Online Appendix of Learning by Choosing:
 Career Concerns with Observable Actions

In this online appendix, we supplement technical details for the proof of Propositions 1 and [3]

Existence and Uniqueness of a Solution to Equation (10) and (11)

We have the following parameters: $\alpha>\beta>1,0<\mu<\bar{\mu}, \theta_{H}>\theta_{L}, \Delta:=\theta_{H}-\theta_{L}$, and $x_{m}:=\left(u_{0}-\theta_{L}\right) / \Delta$ where $\theta_{L}+\mu<u_{0}<\theta_{H}+\mu$ and

$$
\begin{align*}
\bar{\mu}:= & \frac{\Delta}{4\left(\alpha^{2}-1\right)}\left(2\left(2 \alpha^{2}-\beta^{2}-1\right) x_{m}-(\alpha-1)\left(\beta^{2}+2 \alpha+1\right)\right. \\
& \left.\quad+\sqrt{\left(2\left(\beta^{2}-1\right) x_{m}-(\alpha-1)\left(\beta^{2}+2 \alpha+1\right)\right)^{2}-8(\alpha-1)\left(\beta^{2}-1\right)\left(\alpha^{2}-\beta^{2}\right) x_{m}}\right) . \tag{i}
\end{align*}
$$

Equivalently, we write the inequality for x_{m} as

$$
\begin{equation*}
\frac{\mu}{\Delta}<x_{m}<\frac{\mu}{\Delta}+1 \tag{ii}
\end{equation*}
$$

We will first show that the following system of non-linear equation:

$$
\begin{align*}
& \left(\frac{x}{\bar{x}}\right)^{\frac{\beta+1}{2}}\left(\frac{1-\underline{x}}{1-\bar{x}}\right)^{-\frac{\beta-1}{2}}=\frac{\Delta(\alpha+\beta)\left((\beta-1) x_{m}-\left(\beta+1-2 x_{m}\right) \underline{x}\right)}{\mu((\alpha-1)(\beta-1)+2(\alpha+\beta) \bar{x})} \tag{iii}\\
& \left(\frac{x}{\bar{x}}\right)^{-\frac{\beta-1}{2}}\left(\frac{1-\underline{x}}{1-\bar{x}}\right)^{\frac{\beta+1}{2}}=\frac{\Delta(\alpha-\beta)\left((\beta+1) x_{m}-\left(\beta-1+2 x_{m}\right) \underline{x}\right)}{\mu((\alpha-1)(\beta+1)-2(\alpha-\beta) \bar{x})} \tag{iv}
\end{align*}
$$

has a solution $(\underline{x}, \bar{x}) \in(0,1)^{2}$.
We note that (iii) defines a curve C_{1} in $(0,1)^{2}$, and it can be rewritten as:

$$
\begin{align*}
& F_{1}\left(\bar{x} ; \alpha, \beta, \mu, \Delta, x_{m}\right):=\frac{\mu((\alpha-1)(\beta-1)+2(\alpha+\beta) \bar{x})(1-\bar{x})^{\frac{\beta-1}{2}}}{\bar{x}^{\frac{\beta+1}{2}}} \\
& \quad=\frac{\Delta(\alpha+\beta)\left((\beta-1) x_{m}-\left(\beta+1-2 x_{m}\right) \underline{x}\right)(1-\underline{x})^{\frac{\beta-1}{2}}}{\underline{x}^{\frac{\beta+1}{2}}}=: G_{1}\left(\underline{x} ; \alpha, \beta, \mu, \Delta, x_{m}\right) . \tag{v}
\end{align*}
$$

By writing the LHS in the form of

$$
\frac{\mu(\alpha-1)(\beta-1)(1-\bar{x})^{\frac{\beta-1}{2}}}{\bar{x}^{\frac{\beta+1}{2}}}+\frac{2 \mu(\alpha+\beta)(1-\bar{x})^{\frac{\beta-1}{2}}}{\bar{x}^{\frac{\beta-1}{2}}}
$$

we can see the LHS is an function monotonically decreasing in \bar{x} going from $+\infty$ when $\bar{x}=0$ to 0 when $\bar{x}=1$. The RHS viewing as a function of \underline{x} is greater than zero for all

$$
0<\underline{x}<\min \left\{1, \underline{x}_{1}:=\frac{(\beta-1) x_{m}}{\beta+1-2 x_{m}}\right\},
$$

and so for any \underline{x} in this domain, we can solve for a unique \bar{x}. We note that

$$
(\beta-1) x_{m}-\left(\beta+1-2 x_{m}\right)=-\left(1-x_{m}\right)(\beta+1)
$$

therefore, $\underline{x}_{1}<1$ if $\mu / \Delta<x_{m}<1$ and $\underline{x}_{1}>1$ if $1<x_{m}<\min \{\mu / \Delta+1,(\beta+1) / 2\}$. If $x_{m}>(\beta+1) / 2$ then the RHS is also always positive.

Similarly, iv) defines the curve C_{2} in $(0,1)^{2}$, and it can be rewritten as:

$$
\begin{align*}
& F_{2}\left(\bar{x} ; \alpha, \beta, \mu, \Delta, x_{m}\right):=\frac{\mu((\alpha-1)(\beta+1)-2(\alpha-\beta) \bar{x}) \bar{x}^{\frac{\beta-1}{2}}}{(1-\bar{x})^{\frac{\beta+1}{2}}} \\
& =\frac{\Delta(\alpha-\beta)\left((\beta+1) x_{m}-\left(\beta-1+2 x_{m}\right) \underline{x}\right) \underline{x}^{\frac{\beta-1}{2}}}{(1-\underline{x})^{\frac{\beta+1}{2}}}=: G_{2}\left(\underline{x} ; \alpha, \beta, \mu, \Delta, x_{m}\right) . \tag{vi}
\end{align*}
$$

