, by Lemma 4 , in period $K+1$ the beliefs are $\tau>\mu^{*}$ for both goods and the game has an equilibrium in which trade happens immediately with offers for both goods equal to $V(\tau)$.

Proof of Proposition 5.

Proof. The proof consists of four steps.
Step 1: Continuation payoffs.
If $\mu_{2}^{1}(r r)=\mu_{2}^{2}(r r)=\tau>\mu^{*}$, then the continuation payoff of $L H$ and $H L$ is $V_{H L}=V_{L H}=$ $\delta^{K}\left(V(\tau)-c_{L}+V(\tau)-c_{H}\right)$, where K is any integer satisfying $\delta^{K} \geq \frac{1}{2}$.

Step 2: The updated belief in period 2.
In period $2, \mu_{2}^{1}(r r)=\mu_{2}^{2}(r r)=\tau>\mu^{*}$ and $\mu_{2}^{1}(r a)=\mu_{2}^{2}(a r)=\tilde{\mu}$. Bayes' rule shows that

$$
\begin{gathered}
\frac{\mu_{H H}+\mu_{H L} p_{H L}}{\mu_{H H}+\mu_{H L} p_{H L}+\mu_{L H} p_{L H}}=\frac{\mu_{H H}+\mu_{L H} p_{L H}}{\mu_{H H}+\mu_{H L} p_{H L}+\mu_{L H} p_{L H}}=\tau>\mu^{*}, \\
\frac{\mu_{L H}\left(1-p_{L H}\right)}{\mu_{L H}\left(1-p_{L H}\right)+\mu_{L L} p_{a r}}=\frac{\mu_{H L}\left(1-p_{H L}\right)}{\mu_{H L}\left(1-p_{H L}\right)+\mu_{L L} p_{r a}}=\tilde{\mu} .
\end{gathered}
$$

where $p_{H L}\left(p_{H L}\right)$ is the probability of $r r$ chosen by $H L(L H)$, and $p_{a r}\left(p_{r a}\right)$ is the probability of $\operatorname{ar}(r a)$ chosen by $L L$. Simple calculation shows that $\tilde{\mu}>\hat{\mu} \equiv 1-\frac{\left(2 \mu^{*}-1\right) \mu_{L L}}{2 \mu^{*}-1-\mu_{H H}}>\mu^{*}$.
Step 3: The seller's equilibrium behavior in period 1.
To satisfy the belief updating in Step 2, LH (HL) is indifferent between $r r$ and $\operatorname{ar}(r a)$. By choosing ar, LH (HL) gets a payoff $v_{L}-c_{L}+\delta\left(V(\tilde{\mu})-c_{H}\right)$, where $\tilde{\mu}>\hat{\mu}>\mu^{*}$. By choosing $r r, L H(H L)$ gets a payoff $\delta^{K}\left(V(\tau)-c_{L}+V(\tau)-c_{H}\right)$, where $\tau>\mu^{*}$. Therefore,

$$
v_{L}-c_{L}+\delta\left(V(\tilde{\mu})-c_{H}\right)=\delta^{K}\left(V(\tau)-c_{L}+V(\tau)-c_{H}\right)
$$

From the belief updating, we have $\frac{2 \mu_{H H}+x}{\mu_{H H}+x}=2 \tau$ and $\frac{\mu_{L L}}{1-\mu_{H H}-x}=1-\tilde{\mu}$, where $x=p_{H L} \mu_{H L}+$ $p_{L H} \mu_{L H}$. Therefore, $\frac{\mu_{H H}}{2 \tau-1}+\frac{\mu_{L L}}{1-\tilde{\mu}}=1$.

Step 4: There exists a solution $(\tau, \tilde{\mu})$ such that $\tau>\mu^{*}$ and $\tilde{\mu}>\hat{\mu}$.
If $v_{L}-c_{L}+\delta\left(V(\hat{\mu})-c_{H}\right)>\frac{1}{2}\left(c_{H}-c_{L}\right)$, then let $\tau=\mu^{*}+$ and then $v_{L}-c_{L}+\delta(V(\tilde{\mu})-$ $\left.c_{H}\right)=\delta^{K}\left(c_{H}-c_{L}\right)$. There exists $\tilde{\mu}=\hat{\mu}+$ and $\delta^{K}>\frac{1}{2}$ such that the above equation holds.

