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I. Symmetric contests with a single costly prize

This appendix considers a special case of a Separable and Monotonic contest, as

de�ned in Section III. Speci�cally, it is assumed that there is a single prize, which

is costly to the designer to award. The aim of the appendix is to explore how

the optimal action pro�le and the optimal design depends on the cost. However,

it is assumed for simplicity that all agents are identical and must be induced to

take symmetric actions. Hence, subscripts are omitted.

Let z � 0 denote the cost of the prize to the designer. Although the feasible
set is independent of z, the optimal action pro�le is now generally speaking both

in the interior of the feasible set and sensitive to z. From (10), the prize is

awarded only if the highest individual score exceeds z. Thus, there is a minimum

standard qz such that the prize is given out only if at least one agent performs

above qz. Note that qz depends on the symmetric equilibrium action, a, and that

(10) implies that L(qzja) > 0 when a < as. It can be veri�ed from the agents�

�rst-order conditions that qz is strictly decreasing in a for all a < as.1 Stated

di¤erently, a lower standard and a higher equilibrium action go hand in hand.

This in turn means that the probability that the prize is awarded, 1�G(qzja)n,
increases when a higher action is induced.

The designer�s problem is to induce an action a to maximize expected payo¤

U0(a; a; :::; a)� z(1�G(qzja)n):

1When a < as, the action pro�le is in the interior of the feasible set. In contrast, Proposition
2 considers action pro�les along the frontier of the feasible set and a minimum standard that
is found where the LR is zero.
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Figure 3: The equilibrium standard and equilibrium action as a function of costs.

Now consider an increase in cost z. This makes it less attractive to award the

prize. Given the conclusion in the previous paragraph, this implies that the

designer will induce a lower action. In summary, when the prize is costlier to the

designer, she induces a lower action by imposing a higher standard. However,

when the cost of the prize becomes too high, the designer is better o¤ shutting

down the contest.

As an example, consider a special case of the spanning model, with

G(qja) =
p
aq2 +

�
1�

p
a
�
q; q 2 [0; 1] ;

whenever a 2 [0; 1). Assume v = 6 and c(a) = a. If the prize is costless, or

z = 0, the optimal minimum standard is bq = 1
2
. The highest action that can be

implemented is then a = 9
16
.

For simplicity, assume that there is exactly one contestant or agent. Thus,

the agent wins the prize if and only if his performance exceeds the minimum

standard. For any given minimum standard qz, the �rst-order condition implies

that the agent�s best response is a = 9 (qz)2 (1�qz)2, which is of course maximized
if qz = bq = 1

2
. However, it may be better to increase qz in order to lower

the probability that the designer has to incur the cost of awarding the prize.

Whenever qz > 1
2
, a and qz move in opposite directions.

The probability that the prize is awarded is 1�G(qzja) = 3 (qz)4 � 6 (qz)3 +
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3 (qz)2�(qz)+1. Assume that the designer wishes to maximize the agent�s action,
or U0(a) = a. Then, the designer�s expected payo¤ is

9 (qz)2 (1� qz)2 � z
�
3 (qz)4 � 6 (qz)3 + 3 (qz)2 � (qz) + 1

�
:

At z = 12
13
, this is maximized at qz = 2

3
and at exactly zero expected payo¤.

Thus, it is optimal for the designer to shut down the contest if z > 12
13
, which can

be achieved by imposing a minimum standard of q = 1. On the other hand, as

long as z 2
�
0; 12

13

�
, a minimum standard in the interval

�
1
2
; 2
3

�
is optimal and this

minimum standard is increasing in z. Figure 3 illustrates the solution.

Note that z = 12
13
is substantially higher than the action that is induced at

qz = 2
3
, which is a = 4

9
. Even though the price is extremely expensive to the

designer, the contest is still pro�table when z is just below 12
13
because there is

only a small chance that the prize must be awarded.

II. The best-shot model

This appendix complements the treatment of the best-shot model in Section IV.