Note that

$$
\begin{aligned}
(\alpha-1)(\beta+1)-2(\alpha-\beta) \bar{x} & >(\alpha-1)(\beta+1)-2(\alpha-\beta) \\
& =(\alpha+1)(\beta-1)>0
\end{aligned}
$$

therefore, the LHS is always positive, and in fact it is monotonically increasing in \bar{x} going from 0 when $\bar{x}=0$ to $+\infty$ when $\bar{x}=1$, as can be seen by rewriting it as:

$$
\frac{\mu((\alpha-1)(\beta+1)-2(\alpha-\beta))}{(1-\bar{x})^{\frac{\beta+1}{2}}}+\frac{2 \mu(\alpha-\beta) \bar{x}^{\frac{\beta-1}{2}}}{(1-\bar{x})^{\frac{\beta-1}{2}}} .
$$

The RHS viewing as a function of \underline{x} is greater than zero for all

$$
0<\underline{x}<\min \left\{1, \underline{x}_{2}:=\frac{(\beta+1) x_{m}}{\beta-1+2 x_{m}}\right\}
$$

and so for any \underline{x} in this domain, we can solve for a unique \bar{x}. We note that

$$
(\beta+1) x_{m}-\left(\beta-1+2 x_{m}\right)=-\left(1-x_{m}\right)(\beta-1) ;
$$

therefore, $\underline{x}_{2}<1$ if $\mu / \Delta<x_{m}<1$ and $\underline{x}_{2}>1$ if $1<x_{m}<\mu / \Delta+1$.
We will consider two cases below.

Case I: $\mu / \Delta<x_{m}<1$:
For both C_{1}, C_{2} we can see that when $\underline{x} \rightarrow 0^{+}$, we also have $\bar{x} \rightarrow 0^{+}$. On the other hand, when $\underline{x} \rightarrow \underline{x}_{1}^{-}<1$, we find $\bar{x} \rightarrow 1^{-}$on C_{1}, while C_{2} is continuous at $\underline{x}=\underline{x}_{1}$ with $0<\bar{x}<1$. If we can show that the initial slope $d \bar{x} / d \underline{x}$ near $(\underline{x}, \bar{x})=(0,0)$ of C_{2} is greater than C_{1} then C_{1} and C_{2} must intercept at least once, hence we can conclude the existence of solution. We proceed as follows. Let $\delta \underline{x}, \delta \bar{x}>0$ be small, then setting $(\underline{x}, \bar{x})=(\delta \underline{x}, \delta \bar{x})$ and raising (V) to the power of $2 /(\beta-1)$, expanding both sides keeping only the first order of $\delta \bar{x}, \delta \underline{x}$, we find:

$$
\begin{equation*}
\left.\frac{d \bar{x}}{d \underline{x}}\right|_{(0,0) \in C_{1}}=\lim _{\delta \underline{x} \rightarrow 0} \frac{\delta \bar{x}}{\delta \underline{x}}=\left(\frac{\mu(\alpha-1)}{\Delta(\alpha+\beta) x_{m}}\right)^{\frac{2}{\beta+1}} \tag{vii}
\end{equation*}
$$

Doing the same for C_{2}, we find that

$$
\begin{equation*}
\left.\frac{d \bar{x}}{d \underline{x}}\right|_{(0,0) \in C_{2}}=\lim _{\delta \underline{x} \rightarrow 0} \frac{\delta \bar{x}}{\delta \underline{x}}=\left(\frac{\Delta(\alpha-\beta) x_{m}}{\mu(\alpha-1)}\right)^{\frac{2}{\beta-1}} . \tag{viii}
\end{equation*}
$$

Combining $0<\mu<\bar{\mu}$ with (iii), we have that $\mu / \Delta<\min \left\{x_{m}, \bar{\mu} / \Delta\right\}$, or $\mu /\left(\Delta x_{m}\right)<$ $\min \left\{1, \bar{\mu} /\left(\Delta x_{m}\right)\right\}$. On the other hand, we may check using (ii) that for any fixed α, β, Δ; $\bar{\mu} /\left(\Delta x_{m}\right)$ is a monotonically decreasing function in $x_{m} \in(0,1)$. For example, we find that $d\left(\bar{\mu} /\left(\Delta x_{m}\right)\right) / d x_{m}=0$ has exactly one solution at $x_{m}=0$, then it is straightforward to compute that $d\left(\bar{\mu} /\left(\Delta x_{m}\right)\right) /\left.d x_{m}\right|_{x_{m}=1}<0$ and conclude that $d\left(\bar{\mu} /\left(\Delta x_{m}\right)\right) / d x_{m}<0$ for all $0<x_{m} \leq 1$. Therefore,

$$
\frac{\bar{\mu}}{\Delta x_{m}}<\lim _{x_{m} \rightarrow 0} \frac{\bar{\mu}}{\Delta x_{m}}=\frac{2(\alpha-\beta)(\alpha+\beta)}{(\alpha-1)\left(1+2 \alpha+\beta^{2}\right)}<\frac{\alpha-\beta}{\alpha-1}
$$

where the last inequality followed because

$$
2(\alpha+\beta)-\left(1+2 \alpha+\beta^{2}\right)=-1+2 \beta-\beta^{2}=-(\beta-1)^{2}<0
$$

It follows that

$$
\frac{\mu}{\Delta x_{m}}<\min \left\{1, \frac{\bar{\mu}}{\Delta x_{m}}\right\}<\min \left\{1, \frac{\alpha-\beta}{\alpha-1}\right\}=\frac{\alpha-\beta}{\alpha-1}
$$

and so,

$$
\begin{aligned}
\left.\frac{d \bar{x}}{d \underline{x}}\right|_{(0,0) \in C_{2}}=\left(\frac{\Delta(\alpha-\beta) x_{m}}{\mu(\alpha-1)}\right)^{\frac{2}{\beta-1}}>1 & >\left(\frac{\mu(\alpha-1)}{\Delta(\alpha-\beta) x_{m}}\right)^{\frac{2}{\beta+1}} \\
& >\left(\frac{\mu(\alpha-1)}{\Delta(\alpha+\beta) x_{m}}\right)^{\frac{2}{\beta+1}}=\left.\frac{d \bar{x}}{d \underline{x}}\right|_{(0,0) \in C_{1}} .
\end{aligned}
$$