In the above equilibrium, the payoff of each seller's type is: $V_{L L}=v_{L}-c_{L}+\delta(V(\tilde{\mu})-$ $\left.c_{L}\right), V_{H L}=V_{L H}=v_{L}-c_{L}+\delta\left(V(\tilde{\mu})-c_{L}\right), V_{H H}=0$. Since we have shown that $\hat{\mu}<\tilde{\mu}$,
then this equilibrium delivers weakly higher payoff for each seller type than the beneficial spillover equilibrium.

Proof of Proposition 6.

Proof. First, HH gets zero profit, which is the least payoff that HH can get. Second, LH gets $v_{L}-c_{L}$. This is also the least payoff that $L H$ can get. If not, then in period 1 , there is a losing offer for good 1 and $L H$ gets a payoff $V_{L H}<v_{L}-c_{L}$. However, buyer 1 can offer $v_{L}-\epsilon$ so that $v_{L}-\epsilon-c_{L}>V_{L H}$ so that $L H$ is willing to accept, consequently, buyer 1 can guarantee a positive profit in period 1, a contradiction to buyers' zero profit condition. Similarly, we prove that $v_{L}-c_{L}$ is the least payoff that $H L$ can guarantee in any equilibrium.

Finally, we need to prove that $L L$ gets the least payoff in delay equilibrium N. In order for $L L$ to get the least payoff, the initial delay before there is any trade should reach its maximum. Assume that there is some trade in period $N+1$. Then $L H(H L)$ chooses ar (ra) and the best payoff that $L H(H L)$ can get is $v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)$ in period $N+1$. Therefore, the longest delay N must satisfy $v_{L}-c_{L}<\delta^{N}\left(v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)\right)$. In delay equilibrium N, the payoff of $L H$ in period 1 is $V_{L H}=v_{L}-c_{L}=\delta^{N}\left(v_{L}-c_{L}+\delta\left(V\left(\hat{\mu}^{\prime}\right)-\right.\right.$ $\left.c_{H}\right)$), where $\hat{\mu}^{\prime}<1$. Consequently, the payoff of $L L$ in period 1 satisfies $V_{L L}=\delta^{N}\left(v_{L}-\right.$ $\left.c_{L}+\delta^{N}\left(V\left(\hat{\mu}^{\prime}\right)-c_{L}\right)\right)=v_{L}-c_{L}+\delta^{N}\left(c_{H}-c_{L}\right)$, which is the least payoff for $L L$ since N reaches its maximum.

Proof of Proposition 7.

Proof. In period 2, there are only two seller types: M and H. Assume that M rejects the offer with probability α in period 1. Then Bayes rule implies that the probability of H seller in period 2 is $\frac{\mu_{H H}}{\alpha\left(\mu_{H L}+\mu_{L H}\right)+\mu_{H H}}$. Define a threshold belief level μ_{2}^{*} as $2 v_{H} \mu_{2}^{*}+$ $\left(v_{H}+v_{L}\right)\left(1-\mu_{2}^{*}\right)=2 c_{H}$. Then, we have $\mu_{2}^{*}=\frac{2 c_{H}-v_{L}-v_{H}}{v_{H}-v_{L}}=2 \mu^{*}-1$. In equilibrium, the probability of H seller equals the threshold μ_{2}^{*} :

$$
\frac{\mu_{H H}}{\alpha\left(\mu_{H L}+\mu_{L H}\right)+\mu_{H H}}=\mu_{2}^{*}
$$