Among other things, the CSF is computed and the feasible set is constructed

when rationing is possible. It concludes with a discussion of how to microfound

the biased lottery CSF that is often used in the current literature, and whether

this microfoundation is appealing or desirable.

A. Winning probabilities and CSFs

As mentioned in Section V.B, it is possible to extend the model to more than

two groups of agents. The main complication is that there are now many types

of �sequential�allocation rules of the kind described at the beginning of Section

II.C. For example, group 1 might be �served� �rst, followed then by group 2

and later by group 3, while all remaining groups at the very end �ght each other

simultaneously if the prize is still available. A complete description of the feasible

set requires one to piece together all these cases. See Kirkegaard (2020) for details.

This subsection instead considers the simplest possible case in which the al-
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location rule is �simultaneous�. Thus, every agent receives a score of the form

�iviLi(qijai), with �i 2 (0;1) for all i 2 N , and the agent with the highest score
wins. Using the notation from Section IV.A, this means that � i 2 (0;1). It
turns out that � i is in a sense a measure of how favorable the contest is to agent

i, as demonstrated in the following result.

Proposition 9 Consider the best-shot model with an arbitrary number of agents.
Fix an action pro�le a� on the frontier of the feasible set in which all agents are

active (ai > 0) and which is implemented by giving each agent a scoring function

si(qi) = �iviLi(qija�i ), with �i 2 (0;1) for all i 2 N . Then, agent i�s ex ante
equilibrium winning probability exceeds that of agent j if and only if � i > � j,

regardless of whether rationing is allowed or not.

Proof. Note that if agents i and j perform equally well given what is expected

of them � i.e. they perform at the same quantiles, or Gi(qija�i ) = Gj(qjja�j) �
then agent i�s score beats agent j�s score if � i > � j and the likelihood-ratios are

positive. However, agent�s j�s score is higher if the likelihood-ratios are negative.

Consequently, the result is trivial if rationing is allowed. Then, only positive

likelihood-ratios have a chance of winning. Recall that agents i and j have positive

likelihood-ratios with the same probability, speci�cally 1 � e�1. Given a perfor-
mance at any �xed quantile above e�1, such that Gi(qija�i ) = Gj(qjja�j) � e�1,

agent i outscores agent j if and only if � i > � j. Since quantiles are distributed

the same way (uniformly) for both agents, it now follows that agent i wins with

a higher probability in equilibrium if and only if � i > � j.

If rationing is ruled out, then performance with negative likelihood-ratio come

into play. Given � i, agent i�s score is in equilibrium distributed according to

Ki(sij� i) = e
si
�i
�1
; si 2 (�1; � i]

with density

ki(sij� i) =
1

� i
e
si
�i
�1
; si 2 (�1; � i]:

Without loss of generality, arrange agents in ascending order based on their � i,

with � 1 � � 2 � :::�N . Let � 0 = �1. A score above � j automatically beats agent
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j. Hence, agent i�s equilibrium winning probability can then be written as

P �i (� 1; � 2; :::; �N) =

Z �1

�0

�Q
j�1;j 6=iKj(sj� j)

�
ki(sj� i)ds

+

Z �2

�1

�Q
j�2;j 6=iKj(sj� j)

�
ki(sj� i)ds

+:::+

Z � i

� i�1

�Q
j�i;j 6=iKj(sj� j)

�
ki(sj� i)ds

=
1

� i

iX
m=1

�m;

where

�m =

Z �m

�m�1

e
P
j�m

�
s
�j
�1
�
ds

=
1P

j�m
1
�j

 
e
P
j�m

�
�m
�j
�1
�
� e

P
j�m

�
�m�1
�j

�1
�!