Case II: $1 \leq x_{m}<\mu / \Delta+1$:
As before, for both C_{1}, C_{2} approaches the point $(0,0)$ as $\underline{x} \rightarrow 0^{+}$. Now, since $\underline{x}_{1}, \underline{x}_{2} \notin(0,1)$ in this case, we have that both C_{1}, C_{2} also approches the point $(1,1)$ as $\underline{x} \rightarrow 1^{-}$. The initial slope of C_{1} and C_{2} near the point $(0,0)$ are still given by vii) and viii), and since $\bar{\mu} /\left(\Delta x_{m}\right)$ is monotonically decreasing for $1<x_{m}<\mu / \Delta+1$ it remains true that $d \bar{x} /\left.d \underline{x}\right|_{(0,0) \in C_{2}}>$ $d \bar{x} /\left.d \underline{x}\right|_{(0,0) \in C_{1}}$. We can compute the final slope near the point $(1,1)$ of both curves in a similar way by expanding (v) and (vi) to the first order of $1-\bar{x}$ and $1-\underline{x}$, we have

$$
\begin{equation*}
\left.\frac{d \bar{x}}{d \underline{x}}\right|_{(1,1) \in C_{1}}=\lim _{\underline{x} \rightarrow 1^{-}} \frac{1-\bar{x}}{1-\underline{x}}=\left(\frac{\Delta(\alpha+\beta)\left(x_{m}-1\right)}{\mu(\alpha+1)}\right)^{\frac{2}{\beta-1}}, \tag{ix}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{d \bar{x}}{d \underline{x}}\right|_{(1,1) \in C_{2}}=\lim _{\underline{x} \rightarrow 1^{-}} \frac{1-\bar{x}}{1-\underline{x}}=\left(\frac{\mu(\alpha+1)}{\Delta(\alpha-\beta)\left(x_{m}-1\right)}\right)^{\frac{2}{\beta+1}} . \tag{x}
\end{equation*}
$$

But since $x_{m}-1<\mu / \Delta$, we then have

$$
\left.\frac{d \bar{x}}{d \underline{x}}\right|_{(1,1) \in C_{1}}<\left(\frac{\alpha+\beta}{\alpha+1}\right)^{\frac{2}{\beta-1}}<\left(\frac{\alpha+1}{\alpha-\beta}\right)^{\frac{2}{\beta+1}}<\left.\frac{d \bar{x}}{d \underline{x}}\right|_{(1,1) \in C_{2}} .
$$

Therefore, if we took $+\bar{x}$ to be an upward direction, then the curve C_{2} approaches the point $(1,1)$ from below the curve C_{1}. But we already know that the curve C_{2} was above the curve C_{1} when leaving the point $(0,0)$, it must be the case that both curves intercept at some point, proving the existence of a solution $(\underline{x}, \bar{x}) \in(0,1)^{2}$.

Uniqueness and validity of the solution with $\underline{x}<\bar{x}$

In the following we argue that the solution $(\underline{x}, \bar{x}) \in(0,1)^{2}$ is unique and satisfies $\underline{x}<\bar{x}$. We can write (V) and (vi) as

$$
\boldsymbol{R}(\underline{x}, \bar{x}, \boldsymbol{\theta})=\binom{R_{1}(\underline{x}, \bar{x} ; \boldsymbol{\theta})}{R_{2}(\underline{x}, \bar{x} ; \boldsymbol{\theta})}:=\binom{F_{1}(\bar{x} ; \boldsymbol{\theta})-G_{1}(\underline{x} ; \boldsymbol{\theta})}{F_{2}(\bar{x} ; \boldsymbol{\theta})-G_{2}(\underline{x} ; \boldsymbol{\theta})}=0, \quad \boldsymbol{R}:(0,1)^{2} \times \mathbb{R}^{5} \rightarrow \mathbb{R}^{2},
$$

where we write $\boldsymbol{\theta}:=\left(\alpha, \beta, \mu, \Delta, x_{m}\right) \in D$ for the rest of parameters and $D \subset \mathbb{R}^{5}$ denotes the domain where the parameters are valid (they satisfy all the required inequalities: $\alpha>\beta>1$, $\left.0<\mu<\bar{\mu}, \Delta>0, \mu / \Delta<x_{m}<\mu / \Delta+1\right)$. Clearly, D is open and path-connected. The relation $\boldsymbol{R}(\underline{x}, \bar{x} ; \boldsymbol{\theta})=0$ defines a 5 -dimensional surface C inside $(0,1)^{2} \times \mathbb{R}^{5}$ and given a point $(\underline{x}, \bar{x}, \boldsymbol{\theta}) \in C$ the Implicit Function Theorem (IFT) tells us that if

$$
0 \neq\left|\begin{array}{ll}
\frac{\partial R_{1}}{\partial \bar{x}} & \frac{\partial R_{1}}{\partial x} \tag{xi}\\
\frac{\partial R_{2}}{\partial \bar{x}} & \frac{\partial R_{2}}{\partial \underline{x}}
\end{array}\right|=\frac{\partial F_{2}}{\partial \bar{x}} \frac{\partial G_{1}}{\partial \underline{x}}-\frac{\partial F_{1}}{\partial \bar{x}} \frac{\partial G_{2}}{\partial \underline{x}},
$$

then there exists an open set $U \times V \ni(\underline{x}, \bar{x}, \boldsymbol{\theta}), U \in(0,1)^{2}, V \in \mathbb{R}^{5}$ such that $C \cap U \times V$ is given by $(\underline{x}, \bar{x})=g(\boldsymbol{\theta})$ for some continuously differentiable function $g: V \rightarrow U$. In fact, xi) fails exactly at the point where C_{1} touches C_{2} with the same slope, and this condition can be written explicitly as:

$$
\begin{equation*}
\frac{d \bar{x} /\left.d \underline{x}\right|_{(\underline{x}, \bar{x}, \boldsymbol{\theta}) \in C_{1}}}{d \bar{x} / d \underline{x} \underline{x}_{\underline{x}, \boldsymbol{x}, \boldsymbol{\theta}) \in C_{2}}}=\frac{\partial G_{1} / \partial \underline{x}}{\partial F_{1} / \partial \bar{x}} \frac{\partial F_{2} / \partial \bar{x}}{\partial G_{2} / \partial \underline{x}}=\left(\frac{1-\underline{x}}{1-\bar{x}}\right)^{\beta}\left(\frac{\bar{x}}{\underline{x}}\right)^{\beta}\left(\frac{\alpha+\beta}{\alpha-\beta}\right)=1 . \tag{xii}
\end{equation*}
$$

