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1 Robustness

In our baseline model, we assumed that complexity directly determined the information pre-
cision of the consumer and we also took the payoffs to the agents as given in order to isolate
the key mechanisms driving our results. In this Appendix, we show that our results remain
robust to alternative information acquisition technologies, such as costly information acqui-
sition and rational inattention, and to endogenizing the agents’ payoffs by introducing prices
and production costs. We relegate detailed derivations to Section 2 of this Online Appendix.

1.1 Costly Information Acquisition

Our setting can be interpreted as one in which the consumer actively chooses how much
information to acquire, and where the cost of information acquisition is increasing in the
product’s complexity, χ, determined as in our baseline model. Formally, we now suppose
that after the designer proposes product (y, κ), the consumer observes the complexity of the
product, χ, and acquires a signal S ∈ {b, g} about the product’s quality with noise z, where:

z ≡ P(S = b|y = G) = P(S = g|y = B) ∈
[
0,

1

2

]
. (1)

The consumer can reduce the noise of the signal by exerting effort with associated cost C(z, χ),
which is weakly decreasing in noise, z, with the properties that C(1

2
, ·) = 0 and C(z, ·)−C(z′, ·)

is increasing for all z < z′. As a result, it is more costly for the consumer to acquire information
about products that are either naturally more complex (high η) or that have been purposefully
complexified by the designer (κ = κ̄). Finally, we assume that acquiring a perfectly informative
signal is prohibitively costly for the consumer: C(0, χ(η, κ)) > max{w(G) − w0, w0 − w(B)}
with probability one for κ ∈ {κ, κ̄}.

The consumer’s problem must now be adjusted to incorporate the decision of how much
information to acquire. It can now be expressed in two steps, backwards. As in the baseline
model, given her information set, as summarized by the posterior belief µ (s, z, χ) ≡ P(y =
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G|s, z, χ), the consumer makes an optimal acceptance decision:

W (s, z, χ) ≡ max
a∈{0,1}

a [µ (s, z, χ)w(G) + (1− µ (s, z, χ))w(B)] + (1− a)w0. (2)

Next, in anticipation of her optimal acceptance decision and given her interim belief µ (χ) ≡
P(y = G|χ), which incorporates the potential information contained in the product’s com-
plexity, χ, the consumer makes an optimal information acquisition decision:

max
z∈[0, 12 ]

∑
s∈{b,g}

P(S = s|z, χ)W (s, z, χ)− C (z, χ) , (3)

where P(S = s|z, χ) = P(S = s|y = G)µ(χ)+P(S = s|y = B) (1− µ(χ)) and where P(S = s|y)
is given by (1). We now denote the consumer’s strategy by {z(χ), a(s, χ)}s,χ.

1.1.1 The Baseline Setup

Our baseline specification is obtained with the following information acquisition technology:

C (z, χ) =

{
0 if z ≥ χ

C̄ if z < χ
(4)

where C̄ > max{w(G)−w0, w0−w(B)}. The reason is that such an information cost implies
that it is free for the consumer to reduce the noise of the signal down to χ, but it becomes
prohibitively costly to reduce it any further. As we have shown in our main analysis, this
formulation is very convenient for obtaining sharp analytical results.

1.1.2 Convex Costs

Next, suppose that the consumer’s cost of information acquisition is:

C (z, χ) = χ · h
(

1

2
− z
)
, (5)

where χ = χ (η, κ) ∈ (0,∞) and h (·) is continuously differentiable, increasing and convex,
with h′ (0) = 0 and limx→ 1

2
h′ (x) = ∞. These properties imply that the consumer’s choice

of information acquisition, z(χ), will be positive (i.e., information is always imperfect) and
increasing in complexity, χ.

If the consumer chooses to acquire information, i.e., z(χ) < 1
2
, it is because she will make

her acceptance decision contingent on the received information: she will accept the product
after observing signal g and reject it after observing signal b. Given this, the payoff from
acquiring information is:

W I(χ, z) ≡ max
z∈[0, 1

2
]
w0 +µ (χ) · (1− z) · (w(G)−w0)+(1− µ (χ)) ·z · (w(B)−w0)−C(z, χ). (6)

We can already see the main difference between this and our baseline model: the mapping
between a product’s complexity and the noise of the acquired information given by the solution
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to (6), z(χ), now also depends on the consumer’s prior belief, µ. To highlight the main
mechanisms of our paper, in the baseline model we chose a formulation for the cost function
that eliminated this dependence. As we show next, although this dependence introduces
complications, it does not change our main qualitative results.

