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Online Appendix for “Stable and efficient resource allocation with

contracts”

Bobak Pakzad-Hurson

Here, I present additional results and extensions omitted from the body of the
paper.

B1. Top trading cycles

This section demonstrates an example of the “cook book” provided in Theorem
2 and how it applies to another real-world mechanism, top trading cycles. Unlike
φDA which always yields a stable matching, top trading cycles, denoted φTTC ,
is always efficient and group strategyproof (Abdulkadiroğlu and Sönmez, 2003).
I will show that these properties carry over to the extended mechanism φ̄TTC .
To the best of my knowledge, this is the first top trading cycles mechanism that
accommodates contracts. I define φ̄TTC as follows.

DEFINITION 13: The top trading cycles mechanism φ̄TTC proceeds in a se-
quence of steps t = 1, 2, ... :

Step 1: Each s ∈ S is endowed with a counter, C0
s = qs. Each s ∈ S

points to the student named in its highest priority contract. Each
student similarly points to the school named in her most preferred
contract. The null object points to all students, and has qs = |I|. Due
to finiteness, there is at least one cycle. Let I1 and S1 be the sets of
students and schools involved in cycles. Each i ∈ I1 is matched to
school s ∈ S1 to which student i is pointing via the student’s most
preferred contract. For all s ∈ S1 set C1

s = qs − 1 and C1
s′ = qs′ for

all s′ /∈ S1. Let J1 = I1 and let W 1 = {s ∈ S : C1
s = 0}. Define

X1 := X \ {XJ1 ∪ XW 1}.
Step t: Each s ∈ S \W t−1 points to the student named in its highest
priority contract in Xt−1. Each student i ∈ I \ J t−1 similarly points
to the school named in her most preferred contract in Xt−1. The null
object points to all students. There is at least one cycle. Let It and
St be the sets of students and schools involved in cycles. Each i ∈ It

is matched to some school s ∈ St via the student’s most preferred
contract, that is, the Ri-maximal element of Xi ∩Xs. For all s ∈ St

set Ct
s = Ct−1

s − 1 and Ct
s′ = Ct−1

s′ for all s′ /∈ St. Let J t = J t−1 ∪ It

and let W t = {s ∈ S : Ct
s = 0}. Define Xt := X \ {XJt ∪XW t}.

The mechanism terminates at some step τ when W τ = S or Jτ = I, whichever
comes first; either no acceptable contracts remain to unmatched students, or all
of the seats are filled at every school. The final matching is given by the selections
made at, and prior to, step τ .
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In the case in which |Xi ∩ Xs| ≤ 1 for all s ∈ S and all i ∈ I, the algorithm
becomes identical to the contract-free top trading cycles mechanism, denoted
φTTC (see Abdulkadiroğlu and Sönmez (2003) for a formal description).
As in Ergin (2002), Kesten (2006) provides an acyclicity condition under which

φTTC is stable (recall that it is always efficient and group strategyproof). Again,
I have adapted the definition to be consistent with the inclusion of contracts.

DEFINITION 14: A priority structure (⪰, q) is Kesten acyclic if there do not
exist distinct r, s ∈ S, distinct i, j, k ∈ I, and distinct (i, r, t), (j, r, u), (k, r, v),
(k, s, w), (i, s, q), (j, s, z) ∈ X such that the following are satisfied:

C) Cycle condition: (i, r, t) ≻r (j, r, u) ≻r (k, r, v), (k, s, w) ≻s (i, s, q) and
(k, s, w) ≻s (j, s, z),

S) Scarcity condition: There exists a set of contracts Yr ⊂ Xr \ {Xi ∪ Xj ∪ Xk}
such that

S.1) |Yr| = qr − 1,

S.2) For every x ∈ Yr either x ≻r (i, r, t), OR x ≻r (j, r, u) and (k, s, w) ≻s

x′ for some x′ ∈ Xs ∩ Xx1, and

S.3) |Yr ∩ Xℓ| ≤ 1 for all ℓ ∈ I.

