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An index of competitiveness and cooperativeness for

normal-form games
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I Relationship between coco value and CCI

We now illustrate the differences between the CCI and the Coco value (Kalai and Kalai,

2013) in terms of computation and predictions. Consider the following three games, of

which the first is the hot dog vendor game in Kalai and Kalai (2013):

Game I

A B

A 20, 40 40, 200

B 100, 80 50, 100

Game II

A B

A 10, 60 95, 145

B 40, 90 15, 65.

Game III

A B

A 350,−150 −180, 420

B −220, 380 350,−150.

In all three games, the cooperative component as defined in Kalai and Kalai (2013) has

a max-max value of (120,120) in the strategy profile (A,B). The zero-sum component has

a min-max value of (-25,25) in all three games. Thus, the coco-values are (95,145) for all
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three games. Intuitively, both players coordinate on the solution with the maximal joint

surplus (A,B) and obtain their respective coco-values after side payments.

To determine the CCI, we first need to mean-normalize the games:

M-N Game I

A B

A −32.5,−65 −12.5, 95

B 47.5,−25 −2.5,−5

M-N Game II

A B

A −30,−30 55, 55

B 0, 0 −25,−25.

M-N Game III

A B

A 275,−275 −255, 295

B −295, 255 275,−275.

For Game I we obtain:

CCI =
32.52 + 107.52 + 72.52 + 2.52

2(32.52 + 12.52 + 47.52 + 2.52 + 652 + 952 + 252 + 52)
≈ 0.514

A similar computation gives us CCI = 0 for Game II and CCI ≈ 0.997 for Game III.

The coco-value takes the opportunity to agree with side payments as given. Thus, the

coco-value predictions are uniform across the three games. On the other hand, the CCI

considers a non-cooperative game and tries to analyze how difficult it is to reach a coop-

erative outcome without side payments. The hot dog vendor game yields an intermediate

CCI. In Game II it is easy to coordinate on (A,B) in line with a low CCI. In contrast,

Game III is close to a zero-sum game which makes cooperation difficult.

II Derivation for general continuous games and proofs

of Lemma 1 and Proposition 1

Consider a finite set of N players and for every player a set of strategies Si. Unlike in the

main text, we now also allow the sets Si to be infinite. Let S =
∏

i≤N Si be the set of

strategy profiles. Let S be a σ-algebra on S such that (S,S) is a measurable space. In

addition, let Q be a measure on (S,S).

Let G be the set of games g = {πi : i ≤ N} such that for all i ≤ N , πi ∈ L2(Q).1 For

1Here L2(Q) is the set of Q-measurable functions πi : S → R such that
∫
S

(πi)
2dQ <∞.

2



g = {πi : i ≤ N}, h = {π̃ : i ≤ N} ∈ G, we define the following inner product 〈., .〉 on G:

〈g, h〉 =
N∑
i=1

∫
S

πi(s)π̃i(s)Q(ds) ≡
N∑
i=1

∫
S

πiπ̃idQ.

By varying the measure Q we can give more or less weight to certain strategies. For the

applications in the main part of the paper, we used the Lebesgue measure for Q.

Observe that the norm ‖g‖ =
√
〈g, g〉 treats two games in the same way if their payoff

functions are equal Q-a.s.. In other words, in order to be technically correct, we should

define the set of games G only on the partition induced by the measure Q. For ease of

notation, however, we omit this from the notation, but keep in mind that all statements

in the Appendix only hold Q-a.s..

Compared to the main text, the sets K,M,Z and C differ marginally,

K = {g = {πi : i ≤ N} ∈ G : ∀i ≤ N, πi is constant } ,

M =

{
g = {πi : i ≤ N} ∈ G : ∀i ≤ N,

∫
S

πidQ = 0

}
,

Z =

{
g = {πi : i ≤ N} ∈ G : ∀s ∈ S,

∑
i≤N

πi = 0

}
,

C = {g = {πi : i ≤ N} ∈ G : ∀i, j ≤ N, πi = πj} .