If the consumer chooses not to acquire information, z(χ) = 1
2
, her payoff is:

WU (χ) ≡ max {µ (χ) · w(G) + (1− µ (χ)) · w(B), w0} . (7)

It follows that the consumer acquires information and makes her decision contingent on the
received information whenever W I (χ, z(χ)) > WU (χ). After some algebra, it follows that
the consumer makes her decision conditional on information when:

z(χ) <


(1−µ(χ))·ω

(1−µ(χ))·ω+µ(χ)·(1−ω)
− h( 1

2
−z(χ))

h′( 1
2
−z(χ))

if µ(χ) ≥ ω

µ(χ)·(1−ω)
(1−µ(χ))·ω+µ(χ)·(1−ω)

− h( 1
2
−z(χ))

h′( 1
2
−z(χ))

if µ(χ) < ω
(8)

In contrast to our baseline model, the consumer now takes into account the cost of infor-
mation acquisition when deciding whether to make her decision contingent on information.

This is captured by the new term
h( 1

2
−z(χ))

h′( 1
2
−z(χ))

on the right hand side of (8). As in our baseline

analysis, we impose a regularity condition on the likelihood ratio f(·|κ̄)
f(·|κ)

to ensure that there is
a unique threshold χ̄ such that the consumer makes her decision contingent on information if
and only if χ < χ̄. With this, we are able to prove the analogue of Lemma 1.

Given the consumer’s optimal strategy, we proceed to the designer’s problem. For this, we
first compute the probability of having a product with attributes (y, κ) accepted, which is the
same as in the baseline model, given by (11)-(13), except that now the noise of the signal is
given by z(χ) rather than χ. We can then study the designer’s complexification strategy. To
do this, it is straightforward to prove Proposition 2, where χ̂ is now defined by:∫ χ̂

0

z (χ) · (f (χ|κ)− f (χ|κ̄)) · dχ = 0. (9)

Finally, it is also clear that the designer’s optimal quality strategy continues to be charac-
terized by Proposition 3. We have thus shown that the optimal strategies of the consumer
and of the designer qualitatively coincide with those in the baseline model. As a final step,
we show that an equilibrium with positive trade exists, and that it shares the same broad fea-
tures as our baseline equilibrium. To do so, we impose a condition on the cost of information
acquisition, which we explain below.

Recall that now the consumer’s choice of information acquisition, z(χ), varies with prior
belief µ. This adds an additional consideration that was absent in our baseline model; namely,
that now not only the consumer’s threshold, χ̄, but also the designer’s threshold, χ̂, given by
(9), change with µ. Recall from the discussion following Proposition 4 that understanding
how the ranking between χ̄ and χ̂ depends on the prior belief µ is essential for characterizing
the designer’s complexification strategy that is consistent with an equilibrium belief µ. In the
baseline model, monotonicity of χ̄− χ̂ was ensured because χ̄ was monotonic in µ and χ̂ was
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(a) Optimistic Consumer (b) Pessimistic Consumer

Figure 1: Illustrates the probability of acceptance of a y-product as a function of the product’s complexity, χ.

independent of it. This monotonicity property does not come for free in the current setting,
but we recover it by imposing a regularity condition on the cost function so that χ̄ is more
sensitive to changes in µ than χ̂. With this, we establish the following result.

Proposition 1.1 An equilibrium with positive trade exists. In it, the designer produces a
G-product with probability µ∗ ∈ (0, 1) and there exist thresholds 0 < µ̃1 < µ̃2 < µ̃3 < µ̃4 < 1
such that:

1. If µ∗ ∈ (0, µ̃1], all products are simplified, σG = σB = 0.

2. If µ∗ ∈ (µ̃1, µ̃2], G-products are simplified, σG = 0, and B-products complexified with
probability σB ∈ (0, 1).

3. If µ∗ ∈ (µ̃2, µ̃3], G-products are simplified, σG = 0, and B-products complexified, σB = 1.

4. If µ∗ ∈ (µ̃3, µ̃4), G-products are complexified with probability σG ∈ {0, σ̃, 1} for some
σ̃ ∈ (0, 1), and B-products complexified, σB = 1.