This scarcity condition is slightly different than Ergin’s (see Definition 1). S.1)
says that there exists a set of contracts that is smaller than school r’s capacity
by one that has S.2) higher priority at school r than that held by student i, OR
a higher priority than student j’s contract and there is a contract naming the
student in contract x with a lower priority than that held by k at school s and
S.3) that no student is named in more than one of these contracts at each school.
Note that Kesten acyclicity is a stronger restriction than Ergin acyclicity.
The following proposition states that φTTC requires this stronger acyclicity

condition to guarantee the desired properties. It is stated here without proof, but
is the main result of Kesten (2006).

PROPOSITION 7: For any X ∈ Y, φTTC is stable with respect to (R,⪰, q,X)
if and only if (⪰, q) is Kesten acyclic.

It is possible to show, following the proof of Abdulkadiroğlu and Sönmez (2003)
that φ̄TTC is efficient and group strategyproof (Abdulkadiroğlu and Sönmez,
2003). However, proving these properties directly is not necessary to apply the
main result; I need merely show that φ̄TTC is an extension of φTTC (it is straigh-
forward that φTTC is contract neutral). That φ̄TTC is an extension of φTTC

can be seen as φ̄TTC is constructed in the same way as the general extenstion
constructed in the proof of Proposition 3. The result is stated formally in the
following proposition.

PROPOSITION 8: φ̄TTC is an extension of φTTC .
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Finally, I provide the following result, which is a corollary of Proposition 8
and Theorem 2, and generalizes the main result of Kesten (2006) to allow for
contracts. Since Kesten acyclicity is stronger than Ergin acyclicity, this domain
is smaller than the domain over which φ̄DA is efficient and group strategyproof.

COROLLARY 1: φ̄TTC is stable, efficient, and group strategyproof if and only
if (⪰, q) satisfies Kesten acyclicity and is student-lexicographic.

This section demonstrates how to use the results of this paper to apply previ-
ous maximal domain results to the setting with contracts. First, I construct a
mechanism which is an extension of φTTC . Kesten (2006) provides the necessary
and sufficient priority restriction of which φTTC is always stable and efficient. Be-
cause φTTC satisfies contract neutrality, I am able to apply Theorem 2 to φ̄TTC

to generalize the main result of Kesten (2006).

B2. Multi-unit Demand

This section demonstrates the applicability of the theory developed in this paper
to the context of multi-unit demand (many-to-many matching). Following Kojima
(2013), I consider students who can be matched to a number of “courses” (for
similarity of notation, I use the letter s to denote a generic course and S to
denote the set of courses). Each student i ∈ I has a quota pi ≥ 1 of courses she
can attend, with the restriction that each student and each course can only be
matched together under a single contract. For example, a contract could specify
whether a student audits a particular course, takes the course on a pass/fail
basis, or takes the course for a letter grade. Student preferences are responsive. A
course allocation problem is (I,R, p, S,⪰, q,X ). The rest of the notation generally
carries through from above.11 In the non-contractual setting, stable, efficient
and, strategyproof mechanisms are very limited under multi-unit demand; multi-
unit deferred acceptance φMDA is equivalent to a serial dictatorship under the
necessary domain restriction to ensure that the mechanism is stable, efficient, and
strategyproof (Kojima, 2013).12 The necessary restriction is that, excluding top
students who are guaranteed seats in any course, the priority structure must rank
all students in the same position across all courses. The definition, adapted from
Kojima (2013), is presented below.

DEFINITION 15: A priority structure (⪰, q) is essentially homogeneous if there
exist no distinct r, s ∈ S, distinct i, j ∈ I, and distinct (i, r, u), (j, r, v), (j, s, w),
(i, s, t) ∈ X such that:

C) Cycle condition: (i, r, u) ≻r (j, r, v) and (j, s, w) ≻s (i, s, t) and,

11The one exception is that the “no blocking” condition of stability now requires the contract x to be
preferred by student i to some y ∈ µ(i).