The proof the following lemma includes the proof Lemma ?? in the main text.

Lemma 1.

1. M⊥ = K and Z⊥ = C.

2. Every game g can be uniquely decomposed as

g = ĝ + g̃,

where ĝ ∈M and g̃ ∈ K. In particular ĝ = Mg and g̃ = Kg. Moreover, in this case,

‖g‖2 = ‖ĝ‖2 + ‖g̃‖2.
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3. Every game g can be uniquely decomposed as,

g = ĝ + g̃,

where ĝ ∈ Z and g̃ ∈ C. In particular ĝ = Zg and g̃ = Cg. Moreover, in this case,

‖g‖2 = ‖ĝ‖2 + ‖g̃‖2.

4. For g = {πi : i ≤ N} we have that

• Kg = {π̃i : i ≤ N} is such that, π̃i =
∫
S πidQ∫
S dQ

.

• Cg = {π̃i : i ≤ N} is such that, π̃i =
∑

j≤N πj

N
.

5. The operators (M,Z), (M,C), (K,Z) and (K,C) are commutative. In other words,

for all g ∈ G, MZg = ZMg, KZg = ZKg, MCg = CMg and KCg = CKg.

Proof. Part 1: We will start by showing the equivalence K⊥ =M. Let g̃ = {π̃ : i ≤ N} ∈

K⊥. Then, for all g = {πi : i ≤ N} ∈ K,

〈g̃, g〉 = 0 =
∑
i≤N

∫
S

πiπ̃idQ.

Let g be such that for i ≤ N , πi = 1 ∈ R and for j 6= i, πj = 0. Then,

0 =

∫
S

πidQ,

which shows that g̃ ∈M.

Also, if g̃ = {π̃i : i ≤ N} ∈ M and g = {πi : i ≤ N} ∈ K with πi = ci ∈ R, then,

〈g̃, g〉 =
∑
i≤N

∫
S

ππ̃dQ =
∑
i≤N

ci

∫
S

π̃idQ = 0.

Next, we will show that C = Z⊥. Let g̃ = {π̃ : i ≤ N} ∈ Z⊥ and g = {π : i ≤ N} ∈ Z.

Then,

〈g, g̃〉 =
∑
i≤N

∫
S

ππ̃dQ.
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Let B be a measurable set and let g be such that for k 6= i, j, πk(s) = 0 for all s ∈ S, let

for s ∈ B, πi(s) = −πj(s) and let for s′ /∈ B, πi(s
′) = πj(s

′) = 0. Then,

0 = 〈g, g̃〉 =
∑
i≤N

∫
S

πiπ̃idQ,

↔
∫
B

π̃i(s)dQ =

∫
B

π̃j(a)dQ.

Given that B was arbitrary, it follows that πi = πj.

Parts 2 and 3: Observe that g = Mg + (g −Mg). By the theory on linear operators,

Kg = g −Mg ∈ M⊥ = K. To show uniqueness, let ĝ, ĝ′ ∈ K and g̃, g̃′ ∈ M and assume

that g = ĝ + g̃ = ĝ′ + g̃′. Then,

g − g = ĝ − g̃ + ĝ′ − g̃′.

As K and M are vector spaces, ĝ − ĝ′ ∈M and g̃ − g̃′ ∈ K, so,

‖g − g‖2 = 0 = ‖ĝ − ĝ′‖2 + ‖g̃ − g̃′‖2,

which shows that ĝ = ĝ′ and g̃ = g̃′. The proof of Part 3, i.e., the decomposition of g into

Zg and Cg, is similar and thus omitted.

Part 4: Let g = {πi : i ≤ N}, Kg = {π̃i : i ≤ N} and Mg = {π̂i : i ≤ N}. Then, by Part

2,

πi = π̃i + π̂i.