5. If µ∗ ∈ [µ̃4, 1), all products are complexified, σG = σB = 1.

This result states that the structure of the equilibrium of the model with convex costs of
information is effectively the same as that in our baseline model, as summarized by Proposi-
tions 4 and 5. The main difference is that we can no longer ensure uniqueness of equilibrium,
which was useful for obtaining sharp comparative statics results (Section III).

1.2 Rational Inattention

We next consider an even more general information acquisition problem, by supposing that the
consumer can choose how much uncertainty about the product quality to reduce, subject to
an entropy-reduction cost, where entropy measures the consumer’s uncertainty (Sims, 2003).
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Thus, a product is more complex if it has a higher entropy-reduction cost. Although this
approach allows for a more flexible information acquisition technology, it has the drawback
that we can no longer obtain as sharp of an equilibrium characterization as in our baseline
specification or as in the previous section. Nevertheless, we argue next that the model’s main
mechanisms remain robust to this alternative specification.

Since the consumer’s action is binary, i.e., accept or reject, it is without loss of generality to
focus on binary signals S ∈ {b, g} (Woodford, 2009; Yang, 2015), where the consumer accepts
the product if and only if she receives a g signal. Thus, the main difference from the analysis
in Appendix 1.1 is that now the consumer’s signal need not be symmetric, as the consumer
may allocate “precision” optimally between the g and the b signals, trading off the costs of
rejecting a G-product (type I error) with the costs of accepting a B-product (type II error).

Equipped with the optimal information structure (see equations (31) and (32)), we compute
the probability of acceptance of a y-product, as it depends on the product’s complexity, χ.
These probabilities are depicted in Figure 1, which we can see closely resemble those in our
baseline model (see Figure 3). When the product’s complexity is low, the consumer extracts
an informative signal and makes her decision contingent on its realization. Otherwise, the
consumer accepts the product with probability one if she is optimistic, and she rejects it with
probability one if she is pessimistic.

Although a full analytical characterization of the equilibrium set is difficult to obtain, we
check that it resembles closely that of our baseline model. Figure 2(a) depicts the complexifi-
cation strategy {σy} of the designer that is consistent with an equilibrium prior belief µ. And,
Figure 2(b) depicts the designer’s net payoff from producing a G- versus a B- product as it
depends on µ.1 Thus, and in line with the results in Proposition 1.1, the right panel deter-
mines the expected product quality, µ = ψ, whereas the left panel determines the equilibrium
complexification of a y-product, given that the consumer’s prior belief is µ = ψ.

1.3 Prices and Production Costs

For some applications, it is natural to assume that a designer not only proposes a product to
the consumer but that he also sets a price that is observable to the consumer. To analyze the
role of such transfers in our environment, we modify the agents’ payoff as follows. If a product
is accepted, the designer’s payoff is given by the price he charges the consumer minus the cost
of production, p − c(y).2 In turn, the consumer’s payoff from accepting a y-product is given
by her valuation minus the price she pays, w̃(y)− p. As before, the consumer’s outside option
is given by w0. The following assumption replaces Assumption 1.

Assumption 1.1 The payoffs satisfy the following properties:

1. w̃(G)− c(G) > w0 > w̃(B)− c(B), with w0 ≥ 0.

2. c(G) > c(B) ≥ 0.

1As in Figure 5, the kinks in Figure 2(b) arise due to a switch from separation on κ (i.e., σG = 0 and
σB = 1) to pooling on κ (i.e., σG = σB = 1).

2We assume that the cost of production is incurred upon product acceptance in order to stay close to the
payoff structure of our baseline model.

5



(a) Equilibrium complexification (b) Equilibrium quality determination

Figure 2: The left panel illustrates how the complexification strategy of the designer who produces a y-
product varies with equilibrium belief µ. The right panel illustrates the designer’s net payoff from choosing
the G-product, given belief µ. Note that equilibrium quality ψ is set so that the net payoff is equal to zero.