Hence, we have $\alpha=\frac{1-\mu_{2}^{*}}{\mu_{2}^{*}} \frac{\mu_{H H}}{\mu_{H L}+\mu_{L H}} \in(0,1)$, which is guaranteed by $\mu_{L L}+\frac{\mu_{H H}}{2 \mu^{*}-1}<1$.
In period 1, there are two seller types, L and M, who accept the offer with positive probabilities. Conditional on accepting the offer in period 1 , the probability of M seller in period 1 is $\frac{(1-\alpha)\left(\mu_{H L}+\mu_{L H}\right)}{(1-\alpha)\left(\mu_{H L}+\mu_{L H}\right)+\mu_{L L}}$. Define μ_{1}^{*} as the threshold level such that the expected valuation of the buyer is exactly the reservation value of M type in period 1. Therefore, we have $\left(v_{H}+v_{L}\right) \mu_{1}^{*}+\left(2 v_{L}\right)\left(1-\mu_{1}^{*}\right)=c_{H}+c_{L}$ and $\mu_{1}^{*}=\frac{c_{H}+c_{L}-2 v_{L}}{v_{H}-v_{L}}$. In equilibrium, to guarantee that M seller accepts the offer with a positive probability, we need the probability
of M seller to be larger than or equal to μ_{1}^{*}, that is,

$$
\frac{(1-\alpha)\left(\mu_{H L}+\mu_{L H}\right)}{(1-\alpha)\left(\mu_{H L}+\mu_{L H}\right)+\mu_{L L}}>\mu_{1}^{*} .
$$

Equation (\star) implies that the probability of M in period 1 is $\hat{\mu} \equiv 1-\frac{\mu_{L L}}{1-\frac{H_{H} H}{2 \mu^{*}-1}}$ and Assumption 4 guarantees that ($\star \star$) holds.

Since the probability of M in period 1 is $\hat{\mu}$, then the zero profit condition of the buyer guarantees that the offer in period 1 is $p^{*}=v_{L}+V(\hat{\mu})$. The trading rate λ from period 2 onward is such that M type is indifferent between accepting the offer in period 1 and period 2. Finally, it is straightforward to verify that L strictly prefers to accept the offer in period 1 and H strictly prefers to reject the offer in period 1.

Proof of Corollary 1.

Proof. Denote V_{k} the payoff of seller type $k \in\{H H, H L, L H, L L\}$ in the equilibrium described by Theorem 1. We have $V_{H L}=V_{L H}=v_{L}-c_{L}+\delta\left(V(\hat{\mu})-c_{H}\right), V_{L L}=v_{L}-c_{L}+$ $\delta\left(V(\hat{\mu})-c_{L}\right)$, and $V_{H H}=0$.
Denote U_{k} as the payoff of seller type $k \in\{H H, H L, L H, L L\}$ in the equilibrium described by Theorem 4. We have $U_{H L}=U_{L H}=v_{L}-c_{L}, U_{L L}=2\left(v_{L}-c_{L}\right)$, and $U_{H H}=0$.

Denote W_{k} as the payoff of seller type $k \in\{H H, H L, L H, L L\}$ in the equilibrium described by Proposition 7. We have $W_{H L}=W_{L H}=p^{*}-c_{L}-c_{H}=v_{L}-c_{L}+\left(V(\hat{\mu})-c_{H}\right)$, $W_{L L}=p^{*}-2 c_{L}=v_{L}-c_{L}+\left(V(\hat{\mu})-c_{L}\right)$, and $W_{H H}=0$.

If $\delta=1$ and Assumption 2 holds, then we have $V_{k}=W_{k}$ for any $k \in\{H H, H L, L H, L L\}$. If $\delta=1$ and Assumption 2 does not hold, then we have $U_{k}<W_{k}$ for any $k \in\{H L, L H, L L\}$ and $U_{H H}=W_{H H}$. Therefore, the result holds.

Proof of Proposition 8.

Proof. We first construct the equilibrium. If the updated belief in period 2 is not $\left(\mu^{*}, \mu^{*}\right)$, which means that $\left(\mu_{2}^{1}, \mu_{2}^{2}\right) \in \mathcal{B}$. Therefore, Lemma S .4 implies that the equilibrium payoff of $L H$ and $H L$ in period 2 is $v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)$. By deviating to $r r$ in period 2, $L L$ can get $\delta\left(v_{L}-c_{L}+\delta\left(v_{H}-c_{L}\right)\right)$ in period 1 .