Suppose that (xii) is true, then dividing (iii) by (iv), we obtain:

$$
\begin{equation*}
\underline{x}=\frac{(\alpha+1) x_{m} \bar{x}}{\left(\alpha+2 x_{m}-1\right) \bar{x}+(\alpha-1)\left(x_{m}-1\right)} . \tag{xiii}
\end{equation*}
$$

Note that $\alpha+2 x_{m}-1>0$ always. If $x_{m} \leq 1$, then $\underline{x}>0$ means that $\bar{x}>(\alpha-1)\left(1-x_{m}\right) /(\alpha+$ $\left.2 x_{m}-1\right)$. But \underline{x} is a decreasing function with \bar{x} for $\bar{x}>(\alpha-1)\left(1-x_{m}\right) /\left(\alpha+2 x_{m}-1\right)$, and so

$$
\underline{x} \geq \lim _{\bar{x} \rightarrow 1^{-}} \underline{x}=\frac{(\alpha+1) x_{m}}{\left(\alpha+2 x_{m}-1\right)+(\alpha-1) x_{m}-\alpha+1}=1 .
$$

Therefore, for all possible values of $\bar{x} \in(0,1)$, we have $\underline{x} \notin(0,1)$, so (xii) is impossible when $x_{m} \leq 1$. If $x_{m}>1$, let us substitute xiii) back into xii), we find that all \underline{x} actually cancels
out and we are left with:

$$
\begin{equation*}
\left(\frac{x_{m}(\alpha+1)}{\left(x_{m}-1\right)(\alpha-1)}\right)^{\beta}\left(\frac{\alpha-\beta}{\alpha+\beta}\right)=1 \tag{xiv}
\end{equation*}
$$

Note that this expression makes sense as we now have $x_{m}-1>0$, so its fractional power β is real. But $x_{m}<\frac{\mu}{\Delta}+1<\frac{\bar{\mu}}{\Delta}+1<\frac{\alpha^{2}-\beta^{2}}{\alpha^{2}-1} x_{m}+1$, where the last inequality can be seen by rewriting (i) as

$$
\begin{aligned}
\frac{\bar{\mu}}{\Delta}= & \frac{\alpha^{2}-\beta^{2}}{\alpha^{2}-1} x_{m}-\frac{1}{4\left(\alpha^{2}-1\right)}\left[(\alpha-1)\left(\beta^{2}+2 \alpha+1\right)-2\left(\beta^{2}-1\right) x_{m}\right. \\
& \left.-\sqrt{\left((\alpha-1)\left(\beta^{2}+2 \alpha+1\right)-2\left(\beta^{2}-1\right) x_{m}\right)^{2}-8(\alpha-1)\left(\beta^{2}-1\right)\left(\alpha^{2}-\beta^{2}\right) x_{m}}\right] \\
& <\frac{\alpha^{2}-\beta^{2}}{\alpha^{2}-1} x_{m} .
\end{aligned}
$$

The square bracket term is always positive, because when $x_{m}=1$ we have

$$
\begin{aligned}
& (\alpha-1)\left(\beta^{2}+2 \alpha+1\right)-2\left(\beta^{2}-1\right) x_{m}=(\alpha-1)\left(\beta^{2}+2 \alpha+1\right)-2\left(\beta^{2}-1\right) \\
& \quad>(\beta-1)\left(\beta^{2}+2 \beta+1\right)-2\left(\beta^{2}-1\right)=(\beta-1)^{2}(\beta+1)>0
\end{aligned}
$$

When $x_{m}>1$ increases, the term $(\alpha-1)\left(\beta^{2}+2 \alpha+1\right)-2\left(\beta^{2}-1\right) x_{m}$ decreases toward zero, but the square-root term would becomes imaginary before it ever reaches zero. Note that the square-root term is smaller than $(\alpha-1)\left(\beta^{2}+2 \alpha+1\right)-2\left(\beta^{2}-1\right) x_{m}$ in magnitude, so $(\alpha-1)\left(\beta^{2}+2 \alpha+1\right)-2\left(\beta^{2}-1\right) x_{m}>0$ implies that the square bracket term is positive as claimed. If $x_{m}>1$ is sufficiently large, the square-root term will become real again, but we would also have $x_{m}>\frac{\bar{\mu}}{\Delta}+1$ as we can check that $\lim _{x_{m} \rightarrow+\infty}\left(\frac{\bar{\mu}}{\Delta}+1-x_{m}\right)=-\frac{\alpha-1}{2}<0$ and $\frac{\bar{\mu}}{\Delta}+1-x_{m}=0$ has no solution for $x_{m}>1$, so this case lies outside the valid parameters domain and can be ignored.

Using $x_{m}<\frac{\alpha^{2}-\beta^{2}}{\alpha^{2}-1} x_{m}+1$, or equivalently $\frac{x_{m}}{x_{m}-1}>\frac{\alpha^{2}-1}{\alpha^{2}-\beta^{2}}$, it follows that:

$$
\left(\frac{x_{m}(\alpha+1)}{\left(x_{m}-1\right)(\alpha-1)}\right)^{\beta}\left(\frac{\alpha-\beta}{\alpha+\beta}\right)>\left(\left(\frac{\alpha^{2}-1}{\alpha^{2}-\beta^{2}}\right)\left(\frac{\alpha+1}{\alpha-1}\right)\right)^{\beta}\left(\frac{\alpha-\beta}{\alpha+\beta}\right)>1
$$

This is a contradiction to xiv) and we conclude that it is not possible to satisfy condition (xii) for any $\boldsymbol{\theta} \in D$. From the existence of solution we have previously proven, it follows that the IFT can be applied over any given parameter $\boldsymbol{\theta} \in D$.