The first assumption states that G-products are efficient to produce, whereas B-products are
not. The second assumption states that G-products are costlier to produce than B-products.

As prices are set by the designer, the consumer makes inferences not only from the product’s
complexity, χ, but also from its price, p; so the consumer’s posterior belief is now denoted
by µ(s, χ, p). It is easy to see that the consumer will accept the product if and only if her
posterior belief is greater than a price-adjusted relative outside option:

µ(s, χ, p) ≥ w̃0 − w̃(B) + p

w̃(G)− w̃(B)
. (10)

Given the consumer’s acceptance strategy, the designer chooses {y, κ, p} to maximize his
expected payoff:

P(a = 1|y, κ, p) · (p− c(y)). (11)

For simplicity, we focus on equilibria in which the designer has a pure strategy over the price.
The following proposition summarizes the main results of this section.

Proposition 1.2 In any positive trade equilibrium, the price set by the designer is indepen-
dent of the product’s quality. Moreover, any price p∗ ∈ (c(G), w̃(G) − w0) is consistent with
equilibrium. The expected product quality and complexity are determined as in the baseline
model with payoffs given by w(y) ≡ w̃(y)− p∗ and v(y) ≡ p∗ − c(y).

The result that separation through prices is not possible is intuitive. As a B-product is
cheaper to produce, the designer of such a product is willing to set any price the G-product
designer is willing to set. As a result, the B-product designer always mimics the pricing
strategy of a G-product designer in order to avoid being identified. Due to the freedom in
specifying off equilibrium beliefs, multiple prices can be supported as an equilibrium. The
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bounds on possible prices are due to the fact that in any positive trade equilibrium a G-
product designer will not post a price below his cost of production, or a price high enough for
the product to be rejected with probability one.

2 Derivations and Proofs

2.0.1 Convex Costs

Here, we provide derivations for Appendix 1.1. Let us begin with the consumer’s optimal
strategy. Recall that upon observing χ, and updating her belief to µ (χ), the consumer decides
whether to acquire information or not. Given the cost that the consumer must pay whenever
information is acquired, it follows immediately that the consumer will acquire information
only if her acceptance decision is made contingent on this information. If the consumer were
to acquire information, the optimal noise would be:

z (χ) = arg max
z∈[0, 12 ]

(1− z)·µ (χ)·(w(G)− w0)+z·(1− µ (χ))·(w(B)− w0)+w0−χ·h
(

1

2
− z
)
,

(12)
or equivalently:

z (χ) =
1

2
− h′−1

(
µ (χ) · (w(G)− w0)− (1− µ (χ)) · (w(B)− w0)

χ

)
, (13)

where h′−1 (x) is increasing in x. As the consumer accepts a Good product with probability
1−z (χ) and a Bad product with probability z (χ), her expected payoff of acquiring information
is:

W I (χ) = w0+(1− z (χ))·µ (χ)·(w(G)− w0)+z (χ)·(1− µ (χ))·(w(B)− w0)−χ·h
(

1

2
− z (χ)

)
.

(14)
Instead, if the consumer does not acquire information, she makes her optimal acceptance

decision based on her interim belief alone, implying an expected payoff of:

WU (χ) = max {µ (χ) · w(G) + (1− µ (χ)) · w(B), w0} . (15)

Thus, after observing the product’s complexity, the consumer acquires information ifW I (χ) >
WU (χ). There are two cases to consider, depending on the consumer’s outside option of not
acquiring information, i.e. to accept or to reject the product with complexity χ:

If µ (χ) ≥ ω, the condition for acquiring information reduces to:

z (χ) +
χ · h

(
1
2
− z (χ)

)
(1− µ (χ)) · ω + µ (χ) · (1− ω)

<
(1− µ (χ)) · ω

(1− µ (χ)) · ω + µ (χ) · (1− ω)
. (16)

It is straightforward to show that if the likelihood ratio f(·|κ̄)
f(·|κ)

is not too steep, then (i) z(χ)

defined by (13) is monotonically increasing in χ, i.e., the consumer’s information gets noisier
as the product gets more complex, and (ii) there is a unique threshold value for complexity,
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denoted by χ̄o, such that inequality (16) holds if and only if χ < χ̄o. We assume this is the
case from now on, which is analogous to assuming Condition II.1 holds in our baseline model.