It is straightforward that $r r$ dominates aa for $L L$ in period 1 . Therefore, $L L$ chooses ar or $r a$ in period 1. Assume without loss of generality that $L L$ mixes between $a r$ and $r a$ in period 1. Then in period 1, LH chooses ar with a positive probability and HL chooses $r a$ with a positive probability, since otherwise $L L$ would reveal its type. Also, $H L$ and $L H$ choose $r r$ with positive probabilities, since otherwise the updated belief in period 2 is
such that one of the two goods is high type for sure, a contradiction. Thus, in period 1, LH mixes between $r r$ and $a r$, and HL mixes between $r r$ and $r a$.

Since $L H(H L)$ is indifferent between $r r$ and $\operatorname{ar}(r a)$, then $v_{L}-c_{L}+\delta\left(V(\kappa)-c_{H}\right)=$ $\delta\left(v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)\right)$, where $\mu_{2}^{1}(r a)=\mu_{2}^{2}(a r)=\kappa$. Bayes' rule shows that

$$
\begin{aligned}
\frac{\mu_{H H}+\mu_{H L} p_{H L}}{\mu_{H H}+\mu_{H L} p_{H L}+\mu_{L H} p_{L H}} & =\frac{\mu_{H H}+\mu_{L H} p_{L H}}{\mu_{H H}+\mu_{H L} p_{H L}+\mu_{L H} p_{L H}} \leq \mu^{*}, \\
\frac{\mu_{L H}\left(1-p_{L H}\right)}{\mu_{L H}\left(1-p_{L H}\right)+\mu_{L L} p_{a r}} & =\frac{\mu_{H L}\left(1-p_{H L}\right)}{\mu_{H L}\left(1-p_{H L}\right)+\mu_{L L} p_{r a}}=\kappa
\end{aligned}
$$

where $p_{H L}\left(p_{H L}\right)$ is the probability that $H L(L H)$ chooses $r r$, and $p_{a r}\left(p_{r a}\right)$ is the probability that $L L$ chooses $\operatorname{ar}(r a)$. Then, we have $\kappa \leq \hat{\mu} \equiv 1-\frac{\left(2 \mu^{*}-1\right) \mu_{L L}}{2 \mu^{*}-1-\mu_{H H}}$. Since $\delta<\frac{v_{L}-c_{L}+\delta\left(V(\hat{\mu})-c_{H}\right)}{v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)}$, then there exists $\kappa \in\left(\mu^{*}, \hat{\mu}\right)$ such that $v_{L}-c_{L}+\delta\left(V(\kappa)-c_{H}\right)=\delta\left(v_{L}-c_{L}+\delta\left(v_{H}-c_{H}\right)\right)$.

Finally, we verify that the equilibrium constructed above is Pareto dominated by the beneficial spillover equilibrium. In the above equilibrium, the payoff of each seller's type is: $V_{L L}=v_{L}-c_{L}+\delta\left(V(\kappa)-c_{L}\right), V_{H L}=V_{L H}=v_{L}-c_{L}+\delta\left(V(\kappa)-c_{L}\right), V_{H H}=0$. Since we have shown that $\hat{\mu}>\kappa$, the result holds.

Proof of Theorem 5.

Proof. We know from Lemma 5 that the high-type seller of each good always rejects any offer in the first period. Therefore, no buyer offers more than v_{L} in period 1.

In period 1, the equilibrium offer for each good is v_{L}, and hence the buyer of each good earns zero profit. We first prove that it is not profitable for the buyer of each good to make an offer less than v_{L}. Assume that buyer 1 deviates to an offer $p_{1}<v_{L}$ in period 1. Since the equilibrium offer v_{L} of good 1 makes $L H$ indifferent between $r r$ and $a r$, then with private offer (which means that the seller's future continuation value by choosing $r r$ and ar remains constant), a lower offer p_{1} of good 1 make $L H$ strictly prefer $r r$ to $a r$. Since the offer v_{L} of good 1 makes $L L$ indifferent between $r a$ and $a r$, then with private offer, a lower offer p_{1} of good 1 make $L L$ strictly prefer ra to $a r$. Therefore, p_{1} is rejected by all four types, and hence p_{1} is not a profitable deviation.