:

Going forward, for i = 2; :::; n, it is useful to compare

�i =
1P
j�i

1
�j

 
e
P
j�i

�
�i
�j
�1
�
� e

P
j�i

�
�i�1
�j

�1
�!

and

i�1X
m=1

�m �
Z � i�1

�0

e
P
j�i�1

�
s
�j
�1
�
ds:

=
1P

j�i�1
1
�j

e
P
j�i�1

�
�i�1
�j

�1
�

=
1P

j�i�1
1
�j

e
P
j�i

�
�i�1
�j

�1
�
:
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Then, note that for i = 2; :::; n,

P �i � P �i�1 =
1

� i

iX
m=1

�m �
1

� i�1

i�1X
m=1

�m

=
1

� i
�i �

�
1

� i�1
� 1

� i

� i�1X
m=1

�m

� 1

� i

1P
j�i

1
�j

 
e
P
j�i

�
�i
�j
�1
�
� e

P
j�i

�
�i�1
�j

�1
�!

�
�
1

� i�1
� 1

� i

�
1P

j�i�1
1
�j

e
P
j�i

�
�i�1
�j

�1
�
;

and where, de�ning xi =
P

j�i
1
�j
, the latter is proportional to

�i = (1 + � i�1xi) (e
� ixi � e� i�1xi)� (� i � � i�1)xie� i�1xi

= (1 + � i�1xi) e
� ixi � (1 + � ixi) e� i�1xi > 0

when � i > � i�1. Hence, it now follows that winning probabilities are arranged in

the same order as the � i�s.

Given a vector � that lists all � i�s, it is in principle possible to derive the CSF

�the probability that agent i wins for any given action pro�le a �by integrating

out the uncertainty over performance, i.e. by calculatingZ �Z
Pi(qi;q�i)gi(qijai)dqi

�Y
j 6=i

gj(qjjaj)dq�i:

In the best-shot model, however, a more direct argument is also possible. This

is illustrated in the proof of the next proposition, under the assumption that

rationing is ruled out and that all agents are active. In this case, negative scores

have a chance of winning.

Proposition 10 Under the assumptions in Proposition 9, if a� is the equilibrium
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action pro�le and � i � � j for all j 2 N , then agent i wins with probability

bpi(aj� ) =
0@Q

j2Nnfig e
(�i��j)fj(aj)

�jfj(a
�
j
)

1A fi(ai)
� ifi(a�i )P
j2N

fj(aj)

�jfj(a�j )

; (22)

when rationing is ruled out, for any action pro�le a with ai > 0.

Proof. To start, note that the distribution of agent i�s score is

Si(sjai) =
�
es�� i

� fi(ai)

�ifi(a
�
i
) ; s 2 (�1; � i]

when he takes action ai rather than a�i . It is as if he draws
fi(ai)
� ifi(a�i )

scores from the

distribution es�� i, but only the best score is counted. The range of scores depends

on the identity of the agent, with � i describing the highest possible score that

agent i can achieve. Assume agent i is the agent with the lowest � , or � i � � j.
Then, in order for agent i to win it is necessary that all other agents score below

� i, the probability of which is0@Q
j2Nnfig e

(�i��j)fj(aj)
�jfj(a

�
j
)

1A : (23)

Given this event, however, the conditional distribution of agent j�s score is

Sj(sjaj)
Sj(� ijaj)

=
�
es�� i

� fj(aj)

�jfj(a
�
j
) ; s 2 (�1; � i]:

Hence, it is as if all agents draw scores from the same distribution, es�� i. Since

each draw therefore has an equal chance of winning, the conditional probability

that agent i wins is
fi(ai)
� ifi(a�i )P
j2N

fj(aj)

�jfj(a�j )

: (24)

Combining (23) and (23) yields the CSF in the proposition.

As a consistency check, note that if � i = � j for all j 2 N then bpi(a�j� ) = 1
n

and all agents win with equal probability in equilibrium. Note that the �rst term

in (22) depends on the action pro�le, for reasons that are carefully explained in
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the proof of the proposition. Due to this distortion, (22) is not a lottery CSF

(except in the special case where � i = � j for all j 2 N).