Suppose that there exists at least one $\boldsymbol{\theta}_{0} \in D$ such that the solution $(\underline{x}, \bar{x}) \in(0,1)^{2}$ to
(iii) and (iv) is unique and valid $(\underline{x}<\bar{x})$. We can check this is true, for example when $x_{m}<1, \mu \rightarrow 0^{+}$we have $\bar{x} \rightarrow 1^{-}, \underline{x} \rightarrow \underline{x}_{1}=(\beta-1) x_{m} /\left(\beta+1-2 x_{m}\right)$ and clearly no other solution is possible Now, given any other $\boldsymbol{\theta}_{1} \in D$, we draw a path γ connecting $\boldsymbol{\theta}_{0}$ and $\boldsymbol{\theta}_{1}$. If the solution is not unique at $\boldsymbol{\theta}_{1}$, i.e. there are more points on C above $\boldsymbol{\theta}_{1}$ than there are above $\boldsymbol{\theta}_{0}$, then there exists a solution $\left(\underline{x}^{\prime}, \bar{x}^{\prime}\right)$ which cannot be varied continuously to a solution above $\boldsymbol{\theta}_{0}$, contradicting the fact that we can cover γ with finitely many open sets where IFT applied ${ }^{[2]}$. Therefore, the solution at $\boldsymbol{\theta}_{1}$ is also unique. If the solution at $\boldsymbol{\theta}_{1}$ is not valid $(\underline{x}>\bar{x})$, then let us cover a compact set γ with finitely many open sets where IFT applied and vary the solution continuously to the solution above $\boldsymbol{\theta}_{0}$ which is known to satisfies $\underline{x}<\bar{x}$. At some point $\boldsymbol{\theta}^{*} \in \gamma \subset D$, we must have $\underline{x}=\bar{x}$, but it is straightforward to check that this implies $\mu=\bar{\mu}$, which is not a valid point in D, a contradiction.

Verification Theorem for the Optimal Control and Stopping Problem

Most verification theorems require C^{2} candidate value functions which we do not have, because $\widehat{V}(x)$ is generally not C^{2} at the stopping boundary, $x=\underline{x}$. It is well-known that in one dimension, Ito's formula works for functions that are C^{1} everywhere and C^{2} almost everywhere. Based on this observation, we are going to prove a verification theorem for our problem.

Consider any arbitrary admissible rules, $\widehat{\tau}$ and \widehat{J}, and the corresponding belief updating process,

$$
\begin{aligned}
d \widehat{x}_{t} & =\frac{\Delta}{\sigma\left(\widehat{J}_{t}\right)} \widehat{x}_{t}\left(1-\widehat{x}_{t}\right) d W_{t} \text { for } t \in[0, \widehat{\tau}] \\
\widehat{x}_{0} & =x
\end{aligned}
$$

Notice that by construction in Section 3.1. $\widehat{V}(x)$ is twice continuously differentiable for $x \in[0,1]$ except for $x=\underline{x}$. That is, $\widehat{V}(x)$ is C^{2} almost everywhere. This means that we can

[^0]use Itô's formula to obtain
\[

$$
\begin{align*}
& e^{-r \widehat{\tau}} \widehat{V}\left(\widehat{x}_{\widehat{\tau}}\right)=\widehat{V}(x)+\int_{0}^{\widehat{\tau}}\left[-r e^{-r t} \widehat{V}\left(\widehat{x}_{t}\right)+\frac{1}{2} e^{-r t} \widehat{V}^{\prime \prime}\left(\widehat{x}_{t}\right) \frac{\Delta^{2}}{\sigma^{2}\left(\widehat{J}_{t}\right)} \widehat{x}_{t}^{2}\left(1-\widehat{x}_{t}\right)^{2}\right] d t \\
&+\int_{0}^{\widehat{\tau}} e^{-r t} \widehat{V}^{\prime}\left(\widehat{x}_{t}\right) \frac{\Delta}{\sigma\left(\widehat{J}_{t}\right)} \widehat{x}_{t}\left(1-\widehat{x}_{t}\right) d W_{t} \tag{xv}
\end{align*}
$$
\]

By the HJB equation (5), we have

$$
\max \left\{\mu\left(\widehat{J}_{t}\right)+\theta_{L}+\Delta x_{t}+\frac{1}{2} \widehat{V}^{\prime \prime}\left(\widehat{x}_{t}\right) \frac{\Delta^{2}}{\sigma^{2}\left(\widehat{J}_{t}\right)} \widehat{x}_{t}^{2}\left(1-\widehat{x}_{t}\right)^{2}-r \widehat{V}\left(\widehat{x}_{t}\right), \quad \begin{array}{l}
\\
\\
\left.u_{0}-r \widehat{V}\left(\widehat{x}_{t}\right)\right\} \leq 0
\end{array}\right.
$$

which further implies that

$$
\begin{aligned}
\int_{0}^{\widehat{\tau}} e^{-r t}\left[\mu\left(\widehat{J}_{t}\right)+\theta_{L}+\Delta x_{t}+\frac{1}{2} \widehat{V}^{\prime \prime}\left(\widehat{x}_{t}\right) \frac{\Delta^{2}}{\sigma^{2}\left(\widehat{J}_{t}\right)} \widehat{x}_{t}^{2}\left(1-\widehat{x}_{t}\right)^{2}\right. & \left.-r \widehat{V}\left(\widehat{x}_{t}\right)\right] d t \\
& +\int_{\widehat{\tau}}^{\infty} e^{-r t}\left[u_{0}-r \widehat{V}\left(\widehat{x}_{t}\right)\right] d t \leq 0
\end{aligned}
$$

By substituting equation (xv) into the inequality above, we have

$$
\begin{aligned}
\widehat{V}(x) \geq & e^{-r \widehat{\tau}} \widehat{V}\left(\widehat{x}_{\widehat{\tau}}\right)+\int_{0}^{\widehat{\tau}} r e^{-r t} \widehat{V}\left(\widehat{x}_{t}\right) d t-\int_{0}^{\widehat{\tau}} \widehat{V}^{\prime}\left(\widehat{x}_{t}\right) \frac{\Delta}{\sigma\left(\widehat{J}_{t}\right)} \widehat{x}_{t}\left(1-\widehat{x}_{t}\right) d W_{t} \\
& +\int_{0}^{\widehat{\tau}} e^{-r t}\left[\mu\left(\widehat{J}_{t}\right)+\theta_{L}+\Delta x_{t}-r \widehat{V}\left(\widehat{x}_{t}\right)\right] d t+\int_{\widehat{\tau}}^{\infty} e^{-r t}\left[u_{0}-r \widehat{V}\left(\widehat{x}_{t}\right)\right] d t \\
= & \int_{0}^{\widehat{\tau}} e^{-r t}\left[\mu\left(\widehat{J}_{t}\right)+\theta_{L}+\Delta x_{t}\right] d t+\int_{\widehat{\tau}}^{\infty} e^{-r t} u_{0} d t \\
& -\int_{0}^{\widehat{\tau}} \widehat{V}^{\prime}\left(\widehat{x}_{t}\right) \frac{\Delta}{\sigma\left(\widehat{J}_{t}\right)} \widehat{x}_{t}\left(1-\widehat{x}_{t}\right) d W_{t} .
\end{aligned}
$$