If instead µ (χ) < ω, then the condition for acquiring information reduces to:

z (χ) +
χ · h

(
1
2
− z (χ)

)
[(1− µ (χ)) · ω + µ (χ) · (1− ω)]

<
µ (χ) · (1− ω)

[(1− µ (χ)) · ω + µ (χ) · (1− ω)]
. (17)

Here, again we can show that there is a unique threshold level of complexity, denoted by χ̄p,
such that inequality (17) holds if and only if χ < χ̄p.3

Moreover, as the consumer strictly prefers to acquire information when µ(χ) = ω (as h′(0) =
0), it must be that for all χ ≥ χ̄ for χ̄ ∈ {χ̄p, χ̄o}, µ(χ) 6= ω.

Given the above observations, the following lemma then follows immediately.

Lemma 2.1 When the consumer is optimistic, i.e., limχ→∞ µ (χ) ≥ ω, her acceptance strat-
egy is:

a(s, χ) =

{
I{S=g} if χ ≤ χ̄

1 if χ > χ̄
; (18)

instead, when the consumer is pessimistic, i.e., limχ→∞ µ (χ) < ω, her acceptance strategy is:

a(s, χ) =

{
I{S=g} if χ ≤ χ̄

0 if χ > χ̄
; (19)

where χ̄ =


χ̄o if limχ→∞ µ (χ) > ω

∞ if limχ→∞ µ (χ) = ω

χ̄p if limχ→∞ µ (χ) < ω

.4

Note that Lemma 2.1 is the counterpart of Lemma 1 in our baseline model. It shows that
the consumer’s optimal acceptance decision depends crucially on whether she is optimistic
or pessimistic, i.e., what she does when the signal that she would receive, conditional on
acquiring information, becomes uninformative, which occurs as χ→∞.

Using Lemma 2.1, we can compute the probability that a product (y, κ) proposed by the
designer is accepted by the consumer:

P (a = 1|G, κ) =

∫ χ̄

0

(1− z (χ)) · f (χ|κ) dχ+ I{limχ→∞ µ(χ)≥ω} · (1− F (χ̄|κ̄)) , (20)

and

P (a = 1|B, κ) =

∫ χ̄

0

z (χ) · f (χ|κ) dχ+ I{limχ→∞ µ(χ)≥ω} · (1− F (χ̄|κ̄)) . (21)

Since z(χ) is increasing in χ, by the same reasoning as in the proof of Proposition 2, we
obtain that the determinant of the designer’s optimal choice of κ is whether the consumer is
optimistic or pessimistic, and the threshold χ̄.

3Since in equilibrium µ(χ) is weakly decreasing in χ, we do not need to impose additional conditions on

the likelihood ratio f(·|κ̄)
f(·|κ) to obtain this result.

4When limχ→∞ µ (χ) = ω, the consumer acquires information for any χ ∈ (0,∞), so we set χ̄ =∞.
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Lemma 2.2 Fix µ ∈ (0, 1), and let χ̂ > 0 denote the unique solution to
∫ χ̂

0
z (χ) ·f (χ|κ) dχ =∫ χ̂

0
z (χ) · f (χ|κ̄) dχ. Then, when the consumer is optimistic,

σB = 1, and σG


= 1 χ̄ < χ̂

∈ [0, 1] χ̄ = χ̂

= 0 χ̄ > χ̂

, (22)

whereas, when the consumer is pessimistic,

σB


= 0 χ̄ < χ̂

∈ [0, 1] χ̄ = χ̂

= 1 χ̄ > χ̂

, and σG = 0. (23)

This result is essentially the same as Proposition 2, except that now the threshold χ̂, which
controls the designer’s preference between complexification and simplification, also depends
on the prior belief µ, as the latter affects the optimal information choice z(χ); we will come
back to this dependence shortly. Finally, it should be clear that the designer’s optimal choice
of product quality is still given by Proposition 3.