B. The feasible set with and without rationing

Next, the feasible set of implementable actions is characterized. As explained in

the main text, it is assumed that

lim
ai!0

c0i(ai)
fi(ai)

f 0i(ai)
= 0;

for all i. Now, the highest possible implementable action of agent i, ai, can be

characterized succinctly in the best-shot model. This follows from the proof of

Proposition 1.

Corollary 4 In the best-shot model, any action no greater than the unique solu-
tion ai to

c0i(ai)
fi(ai)

f 0i(ai)
=
vi
e

(25)

can be implemented by appropriately designing the assignment rule.

Proof. In the best-shot model, where bqi(ati) = H�1
�
e
� 1

fi(a
t
i
)

�
or H(bqi(ai)) =

e
� 1

fi(a
t
i
) , (17) is

U i(ai) = vi

�
1� e

� fi(ai)

fi(a
t
i
)

�
� ci(ai)

and (18) simpli�es to
1

c0i(a
t
i)

f 0i(a
t
i)

fi(ati)
� e

vi
:

By concavity of fi and convexity of ci, the left hand side is decreasing. Hence,

the condition is satis�ed if and only ati is no greater than the solution to (25).

By Proposition 1, it is then possible to implement the action.

Using similar logic, it is possible to characterize the corners of the frontier

of the feasible set when there are two groups of agents and the rules are group-

symmetric. As in Section II, let asi denote the highest possible action is group i

when rules are group-symmetric. When ni = 1, asi = ai but otherwise a
s
i < ai.
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Similarly, let asi denote the smallest possible action along the frontier for an agent

in group i when rules are group-symmetric. This is the action that is implemented

when aj = asj in the other group, j 6= i. This means that an agent in group i has
a chance of winning only if all agents in group j have negative likelihood-ratios.

If ni � 2, then competition within group i still ensures that asi > 0. However,

if ni = 1, then agent i is simply the �residual claimant�of the prize and has no

incentive to exert e¤ort.

Corollary 5 In the best-shot model with two groups, group-symmetric rules, and
no rationing, the frontier of the feasible set contains the corners (as1; a

s
2) and

(as1; a
s
2), where a

s
i and a

s
i solve

c0i(a
s
i )
fi(a

s
i )

f 0i(a
s
i )
= vi

ni � 1 + e�ni
n2i

and c0i(a
s
i )
fi(a

s
i )

f 0i(a
s
i )
= vie

�nj ni � 1
n2i

; i; j = 1; 2 and j 6= i:

Here, asi is strictly decreasing in ni and independent of nj. Similarly, a
s
i is strictly

positive if and only if ni � 2 and it is then strictly decreasing in both ni and nj.

Proof. To implement asi , the contest rules must imply that an agent in group
i wins if and only if his likelihood-ratio is positive and (by group-symmetry and

the MLRP) if his performance is higher than the performance of all other agents

in his group. Given all other agents in group i takes action asi , the relevant

�rst-order condition is

c0i(a
s
i ) = vi

Z qi

bqi(asi ) (Gi(qija
s
i ))

ni�1 Li(qijasi )gi(qijasi )dqi

= vi
f 0i(a

s
i )

fi(a
s
i )

Z qi

bqi(asi ) (Gi(qija
s
i ))

ni�1 (1 + lnGi(qijasi )) gi(qijasi )dqi

Substituting the equilibrium quantiles of agent i�s performance, z = Gi(qijasi )
and dz = gi(qijasi )dqi, yields

c0i(a
s
i )
fi(a

s
i )

f 0i(a
s
i )

= vi

Z 1

e�1
zni�1 (1 + ln z) dz

= vi
ni � 1 + e�ni

n2i
:
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Simple di¤erentiation shows that the right hand side is decreasing in ni.

Turning to asi , this is the action that is implemented when the other group is

induced to take action aj = asj, j 6= i. Thus, an agent in group i has a chance of
winning only if all agents in group j have negative likelihood-ratios. This occurs

with probability e�nj . Conditional on this event, the agent must moreover (by

group-symmetry and the MLRP) outperform all other agents in his group. Since

rationing is ruled out, such an agent may win even if his own likelihood-ratio is

negative. Thus, the �rst-order condition is

c0i(a
s
i ) = vie

�nj
Z qi

q
i

(Gi(qijasi ))
ni�1 Li(qijasi )gi(qijasi )dqi;

which reduces to the statement in the corollary. The rest follows by simple

di¤erentiation.

