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Online Appendix. Appendix B (Not for Publication)

1 Extension to Different Utility Functions

We have assumed that experts share the same utility function in order to

focus on the role of bargaining in mediating differences in beliefs. This

is appropriate in collective decision problems where experts agree on the

objectives but have different opinions on how to achieve them.

A bargaining framework can still be used when experts have different

utilities as well as different beliefs. The bargaining solution t? continues to

be well-defined but the analysis becomes less transparent: since utilities now

depend on i, the log Nash product is a function of n×K terms of the form

δi(t)(θk), so we cannot characterize t? in terms of a planner’s belief. While we

suspect that our results on commitment, inadmissibility, and under-reaction

to information would continue to hold when experts have different utilities,

new proofs are needed since the present proofs rely on the characterization

of the planner’s belief derived in Proposition 1 in a fundamental way.

In summary, the broader point of this paper is the use of Nash bargaining

to study collective decisions under disagreement. This requires neither a

common utility nor concordant beliefs. The narrower path we pursue in this

paper, on the other hand, makes it possible to obtain sharper results about

bargaining under disagreement.

2 Further Details for the Hard Choices Example

2.1 Efficiency and Speculative Betting

First we show that Eπ?u(t?) > 0 in Case 2 stated in the body of the paper:

π?
{
s : `(s) 6∈

(
α

β
,
β

α

)}
> 0.

Define S+ = {s : `(s) > β/α} and S− = {s : `(s) < α
β }. Appealing to

symmetry, each of these events has positive probability.

For any s ∈ S+, t? selects a1 and `(s) = π?(θ1 | s)
π?(θ2 | s) >

β
α . Therefore:

Eπ?

(
u(t?)

∣∣ s) = π?(θ1 | s) α− π?(θ2 | s) β > 0.
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Using a similar argument, we also have Eπ?

(
u(t?)

∣∣ s) > 0 for any s such

that `(s) < α
β . From this, it follows that Eπ?

(
u(t?)

∣∣ `(s) 6∈ (αβ , βα)) > 0.

Since the payoff at the status quo is zero, the conclusion follows.

To show that t? dominates the status quo, we first note that the sym-

metry of the problem implies that the Nash planner puts equal weight on

the two states, so

Eπ?u(t?) =
1

2
u(t?)(θ1) +

1

2
u(t?)(θ2) > 0.

Appealing to symmetry again, we have u(t?)(θ1) = u(t?)(θ2) > 0, establish-

ing the claim that t? dominates a◦.

To justify the claim in the body of the paper that the two experts improve

their welfare through speculative betting, we again appeal to symmetry to

conclude that the Nash planner puts equal weight on the two experts. Thus:

Eπ?u(t?) =
1

2
Ep1u(t?) +

1

2
Ep2u(t?) > 0,

and Ep1u(t?) = Ep2u(t?) > 0. Expert 1’s payoff can be expressed as:

Ep1u(t?) = p1(S+)α− p1 (S−)β,

from which it follows that:

p1 (S+)

p1 (S−)
>
β

α
> 1 =⇒ p1

(
S+
)
> p1

(
S−
)
.

Using a similar calculation, we have

p2 (S+)

p2 (S−)
<
α

β
< 1 =⇒ p2

(
S+
)
< p2

(
S−
)
.

Thus, the ex ante bargaining solution sets up a bet where Expert 1 bets on

S+ and against S−, while Expert 2 bets on S− and against S+. Disagree-

ment guarantees that they both believe they will achieve higher expected

utility relative to the status quo.

2.2 Asymptotic Behavior

Here we explore how the solution to the Hard Choices example changes

when the number of observations increases. Recall that data takes the form
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of observations s = (o1, . . . , om) where m represents sample size. Index

the experiment by m so that Sm = {o1, o2}m and qm(· | θ) the i.i.d. sam-

pling distribution as explained in the body of the paper. We show that, as

the number of observations m → ∞, the ex ante expected utility for both

experts approaches the maximum payoff u(tmax), corresponding to perfect

information.

Fix m and let k(s) be the number of times o1 is drawn in the sample s.

Consider the treatment rule tm(k(s)) that depends on s only through k(s).