We have thus shown that both the consumer’s and the designer’s optimal strategies remain
qualitatively unchanged from our baseline model; we are therefore left to solve for the equi-
librium. We again proceed in two steps. We first take the consumer’s prior belief µ as given
and find the designer’s equilibrium complexification strategy by requiring that the consumer’s
interim belief, µ(χ), be consistent with the designer’s strategy and Bayes’ rule.

Lemma 2.3 Suppose that in equilibrium the consumer’s prior belief is µ ∈ (0, 1), then there
exist thresholds 0 < µ̃1 < µ̃2 < µ̃3 < µ̃4 < 1 such that:

1. If µ ∈ (0, µ̃1], all products are simplified, σG = σB = 0.

2. If µ ∈ (µ̃1, µ̃2], G-products are simplified, σG = 0, whereas B-products are complexified
with probability σB ∈ (0, 1).

3. If µ ∈ (µ̃2, µ̃3], G-products are simplified, σG = 0, whereas B-products are complexified,
σB = 1.

4. If µ ∈ (µ̃3, µ̃4), G-products are complexified with probability σG ∈ {0, σ̃, 1} for some
σ̃ ∈ (0, 1), whereas B-products are complexified, σB = 1.

5. If µ ∈ [µ̃4, 1), all products are complexified, σG = σB = 1.

Proof. Consider first the candidate equilibrium with σG = σB = 0. In this case, the consumer
does not update upon observing complexity χ, i.e., µ (χ) = µ for all χ. For this to be an
equilibrium, it must be that the consumer is pessimistic and χ̄p (µ) ≤ χ̂ (µ), where χ̄p (µ) is
given by the solution to:

z (χ̄p) =
µ · (1− ω)− χ̄p · h

(
1
2
− z (χ̄p)

)
(1− µ) · ω + µ · (1− ω)

, (24)
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and where z (·) is given by (13). Thus, this equilibrium exists if and only if µ belongs to the
set MP,κ ≡ {µ ∈ (0, 1) : χ̄p (µ) ≤ χ̂ (µ)}.

Next, consider the candidate equilibrium with σG = σB = 1. In this case, also, the consumer
does not update upon observing complexity χ, i.e., µ (χ) = µ for all χ. For this to be an
equilibrium, it must be that the consumer is optimistic and that χ̄o (µ) ≤ χ̂ (µ), where χ̄o (µ)
is given by the solution to:

z (χ̄o) =
(1− µ) · ω − χ̄o · h

(
1
2
− z (χ̄o)

)
(1− µ) · ω + µ · (1− ω)

, (25)

and where z (·) is given by (13). Thus, this equilibrium exists if and only if µ belongs to the
set MP,κ̄ ≡ {µ ∈ (0, 1) : χ̄o (µ) ≤ χ̂ (µ)}.

Next, consider the candidate equilibrium with σG = 0 and σB = 1. In this case, the con-
sumer does update upon observing complexity χ, i.e., µ (χ) = µ

µ+(1−µ)
f(χ|κ̄)
f(χ|κ)

for all χ. There are

two possibilities here, depending on whether the consumer is pessimistic or optimistic, which
is equivalent to asking whether µ is greater than or smaller than µ̃ ≡ limχ→∞

ω

ω+(1−µ)
f(χ|κ)

f(χ|κ̄)

.

If the consumer is pessimistic, i.e. µ < µ̃, then for this to be an equilibrium, it must be
that χ̄p (µ) ≥ χ̂ (µ), where χ̄p (µ) is given by the solution to:

z (χ̄p) =
µ(χ̄p) · (1− ω)− χ̄p · h

(
1
2
− z (χ̄p)

)
(1− µ(χ̄p)) · ω + µ(χ̄p) · (1− ω)

, (26)

and where z (·) is given by (13). Here, such an equilibrium exists if and only if µ belong to
the set MS,a ≡ {µ ∈ (0, µ̃) : χ̄p (µ) ≥ χ̂ (µ)}.