Next, the interior part of the frontier is characterized.

Proposition 11 In the best-shot model with two groups, group-symmetric rules,
and no rationing, the frontier of the feasible set contains the corners (as1; a

s
2)

and (as1; a
s
2). The remaining action pro�les on the frontier can be traced out by

varying � 1 > 0 and � 2 > 0, where the equilibrium action of an agent in group i

is determined by

c0i(a
�
i )
fi(a

�
i )

f 0i(a
�
i )
= viF

�
� i
� j
jni; nj

�
;

with

F

�
� i
� j
jni; nj

�
=

8>>>>><>>>>>:
e
nj

�
�i
�j
�1
�
nj

�i
�j
+ni�1�

nj
�i
�j
+ni

�2 if � i
�j
2 (0; 1)

ni�1
n2i

+ e
ni

�
1

�i=�j
�1
�
nj
n2i

nj

�
�i
�j

�2
+
�i
�j
ni(2�nj)�n2i�

nj
�i
�j
+ni

�2 if � i
�j
� 1

:

Here, F
�
� i
�j
jni; nj

�
is strictly increasing in � i

�j
and satis�es F (1jni; nj) = n�1

n2
.

Hence, a�i is strictly increasing in
� i
�j
.

Proof. The corners are described in Corollary 5. To describe actions away from
the corners of the frontier, note that such actions must be interior and the two
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�rst-order conditions must therefore be solved simultaneously. Assume �rst that

0 < � i � � j. Then, regardless of his performance, an agent in group i wins with
a probability strictly less than one when � i < � j. If his performance is qi, then

he beats an agent in group j if and only if si(qi) � sj(qj), which occurs if and

only if qi and qj are such that

e
�i��j
�j Gi(qija�i )

�i
�j � Gj(qjja�j);

where the term on the right hand side is the equilibrium distribution of the

performance of a member of group j. Hence, the interim probability that agent i

with performance qi beats such an agent is e
�i��j
�j Gi(qija�i )

�i
�j . To win, the agent

has to beat all agents in group j as well as all the other agents in group i. With

this in mind, agent i�s �rst-order condition in equilibrium is

vi

Z qi

q
i

Li(qija�i )
�
e
�i��j
�j Gi(qija�i )

�i
�j

�nj
Gi(qija�i )ni�1gi(qija�i )dqi � c0i(a�i ) = 0

or

vi
f 0i(a

�
i )

fi(a�i )
e
nj

�i��j
�j

Z qi

q
i

(1 + lnGi(qija�i ))Gi(qija�i )
nj

�i
�j
+ni�1

gi(qija�i )dqi � c0i(a�i ) = 0:

As in Corollary 5, substituting the equilibrium quantiles of agent i�s performance,

z = Gi(qija�i ) and dz = gi(qija�i )dqi. This gives

c0i(a
�
i )
fi(a

�
i )

f 0i(a
�
i )

= vie
nj

�i��j
�j

Z 1

0

(1 + ln z) z
nj

�i
�j
+ni�1

dz

= vie
nj

�
�i
�j
�1
�
nj

� i
�j
+ ni � 1�

nj
� i
�j
+ ni

�2 ;
which nails down a�i since the left hand side is strictly increasing in a

�
i .