To get the second equality above, we have used two observations. First, given $\widehat{\tau}$ is the stopping time, after which the social planner stops updating belief, we have $\widehat{x}_{t}=\widehat{x}_{\hat{\tau}}$ for $\forall t \geq \widehat{\tau}$. Second, the transversality condition

$$
\lim _{T \rightarrow \infty} \mathrm{E}\left[e^{-r T} \widehat{V}(x)\right]=0
$$

is obviously satisfied because $\widehat{V}(x)$ is bounded for any $x \in[0,1]$. By taking expectation of the inequality above, we notice that the stochastic integral vanishes by Optional Stopping Theorem, and thus we have,

$$
\widehat{V}(x) \geq \mathrm{E}\left[\int_{0}^{\widehat{\tau}} e^{-r t}\left[\mu\left(\widehat{J}_{t}\right)+\theta_{L}+\Delta x_{t}\right] d t+\int_{\widehat{\tau}}^{\infty} e^{-r t} u_{0} d t\right] .
$$

Since $\widehat{\tau}$ and \widehat{J} are arbitrary, this means that

$$
\widehat{V}(x) \geq \sup _{\widehat{J} \in \mathscr{f}, \widehat{\tau} \in \mathscr{T}} \mathrm{E}\left[\int_{0}^{\widehat{\tau}} e^{-r t}\left(\mu\left(\widehat{J}_{t}\right)+\theta_{L}+\Delta x_{t}\right) d t+\int_{\widehat{\tau}}^{\infty} e^{-r t} u_{0} d t\right]=V(x) .
$$

To obtain the reverse inequality, we choose the specific control law $\widehat{\tau}=\tau^{*}$ and $\widehat{J}\left(\mathscr{F}_{t}\right)=$ $J^{*}\left(x_{t}\right)$. Going through the exactly same calculations as above and using the fact that

$$
\begin{aligned}
& \int_{0}^{\tau^{*}} e^{-r t}\left[\mu\left(J^{*}\left(x_{t}\right)\right)+\theta_{L}+\Delta x_{t}+\frac{1}{2} \widehat{V}^{\prime \prime}\left(x_{t}\right) \frac{\Delta^{2}}{\sigma^{2}\left(J^{*}\left(x_{t}\right)\right)} x_{t}^{2}\left(1-x_{t}\right)^{2}-r \widehat{V}\left(x_{t}\right)\right] d t \\
&+\int_{\tau^{*}}^{\infty} e^{-r t}\left[u_{0}-r \widehat{V}\left(x_{t}\right)\right] d t=0
\end{aligned}
$$

we obtain the following

$$
\widehat{V}(x)=\mathrm{E}\left[\int_{0}^{\tau^{*}} e^{-r t}\left(\mu\left(J^{*}\left(x_{t}\right)\right)+\theta_{L}+\Delta x_{t}\right) d t+\int_{\tau^{*}}^{\infty} e^{-r t} u_{0} d t\right] \leq V(x),
$$

where the second inequality above is by definition of $V(x)$. Therefore, we have proved the verification theorem: $\widehat{V}(x)=V(x)$.

Results for the Proof of Proposition 3

Proof of Lemma 3

Proof. For $x \in\left(\bar{x}_{W}, 1\right)$, note that each of the two expressions (20), (21) have their righthand sides increase continuously and monotonically with D. Moreover, as we limit D to zero, both expressions (20), (21) yield the same value $r U(x)=w(x)$. Thus, $U\left(x, D, \bar{x}_{W}\right)$ increases continuously and monotonically with D, even as D goes from $D<0$ to $D>0$, for any given value $x \in\left(\bar{x}_{W}, 1\right)$. Moreover, the derivatives of right-hand sides of (20), (21) decrease continuously and monotonically with D, and so does the value $\frac{\partial}{\partial x} U\left(x, D, \bar{x}_{W}\right)=$ $U_{D, \bar{x}_{W}}^{\prime}(x)$, for any given $x \in\left(\bar{x}_{W}, 1\right)$. Respectively, from expressions (16), 17) the same
applies to $x=\bar{x}_{W}$: The value of $U\left(x=\bar{x}_{W}, D, \bar{x}_{W}\right)$ (respectively, of $\left.\frac{\partial}{\partial x} U\left(x=\bar{x}_{W}, D, \bar{x}_{W}\right)\right)$ increases (respectively, decreases) continuously and monotonically with D. In Lemma 2, we established that, for $x \in\left(0, \bar{x}_{W}\right)$, function $U(x)$ satisfies a second-order ODE of the form $U^{\prime \prime}(x)=H(x, U(x))$, with $H(.,$.$) satisfying Lipshitz conditions on an interval \left[\varepsilon, \bar{x}_{W}\right]$, for any $\varepsilon>0$; with boundary conditions given by (16) at point $x=\bar{x}_{W}$. Respectively, since the values $U\left(x=\bar{x}_{W}, D, \bar{x}_{W}\right), \frac{\partial}{\partial x} U\left(x=\bar{x}_{W}, D, \bar{x}_{W}\right)=U^{\prime}\left(\bar{x}_{W}\right)$ change continuously with D, function $U\left(x, D, \bar{x}_{W}\right)$ as a solution to the ODE $U^{\prime \prime}(x)=H(x, U(x))$, would change continuously with D as well, for any value of $x \in\left(0, \bar{x}_{W}\right)$. Monotonicity of $U\left(x, D, \bar{x}_{W}\right)$ with respect to D, for $x \in\left(0, \bar{x}_{W}\right)$, follows from Lemma 11. Namely, consider two values $D_{1}<D_{2}$. If functions $U_{D_{1}, \bar{x}_{W}}(x), U_{D_{2}, \bar{x}_{W}}(x)$ both satisfy the same differential equation (either the one in (18) or the one in (19)) on $\left(0, \bar{x}_{W}\right)$, then we use the result of Lemma 11 for condition Xvii to show that the difference $U_{D_{2}, \bar{x}_{W}}(x)-U_{D_{1}, \bar{x}_{W}}(x)$ increases, and $U_{D_{2}, \bar{x}_{W}}^{\prime}(x)-U_{D_{1}, \bar{x}_{W}}^{\prime}(x)$ decreases, as x decreases. If at some point function $U_{D_{1}, \bar{x}_{W}}(x)$ would satisfy (19) while $U_{D_{2}, \bar{x}_{W}}(x)$ would satisfy (18), then $U_{D_{1}, \bar{x}_{W}}^{\prime \prime}(x) \leq 0, U_{D_{2}, \bar{x}_{W}}^{\prime \prime}(x) \geq 0$ and hence as x decreases, the difference $U_{D_{2}, \bar{x}_{W}}(x)-U_{D_{1}, \bar{x}_{W}}(x)$ increases. Thus, for two values $D_{1}<D_{2}$, one has $U\left(x, D_{1}, \bar{x}_{W}\right)<U\left(x, D_{2}, \bar{x}_{W}\right)$, for $x \in\left(0, \bar{x}_{W}\right)$.