12Deferred acceptance extends in the natural way to the multi-unit demand case. At each step, every
student i has pi offers out to courses.
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S) Scarcity condition: There exist (possibly empty) disjoint sets of contracts
Yr, Ys ⊂ X such that

S.1) |Yr| = qr − 1 and |Ys| = qs − 1,

S.2) x ≻r (j, r, v) for every x ∈ Yr and y ≻s (i, s, t) for every y ∈ Ys, and

S.3) |Yr ∩ Xℓ|+ |Ys ∩ Xℓ| ≤ 1 for all ℓ ∈ I.

This is the second strongest acyclicity condition presented in this paper (following
Definition 6). Kojima (2013) proves that essential homogeneity of the priority
structure, efficiency of φMDA, and strategyproofness of φMDA are all equivalent.
The proof of Theorem 2 in this paper goes through with minimal modification to

include the general case of many-to-many matching. This allows for the following
result, which generalizes the main result of Kojima (2013) to include contracts.

COROLLARY 2: The following are all equivalent:

1) φ̄MDA is efficient,

2) φ̄MDA is strategyproof,

3) (⪰, q) is essentially homogeneous and student lexicographic.

Proof:
The “necessity” argument follows from Theorem 3 (since single-unit demand

is a special case of multi-unit demand), and Kojima (2013). The “sufficiency”
argument follows similar logic as in Theorem 3 by noting that φ̄MDA meets the
necessary regularity conditions.

□

B3. Substitutable priorities

The analysis thus far has assumed that school priorities are responsive, meaning
that a school’s ranking over sets of contracts is uniquely defined by its ranking over
individual contracts. For example, if school s gives highest priority to contract
x and second highest priority to contract y, then of all the sets of contracts of
size two, it gives highest priority to the set {x, y}. It is well known that allowing
for general complementarities in school priorities may lead to non-existence of
stable matchings (Kelso and Crawford (1982), Hatfield and Milgrom (2005)).
Nevertheless, stability is guaranteed if school priorities are substitutable, meaning
that if a contract is accepted by a school from a set of available contracts, it must
also be accepted when only a subset of those available contracts are presented
to the school. Indeed, substitutable priorities have a natural interpretation in
school choice settings as they allow school systems to achieve diversity goals by
favoring sets of applicants which include students from underrepresented groups
(see Abdulkadiroğlu and Sönmez, (2003), Echenique and Yenmez (2015), and
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Aygün and Turhan (2020)). In the contract setting, substitutable priorities also
allow for schools, as an example, to favor applicant sets listing a wide range
of majors to a set of applicants who all wish to study physics, even if each of
the physics students individually have higher priority than all others. This is a
powerful tool for schools, as there may be internal constraints on the number of
students that can study any particular major.
School priorities are also often acceptant in that schools favor filling as many

seats as possible. A likely objective of providing as much education to the best
students, subject to capacity constraints, demands that schools have acceptant
priorities. Indeed, acceptant priorities are necessary if a market designer wishes
to ensure efficiency, for otherwise an empty seat at a school may be denied to a
student who wishes to attend.
A natural question is whether it is possible to guarantee stability, efficiency

and group strategyproofness in the contracts setting when the priority structure
is acceptant and substitutable. This section will show that the answer is yes.
More specifically, I show that (with a slight generalization of notation) Theorem
2 extends to this more general framework, so acyclic and student-lexicographic
priorities are again necessary and sufficient to guarantee stability, efficiency and
group strategyproofness when contracts are added to the model. This allows me
to generalize the result of Kumano (2009), and show that φ̄DA is stable, efficient,
and group strategyproof under acceptant substitutable priorities if and only if the
priority structure is Ergin acyclic and student lexicographic.