Assume now that � i > � j > 0. In this case, agent i beats any agent in group

j with probability one if his performance is high enough, or speci�cally if qi � eqi
where

e
�i��j
�j Gi(eqija�i ) �i�j = 1;
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which implies that

Gi(eqija�i ) = e �j��i�i

and

1 + lnGi(eqija�i ) = � j
� i
:

Agent i�s �rst order condition is now

vi

Z eqi
q
i

Li(qija�i )
�
e
�i��j
�j Gi(qija�i )

�i
�j

�nj
Gi(qija�i )ni�1gi(qija�i )dqi

+ vi

Z qi

eqi Li(qija
�
i )Gi(qija�i )ni�1gi(qija�i )dqi � c0i(a�i ) = 0:

The same substitution as before yields

c0i(a
�
i )
fi(a

�
i )

f 0i(a
�
i )
= vie

nj
�i��j
�j

Z e

�j��i
�i

0

(1 + ln z) z
nj

�i
�j
+ni�1

dz+vi

Z 1

e

�j��i
�i

(1 + ln z) zni�1dz

or

c0i(a
�
i )
fi(a

�
i )

f 0i(a
�
i )
= vi

0B@ni � 1
n2i

+ e
ni

�
1

�i=�j
�1
�
nj
n2i

nj

�
� i
�j

�2
+ � i

�j
ni (2� nj)� n2i�

nj
� i
�j
+ ni

�2
1CA :

As before, a�i is nailed down because the left hand side is strictly increasing. The

characterization result in the proposition now follows. The fact that F
�
� i
�j
jni; nj

�
is strictly increasing in � i

�j
is veri�ed by di¤erentiation, and it is straightforward

to verify that

F (1jni; nj) =
n� 1
n2

:

It can be veri�ed that as � i
�j
converges to in�nity or zero, ai converges to asi

and asi as described in Corollary 5, respectively.

The frontier of the feasible set is described in a similar fashion when rationing

is allowed.

Proposition 12 In the best-shot model with two groups, group-symmetric rules,

12



and with rationing allowed, the action pro�les on the frontier of the feasible set,

away from the corners, can be traced out by varying � 1 > 0 and � 2 > 0. The

equilibrium action of an agent in group i is determined by

c0i(a
�
i )
fi(a

�
i )

f 0i(a
�
i )
= viFR

�
� i
� j
jni; nj

�
;

where

FR

�
� i
� j
jni; nj

�
= F

�
� i
� j
jni; nj

�
+

e�(ni+nj)�
nj

� i
�j
+ ni

�2 :
Here, FR

�
� i
�j
jni; nj

�
is strictly increasing in � i

�j
and satis�es FR (1jni; nj) = n�1

n2
+

e�n

n2
. Hence, a�i is strictly increasing in

� i
�j
.

Proof. The proof follows the same steps as in the proof of Proposition 11.

The only di¤erence is that an agent in group i now has zero probability of

winning if qi < bqi(a�i ) or, using the same substitution as in Proposition 11, if
z � Gi(bqi(a�i )ja�i ) = e�1. Hence, the lower bounds on the integrals that are eval-
uated in the proof of Proposition 11 change. This produces FR( � i�j ) as stated in

the proposition. Monotonicity can be veri�ed by di¤erentiation.

Note that FR( � i�j ) > F (
� i
�j
). Since ti is increasing, it follows, as expected, that

the action pro�le for any given � i
�j
is higher when rationing is allowed than when

it is not. It can be veri�ed that Lemma 1 is unchanged when rationing is allowed.

Winning probabilities can be computed using the method described in the

proof of Proposition 6, except the integration is performed only over non-negative

scores. With �i = � i
�j
, this yields equilibrium winning probabilities for an agent

in group i of

WR (�ijni; nj) =

8><>:
enj(�i�1) 1

nj�i+ni
� e�(ni+nj)

nj�i+ni
if �i 2 (0; 1)

1
ni

�
1� njeni

�
1
�i
�1
�

�i
nj�i+ni

�
� e�(ni+nj)

nj�i+ni
if �i � 1

or simply

WR (�ijni; nj) =W (�ijni; nj)�
e�(ni+nj)

nj�i + ni
; �i 2 (0;1):
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With the proof of Corollary 2 in mind, it can be veri�ed that

WR (�ijni; nj)� FR (�ijni; nj)

is increasing in �i whenever W (�ijni; nj) � F (�ijni; nj) is. The only case in
which W (�ijni; nj) � F (�ijni; nj) is not increasing is when ni = 1 and �i < 1.
Checking this case, however, it turns out that WR (�ijni; nj)�FR (�ijni; nj) is in
fact increasing. In other words,WR (�ijni; nj)�FR (�ijni; nj) is globally increasing
in �i for all (ni; nj). By the argument in Corollary 2, it follows that expected

utility to agents in group i is strictly increasing in �i.