Integrating over S gives∫
S

πidQ =

∫
S

π̃idQ+

∫
S

π̂idQ =

∫
S

π̃idQ = ci

∫
S

dQ,

where π̃i = ci ∈ R. So,

ci = π̃i =

∫
S
πidQ∫
S
dQ

.

Next, let Zg = {π̂i : i ≤ N} and Cg = {π̃i : i ≤ N}. Then again,

πi = π̂i + π̃i.
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Summing over all i ≤ N gives∑
j≤N

πj =
∑
j≤N

π̂j +
∑
j≤N

π̃j =
∑
j≤N

π̃j.

Given that Cg ∈ C, i.e. π̃i = π̃j, we have,

π̃i =

∑
j≤N πj

N
.

Part 5: Consider g = {πi : i ≤ N} then Kg = {π̃i : i ≤ N} is such that

π̃i =

∫
S
πidQ∫
S
dQ

,

and therefore CKg = {π̂i : i ≤ N} is such that

π̂i =

∑
j≤N π̃j

N
=

∑
j≤N

∫
S
πjdQ

N
∫
S
dQ

.

Similarly, KCg = {π∗i : i ≤ N} is such that

π∗i =

∫
S

∑
j≤N πjdQ

N
∫
S
dQ

.

By exchanging summation and integration, we obtain CKg = KCg.

Next, Cg = C(Kg +Mg) = CKg + CMg = KCg + CMg. This implies that

CMg = Cg −KCg = MCg,

which shows that C and M are also commutative. Next, Mg = ZMg + CMg = ZMg +

MCg, so

ZMg = Mg −MCg = M(g − Cg) = MZg,

which shows that Z and M also commute. Finally, Zg = MZg+KZg = ZMg+KZg so,

KZg = Zg − ZMg = Z(g −Mg) = ZKg,

which shows that Z and K commute.
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III Additional Details for the Examples

Prisoner’s Dilemma

Correlation coefficients among variables of interest (data from Mengel, 2017)

CCI TEMPT RISK EFF

CCI 1

TEMPT -0.0109 1

(0.1031)

RISK 0.6413 -0.0029 1

(0.0791) (0.1031)

EFF -0.3215 -0.0638 -0.2046 1

(0.0977) (0.1092) (0.1010)

Standard errors in parentheses

Contests

Derivations for the Tullock contest: When α = 3, we obtain:

πi =

∫ v

0

∫ v

0

1

v

1

v

((
x3i

x3i + x3j

)
v − xi

)
dxjdxi = 0.

Thus, the game is already mean-normalized, i.e., π̄i = 0. The calculation of our index yields:

CCI(g) =
||π1(x1, x2)− π2(x1, x2)||2

2(||π1(x1, x2)||2 + ||π2(x1, x2)||2)
≈ 0.15354

0.32027
≈ 0.48.

Derivations for the contest of Durham, Hirshleifer, and Smith: We first need to mean-normalize

the payoffs of the game by Durham, Hirshleifer, and Smith (1998). The average payoff is v
8 . Thus, the

mean-normalized payoff functions are:

π1 − π1 =
xr1

xr1 + xr2
(v − x1)(v − x2)− v

8
and π2 − π̄2 =

xr2
xr1 + xr2

(v − x1)(v − x2)− v

8

We will henceforth set v = 20 as in the experiment. For r = 1, we obtain:

‖π1 − π̄1 − (π2 − π̄2)‖2 =

∫ 20

0

∫ 20

0

(
x1 − x2
x1 + x2

(20− x1)(20− x2)

)2

dx2dx1

≈ 2.07342 ∗ 106,
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‖π1 − π̄1‖2 = ‖π2 − π̄2‖2 =

∫ 20

0

∫ 20

0

(
x1

x1 + x2
(20− x1)(20− x2)− 20

8

)2

dx2dx1

≈ 2.198863 ∗ 106.

Thus, we get CCI1,20(g) ≈ 0.236 for the game with r = 1 and v = 20.