Proof of Lemma 4

Proof. If the wage cutoff increases from \bar{x}_{W} to $\bar{x}_{W}^{\prime}>\bar{x}_{W}$, the wage function $w(x)$ would decrease between \bar{x}_{W} and \bar{x}_{W}^{\prime} (as seen from (14). Note that expressions (20), (21) are solutions to equations (18), (19), respectively. Equations (18), (19) are equivalent to $U^{\prime \prime}(x)=$ $H(x, U(x))$, where $H(x, U(x)) \equiv \frac{2 \sigma_{j}^{2}[r U(x)-w(x)]}{\Delta^{2} x^{2}(1-x)^{2}}$, where $j=I$ if $r U(x) \geq w(x)$, and $j=P$ if $r U(x)<w(x)$. Note that function $H(x, U(x))$ decreases with $w(x)$. That is, for any $x \in\left(\bar{x}_{W}, \bar{x}_{W}^{\prime}\right)$, we have $U_{D, \bar{x}_{W}}(x)<U_{D, \bar{x}_{W}^{\prime}}(x), U_{D, \bar{x}_{W}}^{\prime}(x)>U_{D, \bar{x}_{W}^{\prime}}^{\prime}(x)$. Indeed, we need to compare solutions to two ODEs with the same boundary conditions (values $U(x), U^{\prime}(x)$) at $x=\bar{x}_{W}^{\prime}$, but different values for function $U^{\prime \prime}(x)=H(x, U(x))$. After the change in cutoff, the value of $H(x, U)$ increased for all $x \in\left(\bar{x}_{W}, \bar{x}_{W}^{\prime}\right)$, and hence, within a small interval of values $x \in\left(\bar{x}_{W}^{\prime}-\varepsilon, \bar{x}_{W}^{\prime}\right)$, the value $U(x)$ increased while the value $U^{\prime}(x)$ decreased. Hence, applying the mean value theorem (similar to proof of Lemma 11) we get that the value of $U(x)$ increases (respectively, the value of $U^{\prime}(x)$ decreases) for any $x \in\left(\bar{x}_{W}, \bar{x}_{W}^{\prime}\right)$.

Finally, for $x<\bar{x}_{W}$, we can apply Lemma 11 with respect to function $V_{1}(x)=U_{D, \bar{x}_{W}^{\prime}}(x)$, $V_{2}(x)=U_{D, \bar{x}_{W}}(x)$, and $\hat{x}=\bar{x}_{W}$ to show that after the change in a cutoff, $U(x)$ would increase for all $x<\bar{x}_{W}: U_{D, \bar{x}_{W}}(x)<U_{D, \bar{x}_{W}^{\prime}}(x)$.

Continuity follows from standard arguments - that the solution to a second-order differ-
ential equation, that satisfies Lipshitz conditions, depends continuously on boundary conditions.

Proof of Lemma 5

Proof. Let's look at how function $U(x)$ behaves for different values of D. For a value of $M>0$ big enough, if $D>M$, then, on interval $x \in\left(\bar{x}_{W}, 1\right)$, the solution to (20) would lie above u_{0} / r, moreover, at $x=\bar{x}_{W}$, the value $U\left(\bar{x}_{W}\right)$ would lie above $w\left(\bar{x}_{W}\right) / r$, while $U^{\prime}\left(\bar{x}_{W}\right)$ would be negative. Respectively, the value of $U(x)$ for $x<\bar{x}_{W}$, would satisfy (18)-(19) with boundary conditions at $x=\bar{x}_{W}$, that is, $U^{\prime \prime}(x)>0, U^{\prime}(x)<0$ and $U(x)>u_{0} / r$ for all x.

At the same time, for a value of $N>0$ large enough, if $D<-N$, then from (21), the graph of $U(x)$ would be lower than u_{0} / r for some $x \in\left(\bar{x}_{W}, 1\right)$. Thus, due to Lemma 3, as we change D continuously from $-N$ to M, we can find an upper bound value $D=\hat{D}$: For all $D \leq \hat{D}$, the graph of $U(x)$ will have common points with a horizontal line u_{0} / r, while for $D>\hat{D}$, there will be no such common points. More precisely, at $D=\hat{D}$, the graph of $U(x)$ will touch the horizontal line u_{0} / r at a unique point $x=\underline{x}_{W}$, that is, $U\left(\underline{x}_{W}\right)=u_{0} / r$, $U^{\prime}\left(\underline{x}_{W}\right)=0$, and for $x \neq \underline{x}_{W}, U(x)>u_{0} / r$. Otherwise, if $U^{\prime}\left(\underline{x}_{W}\right) \neq 0$, this contradicts the definition of \hat{D}.