C. Microfoundations for the biased lottery CSF

It is possible to use the best-shot model to provide microfoundations for (15).

Proposition 13 Consider the best-shot model with Hi(qi) = H(qi), i 2 N . As-
sign agent i with performance qi a base score of sBi (qi) = H(qi)

1=bi 2 [0; 1],

bi > 0. Draw an auxiliary score sAUXi for agent i from the distribution
�
sAUXi

��i,
sAUXi 2 [0; 1], �i � 0. Let agent i�s �nal score be sFMi (qi) = maxfsBi (qi); sAUXi g.
Finally, draw a score sD for the designer from the distribution

�
sD
�z
, sD 2 [0; 1],

z � 0. Let the individual (agent or designer) with the highest score win. Then,
the CSF is given by (15).

Proof. Agent i�s �nal score is below si if and only if both sBi and s
AUX
i are below

si. First, sBi � si when qi � H�1 �sbii �, the probability of which is H(qi)fi(ai) =
s
bifi(ai)
i . Second, the probability that sAUXi � si is s

�i
i . Hence, the probability

that the �nal score is below si is s
bifi(ai)
i s�ii = s

bifi(ai)+�i
i . It is as if agent i draws

bifi(ai) + �i �ideas�from a uniform distribution. Similarly, the designer draws z

�ideas�from a uniform distribution. Since each �idea�is equally likely to be the

best, the ex ante probability that agent i wins is (15).

The transformation of qi into a base score maps the idea from the support

[q; q] into a quality index on [0; 1], where the index is identity dependent via bi.

Given action ai, agent i then draws bifi(ai) ideas from a uniform distribution on

this index. He is then given �i fake ideas by the designer, again drawn from a
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uniform distribution. The agent now has a total of bifi(ai) + �i real and fake

ideas. The designer also draws z fake ideas from a uniform distribution. Each

idea, real or fake, has an equal chance of winning, yielding (15).

The stochastic nature of the fake ideas may or may not be palatable. Thus,

Proposition 13 should not be taken as a defense of (15) but rather as a clari�cation

of the lengths one must go to in order to justify it. The transformation of the

performance into a quality index seems more appealing. However, this particular

transformation is still ad hoc.2 In fact, Proposition 13 merely shows that (15)

can be implemented in the Fullerton and McAfee (1999) model. Hence, it follows

that the set of implementable actions must in reality be strictly larger than the

set of actions that can be implemented by using (15).3

One drawback of using (15) for contest design is that it says little about

how to implement the optimal design in practice. For instance, how exactly

is the playing �eld supposed to be made level if the designer does not observe

actions? Proposition 13 tells us how this can be achieved by linking design to the

observable signals. In other words, the kind of story embodied in Proposition 13 is

important if the desire is to apply lessons from (15) in practice. The issue is that

(15) pushes the performance pro�le to the back, which is unfortunate since this

is the observable variable. The stochastic performance approach in the current

paper has the distinct advantage that it starts directly from the observables.

2Similarly, giving agents a multiplicative bonus in Hirschleifer and Riley�s (1992) model
yields pi(aj0;b; 0). This can also be obtained by variying the �i parameter in Clark and Riis�
(1996) random utility framework. Again, these are ad hoc ways to manipulate the contest.

3Fu and Wu (2020) and most of the prior literature restrict head starts to be non-negative.
Drugov and Ryvkin (2017) show that negative head starts may be better. However, negative
head starts cannot be justi�ed by Proposition 13.
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