Substitutable priority structures

Here, I introduce acceptant substitutable priorities and modify the setting in-
troduced in Section 2 to apply to this new context.
(⪰, q) = (⪰s, qs)s∈S is a priority structure over a feasible set of contracts X

where ⪰s, is an exogenous tuple of linear orders in which ⪰s represents school
s’s complete, transitive, and antisymmetric ranking of sets of contracts A ⊂ Xs.
Again, ≻s is the asymmetric subset of ⪰s. Note that the priority ranking does
not depend on the feasibility of a set of contracts. Nevertheless, it is important
to denote which sets of contracts are actually available to which a school can be
matched. This is done by adding a choice function Cs(·). The choice function
satisfies ∀A ⊂ Xs, Cs(A) ⊂ A, and feasibility, meaning that a) |Cs(A)| ≤ qs and
b) ∀i ∈ I and if ∃x, y ∈ Cs(A) ∩ Xi then x = y. Feasibility requires that a) the
chosen set does not exceed the size of the school, and b) that no student is chosen
for multiple contracts. The relation of the choice function to the priority order is
that Cs(A) = Y if and only if Y ⪰s Z for all feasible Z ⊂ A. Throughout, I use
the notation IA to denote the set of students who are named in a contract in A,
that is, IA = {i ∈ I : ∃x ∈ A ∩ Xi}.
Although the choice function defines the highest priority set of contracts from

an available set, it does not specify how a school chooses this highest priority
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set of contracts. More specifically, the choice function does not yet restrict the
priority structure to exclude complementarities. The following definition formally
describes the acceptant substitute property.

DEFINITION 16: A priority structure (⪰, q) is acceptant substitutable if:

A) ∀s ∈ S, ∀A ⊂ Xs, |Cs(A)| = min{|IA|, qs}, and

S) ∀s ∈ S, ∀A,A′ ⊂ Xs with A′ ⊂ A,Cs(A) ∩A′ ⊂ Cs(A
′).

This definition states that a school’s priorities must A) accept as many students as
possible, and must S) accept any contract from a set A′ when the same contract
was accepted from a superset of A′. The acceptant property is necessary for
efficiency; without it, efficiency can not be guaranteed since some seats may be
left unfilled, and it would be a Pareto improvement to allow amenable students
to fill these extra seats.

Having now defined acceptant substitutes, I address whether it is possible to
guarantee stability,13 efficiency, and group strategyproofness with contracts. One
important point to make is that the set of responsive priorities is a subset of
the set of acceptant substitutable priorities (Kumano, 2009). Therefore, some
form of acyclic and student-lexicographic priorities will again be necessary for
the existence of a stable and efficient matching. These concepts, however, need
to be redefined to account for acceptant substitutable priorities. Indeed, the
former definition of student-lexicographic priorities is not well-defined with these
more general priority structures. Before giving the new definition of student-
lexicographic priorities, I provide the following example, which illustrates the
intuition of a cycle within the priority order of a single school that conflicts
stability and efficiency.

EXAMPLE 5: There is one school with two seats, and there are three students,
i, j, k. Consider the priority order over feasible sets of contracts within X and
preferences (where xℓ, yℓ ∈ Xℓ for ℓ ∈ {i, j, k}):

School s: {xi, yj} ≻ {xi, xk} ≻ {xi, xj} ≻ {yj , xk} ≻ {xj , xk} ≻ {xi} ≻ {yj} ≻ {xk} ≻ {xj} ≻ ∅
Student i: xiPi∅
Student j: xjPjy

jP∅
Student k: xkPk∅

13The “no blocking pair” definition has to be slightly restated to account for the substitutable priority
structure. An allocation is stable if it is individually rational and there are no blocking pairs. Formally,
a matching µ ∈ MX is stable with respect to (R,⪰, q,X) if:

IR) ∀i ∈ I µ(i)Ri∅, and

NB) ∄(i, s) ∈ I × S with x ∈ Xi ∩Xs such that xPiµ(i) and x ∈ Cs(µ(s) ∪ {x}).
µ is stable if it is stable with respect to (R,⪰, q,X ).
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This priority structure is acceptant substitutable.14 Since all students prefer to
be matched and student j most prefers contract xj, the efficient matchings are
{xi, xk}, {xi, xj} and {xj , xk}. However, the unique stable matching is {xi, yj}.