Technical Lemma-Monotonicity

Lemma 11. Assume two functions $V_{1}(x)$ and $V_{2}(x)$ such that, for some task $k \in\{P, I\}$, they both satisfy the differential equation $r V_{i}(x)=w(x)+\Delta x+\frac{\Delta^{2}}{2 \sigma_{k}^{2}} x^{2}(1-x)^{2} V_{i}^{\prime \prime}(x)$, on a certain interval $\left[x_{0}, x_{1}\right]$ of beliefs, with $w(x)$ equal to productivity of one of the tasks (not necessarily equal k). Assume that at some belief $\hat{x} \in\left[x_{0}, x_{1}\right]$ one gets the following relations:

$$
\begin{equation*}
V_{1}(\hat{x}) \geq V_{2}(\hat{x}) \text { and } V_{1}^{\prime}(\hat{x}) \geq V_{2}^{\prime}(\hat{x}), \tag{xvi}
\end{equation*}
$$

with at least one inequality being strict. Then, both relations in (xvi) are satisfied as strict inequalities for all $x \in\left(\hat{x}, x_{1}\right]$.

Similarly, suppose at some belief $\hat{x}^{\prime} \in\left[x_{0}, x_{1}\right]$ one gets the following relations:

$$
\begin{equation*}
V_{1}\left(\hat{x}^{\prime}\right) \geq V_{2}\left(\hat{x}^{\prime}\right) \text { and } V_{1}^{\prime}\left(\hat{x}^{\prime}\right) \leq V_{2}^{\prime}\left(\hat{x}^{\prime}\right) \tag{xvii}
\end{equation*}
$$

with at least one inequality being strict. Then, both relations in xvii) are satisfied as strict inequalities for all $x \in\left[x_{0}, \hat{x}^{\prime}\right)$.

Proof. The proof is written regarding xvi) assuming both inequalities are strict, and is similar for Xvii) and/or one of inequalities being weak. The proof is done by contradiction and uses the mean value theorem. Assume there exists $\tilde{x} \in\left(\hat{x}, x_{1}\right]$ such that the first inequality in (xvi) is violated: $V_{1}(\widetilde{x}) \leq V_{2}(\widetilde{x})$. Denote by x_{2} the lowest value of $x \in(\hat{x}, \widetilde{x}]$ such that $V_{1}(x) \leq V_{2}(x)$ (such value of x_{2} is well defined since both functions $V_{1}(x), V_{2}(x)$ are twice continuously differentiable). Since $V_{1}(\hat{x})>V_{2}(\hat{x})$ and $V_{1}\left(x_{2}\right) \leq V_{2}\left(x_{2}\right)$, by the mean value theorem, there exists $x_{3} \in\left(\hat{x}, x_{2}\right)$ such that $V_{1}^{\prime}\left(x_{3}\right)<V_{2}^{\prime}\left(x_{3}\right)$. Since $V_{1}^{\prime}(\hat{x})>V_{2}^{\prime}(\hat{x})$ and $V_{1}^{\prime}\left(x_{3}\right)<V_{2}^{\prime}\left(x_{3}\right)$, by the mean value theorem, there exists $x_{4} \in\left(\hat{x}, x_{3}\right)$ such that $V_{1}^{\prime \prime}\left(x_{4}\right)<$ $V_{2}^{\prime \prime}\left(x_{4}\right)$. However, since both functions satisfy the same differential equation in the statement of the Lemma, the inequality $V_{1}^{\prime \prime}\left(x_{4}\right)<V_{2}^{\prime \prime}\left(x_{4}\right)$ means $V_{1}\left(x_{4}\right)<V_{2}\left(x_{4}\right)$, which contradicts the definition of x_{2}, thus contradicting the initial assumption $V_{1}(\widetilde{x})<V_{2}(\widetilde{x})$.

Similarly, assume the second inequality of Xvi) is violated at $\widetilde{x}: V_{1}^{\prime}(\widetilde{x}) \leq V_{2}^{\prime}(\widetilde{x})$. Since $V_{1}^{\prime}(\hat{x})>V_{2}^{\prime}(\hat{x})$, by the mean value theorem, there exists $x_{5} \in(\hat{x}, \widetilde{x})$ such that $V_{1}^{\prime \prime}\left(x_{5}\right)<$ $V_{2}^{\prime \prime}\left(x_{5}\right)$. Thus, one gets that $V_{1}\left(x_{5}\right)<V_{2}\left(x_{5}\right)$, which is impossible by the argument from the previous paragraph.

[^0]: ${ }^{11}$ When $\mu \rightarrow 0^{+}$, we have from (iii) that either $\bar{x} \rightarrow 0^{+}$, or $\underline{x} \rightarrow 1^{-}$, or $\underline{x} \rightarrow \underline{x}_{1}^{-}$. With $\bar{x} \rightarrow 0^{+}$, the LHS of (iv) will be zero, so $\underline{x} \rightarrow \underline{x}_{2}^{-}$. But $\underline{x}_{2}>\underline{x}_{1}$, so the RHS of (iii) will be negative, a contradiction. With $\underline{x} \rightarrow 1^{-}$, the RHS of (iii) will also be negative, because $\underline{x}_{1}<1$, a contradiction. This leaves us with just one possibility: $\underline{x} \rightarrow \underline{x}_{1}^{-}$, which implies $\bar{x} \rightarrow 1^{-}$. The slope ratio of C_{1} and C_{2} as in xii) for any solutions $\underline{x} \rightarrow \underline{x}_{1}^{-}, \bar{x} \rightarrow 1^{-}$must approach $+\infty$, hence there can only be exactly one such solution since C_{1} and C_{2} cannot intercept multiple times with this slope ratio.
 ${ }^{12}$ In other words, C_{1} intercepts C_{2} once given $\boldsymbol{\theta}_{0}$, but intercepts $2 n+1$ times over $\boldsymbol{\theta}_{1}$, for some $n>0$. Given that we have shown C_{2} to leave $(0,0)$ above C_{1} and approach $(1,1)$ from below C_{1}, as we deform both C_{1} and C_{2} smoothly from $\boldsymbol{\theta}_{1}$ to $\boldsymbol{\theta}_{0}$ there must be some point where C_{1} only touches C_{2} tangentially, and we have shown this to be impossible.