Instead, if the consumer is optimistic, i.e. µ ≥ µ̃, then for this to be an equilibrium, it must
be that χ̄o (µ) ≥ χ̂ (µ), where χ̄o (µ) is given by the solution to:

z (χ̄o) =
(1− µ(χ̄o)) · ω − χ̄o · h

(
1
2
− z (χ̄o)

)
(1− µ(χ̄o)) · ω + µ(χ̄o) · (1− ω)

, (27)

and where z (·) is given by (13). Here, such an equilibrium exists if and only if µ belongs to
the set MS,b ≡ {µ ∈ (µ̃, 1) : χ̄o (µ) ≥ χ̂ (µ)}. We therefore conclude that an equilibrium with
σG = 0 and σB = 1 exists if and only if µ ∈MS ≡MS,a ∪MS,b.

Next, suppose that (i) χ̄p(µ)− χ̂(µ) is increasing in µ in an equilibrium with σG = σB = 0,
or with σG = 0, σB = 1 when µ < µ̃; and (ii) χ̄o(µ)− χ̂(µ) is decreasing in µ in an equilibrium
with σG = σB = 1, or with σG = 0, σB = 1 when µ ≥ µ̃. These two conditions will
hold, for example, if the function h(·) is convex enough so that z(·) is not too sensitive
to changes in µ. We will assume this in what follows, in which case the three equilibrium
regions can be represented as: MP,κ = (0, µ̃1], MS = (µ̃2, µ̃4), and MP,κ̄ = (µ̃3, 1) for some
0 < µ̃1 < µ̃2 < µ̃3 < µ̃4 < 1; moreover, following similar arguments as in the proof of
Proposition 4, we can construct the mixed strategy equilibria for µ in the intervals (µ̃1, µ̃2]
and (µ̃3, µ̃4).

Finally, we are left to pin down the equilibrium prior belief µ∗. As before, in any positive
trade equilibrium, the designer must be indifferent between producing either of the two prod-
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ucts. With the results from Lemma 2.2 it easy to show that the correspondence Γ(µ) (defined
just as in proof of Proposition 5), which consists of the designer’s net payoffs γ from produc-
ing G- vs. B-products, is well defined and both upper and lower hemicontinuous. Then, by
continuity, there must exist µ∗ ∈ (0, 1) such that the designer’s net payoff from producing G-
vs. B-product is equal to zero (i.e., γ(µ∗, {σy}µ∗) = 0).

2.0.2 Rational Inattention

We now provide derivations for Appendix 1.2. We adjust our baseline model to allow the
consumer to optimally reduce her uncertainty about the product’s quality, subject to an
entropy-reduction cost, as in the literature on rational inattention (Sims, 2003). In this
setting, the uncertainty faced by the consumer with belief µ̃ = P (y = G) is measured by
the entropy function:

H (µ̃) = − (µ̃ · log (µ̃) + (1− µ̃) · log (1− µ̃)) , (28)

which reaches a minimum of zero at µ̃ ∈ {0, 1} and a maximum of −log
(

1
2

)
at µ̃ = 1

2
.

As before, we let S denote the signal observed by the consumer and s denote its realization.
The signal has a distribution conditional on the product’s quality, π (s|y) ≡ P (S = s|y), which
determines the consumer’s posterior belief:

µ̃ (s) ≡ P (y = G|s) =
π (s|G) · µ̃

π (s|G) · µ̃+ π (s|B) · (1− µ̃)
. (29)

The entropy associated with the posterior belief is H(µ̃ (s)).
We measure the amount of information that the consumer obtains from a particular infor-

mation structure π as the expected reduction in entropy:

I (π) = H (µ̃)−
∫
s

H (µ̃ (s)) · π (s) · ds, (30)

and we assume that the consumer faces a cost χ · I(π) of entropy-reduction, where χ ∈ (0,∞)
depends on the two components η and κ, with a conditional pdf f(χ|κ) that has full support
and satisfies MLRP. Thus, when complexity is minimal, χ → 0, it is essentially costless for
the consumer to find out the product’s quality; instead, when complexity is maximal, χ→∞,
extracting any information about the product’s quality becomes prohibitively costly.