■

Intuitively, the reason that there are no stable and efficient matchings in Exam-
ple 5 is that the sets of contracts involving students i and j are interrupted in the
priority order by {xi, xk}. Similarly to Example 2, the problem is that the sets
of contracts naming the same students are not back-to-back in the priority order,
and so the school can distinguish between the contracts that a student selects.
The generalized setting of acceptant substitutable priorities is similar concep-

tually to responsive preferences. Nevertheless, several definitions in Sections II
and III need to be translated into the more general setting. Again, the root of
the following definitions is the notion of indistinguishable (sets of) contracts.

DEFINITION 17: Y , Z ⊂ Xs with Y ≻s Z and IY = IZ are indistinguishable
sets of contracts to school s if Y and Z are feasible and either:

a) |IY | ≤ qs − 1, or

b) There does not exist W ⊂ Xs with IW ̸= IY such that Y ≻s W ≻s Z.

A priority structure (⪰, q) is set-lexicographic if for every school s, any two sets
of feasible contracts Y, Z ⊂ Xs with IY = IZ are indistinguishable to school s.

a) takes advantage of the acceptant property. If a school can accommodate
all interested students, then it is not important how sets of contracts of size
smaller than the capacity of the school are ranked. This corresponds to the
scarcity condition in Definition 2. Similarly, b) is analogous to the “back-to-back”
condition in Definition 2.
As in the case of responsive priorities, when all sets of contracts involving the

same students are indistinguishable to the school named in those contracts, the
priority structure is set-lexicographic.
The notion of extension follows in a straightforward way from the base model:

DEFINITION 18: A set of feasible contracts Z ⊂ Xs is irrelevant if there exists
Y ⊂ Xs with IY = IZ such that:

a) Y ≻s Z, and

b) for each i ∈ IY , y ∈ Yi ∩ Ys, and z ∈ Zi ∩ Zs, yRiz.

14It clearly satisfies the acceptant property. To see that it is also substitutable, note that for any
set of contracts A′ ̸= {xj , yj} with |A′| ≤ 2, Cs(A′) = A′ and so the definition of substitutability has
no bite. Similarly, the case in which |A′| = 4 has no bite since the only superset of A′ is A′ itself.

Therefore, it suffices to consider A = {xi, xj , yj , xk} with A′ being any of the
(4
3

)
= 4 subsets of size 3,

and A′ = {xj , yj} with A being any of the three supersets which contain A′. None of these cases violate
Definition 16.
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For a subset of students I ′ and some s ∈ S, let YI′,s be a maximal collection of
sets of contracts that are indistinguishable to s with respect to (⪰, q), that is, all
Y,Z ∈ YI′,s are indistinguishable to s and there is no YI′,s ⊂ ZI′,s such that all

Y,Z ∈ ZI′,s are indistinguishable to s. Let XYI′,s be the ⪰s-maximal set in YI′,s
and let Y YI′,s ∈ YI′,s denote the set containing the Ri-maximal contract in YI′,s

for all i ∈ I ′ if such a set exists. Let ⪰̃Yi,s

s permute the rankings of XYI′,s and
Y YI′,s , that is, for any W,U ⊂ Xs \ {XYI′,s , Y YI′,s}:

a) If Y YI′,s exists, then XYI′,s⪰̃YI′,s
s W if and only if Y YI′,s ⪰s W ,

b) If Y YI′,s exists, then Y YI′,s⪰̃YI′,s
s W if and only if XYI′,s ⪰s W ,

c) If Y YI′,s does not exist, then XYI′,s⪰̃YI′,s
s W if and only if XYI′,s ⪰s W , and

d) U⪰̃YI′,s
s W if and only if U ⪰s W .

I write ⪰̃ to denote the permuted priority ranking as defined above for all I ′, s
and all non-empty maximal sets of indistinguishable contracts YI′,s.