For r = 4, we obtain:

‖π1 − π̄1 − (π2 − π̄2)‖2 =

∫ 20

0

∫ 20

0

(
x41 − x42
x41 + x42

(20− x1)(20− x2)

)2

dx2dx1,

≈ 5.13881 ∗ 106,

‖π1 − π̄1‖2 = ‖π2 − π̄2||2 =

∫ 20

0

∫ 20

0

(
x41

x41 + y41
(20− x1)(20− x2)− 20

8

)2

dx2dx1,

≈ 2.96298 ∗ 106.

Thus, we get CCI4,20(g) ≈ 0.433 for the game with r = 4 and v = 20.

Consistent with our prediction, contestants spend more resources on fighting in the experiment when r = 4.

This yields a more competitive outcome with lower payoffs.

Public Goods game We now provide the tedious calculation of our index that we left out in the

main text. In general for an N -player game, the index is given by:

CCI(g) =

∑N
i=1

∥∥∥πi − πi − 1
N

(∑N
j=1(πj − πj)

)∥∥∥2∑N
i=1 ‖πi − πi‖2

.

where πi is the mean payoff for player i. From the main text, recall that:

πi − πi = xi − α
N∑
j=1

xj +
αN − 1

2
.
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Then:

πi − πi −
1

N

N∑
j=1

(πj − πj),

=
N − 1

N

(πi − πi)−
N∑
j 6=i

πj − πj
N − 1

 ,
=
N − 1

N

xi − α N∑
j=1

xj +
αN − 1

2
−

N∑
j 6=i

xj − α
∑N
k=1 xk + αN−1

2

N − 1

 ,
=
N − 1

N

xi − N∑
j 6=i

xj
N − 1

 .

As such, for the numerator of our index, we obtain:∥∥∥∥∥∥πi − πi − 1

N

N∑
j=1

(πj − πj)

∥∥∥∥∥∥
2

,

=
(N − 1)2

N2

∫ 1

0

. . .

∫ 1

0

x2i − 2xi
∑
j 6=i

xj
N − 1

+
∑
j 6=i

x2j
(N − 1)2

+
∑

j 6=i,k 6=i,j 6=k

xjxk
(N − 1)2

 dxN . . . , dx1,

=
(N − 1)2

N2

[
1

3
− 2

1

2

(N − 1)

(N − 1)

1

2
+ (N − 1)

1

3(N − 1)2
+

(N − 1)(N − 2)

4(N − 1)2

]
,

=
N − 1

12N
.

This shows that the numerator is independent of α.
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For the norms in the denominator, we obtain:

‖πi − πi‖2 ,

=

∫ 1

0

. . .

∫ 1

0

xi − α N∑
j=1

xj +
αN − 1

2

2

dxN . . . dx1,

=

∫ 1

0

. . .

∫ 1

0

x2i − 2αx2i − 2αxi
∑
j 6=i

xj + 2xi
αN − 1

2

 dxN . . . dx1

+

∫ 1

0

. . .

∫ 1

0

α2
N∑
j=1

x2j + α2
∑
j 6=k

xjxk − 2α

N∑
j=1

xj
αN − 1

2

 dxN . . . dx1

+

∫ 1

0

. . .

∫ 1

0

(
αN − 1

2

)2

dx1 . . . dxN ,

=
1

3
− 2α

3
− α(N − 1)

2
+
αN − 1

2

+
Nα2

3
+
α2(N)(N − 1)

4
− αN αN − 1

2
+

(
αN − 1

2

)2

,

=
1

12

(
1− 2α+Nα2

)
.

This is increasing in α for α > 1
N . Plugging in the two previous results, our index is given by:

CCI(g) =
(N − 1)2

N2

N N
12(N−1)

N 1
12 (1− 2α+Nα2)

,

=
(N − 1)

(αN − 1)2 + (N − 1)
,

which is the result that we use in the main text.
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