Since the consumer’s action is binary, i.e., she chooses to accept or reject the product, it is
without loss of generality to restrict attention to information structures that consist of binary
signals S ∈ {b, g} such that the consumer accepts the product if and only if S = g (Woodford,
2009; Yang, 2015). Let πy denote the probability that the consumer accepts the product,
conditional on the designer producing a y-product. Let µ(χ) be the consumer’s interim belief
after observing the product’s complexity χ. For a given χ, the consumer’s problem is then
reduced to choosing πG and πB in order to maximize her expected payoff:

µ(χ) · πG · (w (G)− w0) + (1− µ(χ)) · πB · (w (B)− w0)− χ · I (π) (31)
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where

I (π) = H (µ(χ) · πG + (1− µ(χ)) · πB)− µ(χ) ·H (πG)− (1− µ(χ)) ·H (πB) . (32)

Figure 1 illustrates the solution to this problem for a given prior belief µ ∈ (0, 1), for the
case where the consumer’s interim belief satisfies µ(χ) = µ, i.e., when the equilibrium features
pooling on complexification. Under a condition on the likelihood ratio f(·|κ̄)/f(·|κ) (akin to
Condition II.1), there is a unique threshold value of complexity, χ̄, such that the consumer
extracts an informative signal and makes her decision contingent on its realization if and only
if χ < χ̄. Otherwise, when complexity is high, the consumer makes her decision solely based
on her interim belief. Finally, observe that when complexity is high enough, then the consumer
either accepts the product with probability one or she rejects it with probability one. As in
our baseline model, which of the two scenarios arises depends on whether the consumer is
optimistic or pessimistic; that is, what she would do in the absence of an informative signal.5

Naturally, an equilibrium requires that the consumer’s prior belief µ and her interim belief
µ(χ) be consistent with the designer’s strategy {m,σG, σB} and Bayes’ rule. Although a full
analytical characterization of the equilibrium set is now difficult to obtain, we are able to
check numerically that the equilibrium set of the model with optimal information extraction
resembles closely that of our baseline model. As we discussed in the text, Figure 2 is the
analogue of the Figures 4 and 5. And, an equilibrium is found by requiring that the belief
µ equals ψ, so that the designer is indifferent to producing a G- or a B-product, and then
reading off the equilibrium complexification strategy of the designer from the left panel, given
that the consumer’s prior belief is µ = ψ.

2.0.3 Prices and Production Costs

Proof of Proposition 1.2. Consider a positive-trade equilibrium in which the y-product
has price py, with pG 6= pB. As the designer of a bad product would only offer a price
pB ≥ c(B), then the consumer would reject all products with price pB with probability one, as
w0 > w̃(B)− pB. By the same argument pG ≥ c(G) > c(B), but then the B-product designer
would expect to make profits by deviating to offering price pG, as the product has a positive
probability of being accepted by the consumer. Thus, in any equilibrium with positive trade,
it must be that pB = pG. As a result, prices do not convey information about product quality.

Consider now a candidate equilibrium in which p∗ is the price set by the designer, which
can be supported for example by an off-equilibrium belief that the designer has produced a
B-product if he sets any other price. For any price p∗ ∈ (c(G), w̃(G) − w0), define payoffs
w(y) ≡ w̃(y)− p∗ and v(y) ≡ p∗ − c(y), and note that they satisfy Assumption 1. That such
an equilibrium exists follows by Proposition 5, and its characterization is the same as that of
our baseline model.

We also note that p∗ ≤ c(G) cannot arise in a positive-trade equilibrium, since then only B-
products would be produced (if any) and rejected with probability one. Similarly, p∗ > w̃(G)−
w0 would induce rejection with probability one by the consumer, as the product’s payoff is now
below the consumer’s outside option even if the product is good. An equilibrium with p∗ =

5As with convex costs of information acquisition in Appendix 1.1, the consumer is optimistic if
limχ→∞ µ(χ) ≥ ω, and she is pessimistic otherwise.
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w̃(G)−w0 may exist, but it would require that the (indifferent) consumer accepts the product
randomly, and in a manner that is correlated with the signal she acquires; moreover, such
an equilibrium would unravel if we were to introduce an arbitrarily small cost of information
acquisition in the region where information is costless in our baseline model.
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