DEFINITION 19: Let φ be a contract-free mechanism. Take any (R,⪰, q) such
that Y YI′,s exists for all non-empty maximal sets of indistinguishable contracts
YI′,s, s ∈ S. Let QX be the collection of all irrelevant sets of contracts associ-
ated with (R, ⪰̃), and suppose φ(R, ⪰̃, q,X \ QX ) is well-defined. Then φ̄ is an
extension of φ if φ̄(R,⪰, q,X ) = φ(R, ⪰̃, q,X \QX ).

I now state Theorem 4, which is a translation of Theorem 2. It states that
set-lexicographic priorities and an (mechanism specific) acyclicity condition are
necessary and sufficient to ensure stability, efficiency and group strategyproofness
with acceptant substitutable priorities when contracts are added. The reasoning
behind this theorem follows from the logic of Theorem 2.

THEOREM 4: Let φ be a contract-free mechanism. Let φ-acyclicity be the
weakest acyclicity restriction on an acceptant substitutable priority structure (⪰
, q) such that contract-free mechanism φ is stable, efficient, and group strate-
gyproof with respect to (R,⪰, q,X) for all X ∈ Y. Let φ̄ be an extension of φ.
Then

1) φ̄ is stable and efficient if and only if (⪰, q) is set-lexicographic and satisfies
φ-acyclicity, and

2) Suppose φ is contract neutral. φ̄ is stable and group strategyproof if and
only if (⪰, q) is set-lexicographic and satisfies φ-acyclicity.

Proof: Follows the same logic as the proof of Theorem 2.

□
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Application to Deferred Acceptance

I apply the previous theorem to exactly characterize the set of acceptant sub-
stitutable priority structures over which φ̄DA is stable, efficient, and group strat-
egyproof. The punch line of this section is that Ergin acyclicity (which also needs
to be translated to accommodate substitutable priorities) and set-lexicographic
priorities are necessary and sufficient to guarantee the desired properties.
First, I give a definition of set-Ergin acyclicity. The intuition is identical to

Ergin acyclicity presented at the beginning of this paper, but accommodates the
more general priority structure.

DEFINITION 20: An acceptant substitutable priority structure (⪰, q) is set-
Ergin acyclic if there exist no distinct r, s ∈ S, distinct i, j, k ∈ I, distinct
(i, r, t), (j, r, u), (k, r, v), (k, s, w), (i, s, q) ∈ X , and (possibly empty) disjoint sets
of contracts Yr, Ys ⊂ X \ {Xi ∪ Xj ∪ Xk} such that:

C) Cycle condition:

C.1) (j, r, u) /∈ Cr (Yr ∪ {(j, r, u) , (i, r, t)}),
C.2) (k, r, v) /∈ Cr (Yr ∪ {(j, r, u) , (k, r, v)}), and
C.3) (i, s, q) /∈ Cs (Ys ∪ {(i, s, q), (k, s, w)}).

S) Scarcity condition:

S.1) |Yr| = qr − 1 and |Ys| = qs − 1, and

S.2) |Yr ∩ Xℓ|+|Ys ∩ Xℓ| ≤ 1 for all ℓ ∈ I .

The following proposition states that without contracts, set-Ergin acyclicity,
efficiency and group strategyproofness are all equivalent for φDA. It is presented
without proof, but is the main result of Kumano (2009).

PROPOSITION 9: Let (⪰, q) be acceptant substitutable. For any X ∈ Y, φDA

is stable, efficient, and group strategyproof with respect to (R,⪰, q,X) if and only
if (⪰, q) is set-Ergin acyclic.

By combining Theorem 4 and Proposition 9, I generalize the result of Kumano
(2009) to include contracts.

COROLLARY 3: Let (⪰, q) be an acceptant substitutable priority structure.
The following are all equivalent:

1) φ̄DA is efficient,

2) φ̄DA is group strategyproof,

3) (⪰, q) is set-Ergin acyclic and set-lexicographic.
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Therefore, when contracts are added to an acceptant substitutable priority
structure, it is again necessary and sufficient for the priorities to be lexicographic
and Ergin acyclic if a market designer wishes to guarantee efficiency and group
strategyproofness of student-proposing deferred acceptance.