We then prove that all four seller types choose the optimal strategy in period 1. For $L L$, both ar and ra deliver a payoff $v_{L}-c_{L}+\delta\left(c_{H}-c_{L}\right)$; both aa and $r r$ deliver $2\left(v_{L}-c_{L}\right)$, which is less than $v_{L}-c_{L}+\delta\left(c_{H}-c_{L}\right)$. Thus, it is optimal for $L L$ to mix between $a r$ and $r a$ in period 1. For $H L, r a$ and $r r$ deliver a payoff $v_{L}-c_{L}$; ar and a a bring $v_{L}-c_{H}+v_{L}-c_{L}$, which is less than $v_{L}-c_{L}$. Therefore, it is optimal for $H L$ to mix between $r a$ and $r r$ in period 1. By symmetry, it is optimal for $L H$ to mix between $a r$ and $r r$ in period 1.

In period 2, if both goods remain untraded, then Bayes' rule implies that the updated belief is $\mu_{2}^{1}(r r)=\mu_{2}^{2}(r r)=\mu^{*}$. The equilibrium strategy of each buyer is to mix between
a winning offer c_{H} and a losing offer, and hence each buyer gets zero profit. We next prove that there is not a profitable deviation for each buyer to make an offer with positive profit. Assume that buyer 1 deviates to offer p_{1}. If $p_{1}>c_{H}$, then p_{1} is also a winning offer since c_{H} is a winning offer, but buyer 1 earns a negative profit since the expected valuation of good 1 for the buyer is $\mu^{*} v_{H}+\left(1-\mu^{*}\right) v_{L}=c_{H}<p_{1}$. If $p_{1}<c_{H}$, then the seller with a high-quality good 1 rejects the offer p_{1}, since otherwise she would get a negative profit. If buyer 1 makes a positive profit, then we have $p_{1}<v_{L}$ and $p_{1}-c_{L}<$ $v_{L}-c_{L}<\delta\left(\lambda c_{H}+(1-\lambda) v_{L}-c_{L}\right)$. Thus, the seller with a low-quality good 1 also rejects the offer p_{1}. That is, any offer $p_{1}<c_{H}$ is a losing offer. Therefore, it is optimal for buyer 1 to mix between a winning offer c_{H} and a losing offer in period 2.

We next prove that c_{H} is a winning offer for each good $i=1,2$ in period 2. By rejecting offer c_{H}, the seller with high-quality good i can only get zero profit in the future, and hence it is optimal for her to accept c_{H}. By rejecting the offer c_{H}, the seller with a lowquality good i can get a continuation payoff $\delta\left(\lambda c_{H}+(1-\lambda) v_{L}-c_{L}\right)=v_{L}-c_{L}$, but she can guarantee a payoff $c_{H}-c_{L}$ by accepting c_{H} in period 2 , and hence it is optimal for her to accept c_{H}.

In period 2 , if only one good is traded, then $\mu_{2}^{1}(r a) \geq \mu^{*}$ and $\mu_{2}^{2}(a r) \geq \mu^{*}$ are consistent with the Bayes' rule. Moreover, Bayes' rule also implies that it is impossible that $\mu_{2}^{1}(r a)=$ $\mu_{2}^{2}(a r)=\mu^{*}$. In the one-good model without severe adverse selection, it is optimal for each buyer to offer c_{H}. Notice that even if $\mu_{2}^{1}(r a)=\mu^{*}$ or $\mu_{2}^{2}(a r)=\mu^{*}$, the buyer of the remaining good cannot mix between c_{H} and a losing offer since $L L$ is indifferent between ar and $r a$ in period 1. Finally, the proof of the optimality condition in period $t \geq 3$ is the same as that in period 2.

[^0]: \star Institute for Social and Economic Research, Nanjing Audit University
 †Department of Economics, University of Michigan
 E-mail addresses: hfbcalan@gmail.com, hengliu29@gmail.com.
 Date: December 17, 2020.