The expected utility of expert i under this treatment is:

Epiu(t) = pi(θ1)
∑
s∈Sm

σk(s)(1− σ)(m−k(s))u(t(s))

+ pi(θ2)
∑
s∈Sm

(1− σ)k(s)σ(m−k(s))u(t(s)).

Specifically, for tm(k), we have,

Epiu(tm) = pi(θ1)
m∑
k=0

(
m

k

)
σk(1− σ)(m−k)u(tm(k))

+ pi(θ2)
m∑
k=0

(
m

k

)
(1− σ)kσ(m−k)u(tm(k)).

Let [m/2] be equal to m/2 if m is even, and equal to (m− 1)/2 if m is odd.

Consider next the particular treatment rule:

tm(k) =

{
a1 if k ≥ [m/2]

a2 if k < [m/2];

Then expected utility can be rewritten as:

Epiu(tm) =pi(θ1)
[
αPr

(
k ≥ 1 +

[m
2

] ∣∣∣ θ1

)
− β Pr

(
k ≤

[m
2

] ∣∣∣ θ1

)]
+ pi(θ2)

[
αPr

(
k ≤

[m
2

] ∣∣∣ θ2

)
− β Pr

(
k ≥ 1 +

[m
2

] ∣∣∣ θ2

)]
.

Now consider a sequence of even values of m, that is, m = 2r, r increasing

without bound. Since q > 1/2, by the Law of Large Numbers, when m →
+∞ we have,

Pr
[
k ≤ m

2

∣∣∣ θ1

]
= Pr

[
k

m
≤ 1

2

∣∣∣ θ1

]
→ 0,
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Pr
[
k ≥ 1 +

m

2

∣∣∣ θ1

]
= Pr

[
k

m
≥ 1

2
+

1

m

∣∣∣ θ1

]
→ 1.

We find similar results for m odd and when the conditioning state is θ2.

We then easily find that for any belief p, the expected payoffs converge,

that is, Epu(tm) → α. We conclude that the Nash planner cannot achieve

a smaller expected utility with the optimal ex ante solution, as m grows

without bound. The expert’s payoffs must be approaching α too.

3 Pareto Optimality and Admissibility

In assessing the optimality of a treatment rule, it is natural to consider the

Pareto criterion:

Definition 2. Given a profile of beliefs {p1, . . . , pn}, a treatment rule t

Pareto dominates another treatment rule t′ if Epiu(t) ≥ Epiu(t′) for each

expert i, with at least one strict inequality.

Treatment rule t is Pareto optimal relative to a feasible set T if it is not

Pareto dominated by any other treatment rule t′ ∈ T .

A number of authors questioned the appropriateness of the Pareto cri-

terion when agents have different beliefs. See, for example, Mongin (2016),

Brunnermeier, Simsek and Xiong (2012), and Gilboa, Samuelson and Schmei-

dler (2014). This suggests admissibility as an attractive alternative:

Definition 3. A treatment rule t′ dominates another treatment rule t if

u(t′)(θ) ≥ u(t)(θ) for each state θ, with at least one strict inequality.

Treatment rule t is admissible relative to a feasible set T if it is not

dominated by any other treatment rule t′ ∈ T .

Admissibility is an appealing criterion, commonly used in statistical de-

cision theory and in the treatment choice literature (see, for example, Berger

(1985).1 We first observe the following:

Fact: A treatment rule t that is Pareto optimal relative to a

feasible set T is admissible.2

1The definition of admissibility in our bargaining context coincides with that in the
statistics literature under the assumptions of common values and when the experts share
the likelihood function q(s|θ).

2It is easy to see that the converse is not true in general.
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A key advantage of admissibility is that it is belief-free—in contrast to Pareto

optimality which depends on the experts’ profile of beliefs. To say that

a treatment rule is inadmissible is an unambiguous judgement about its

inefficiency since that rule can be improved on in every state and, therefore,

in expectation for any belief.

We conclude by recalling a well-known result, the Complete Class The-

orem (see, e.g., Ferguson (1967)), which we use extensively in this paper,

and which characterizes admissible rules as those that are Bayesian:

Definition 4. A treatment rule t is Bayesian if it maximizes expected

utility with respect to some prior p on Ω.

Proposition 5. A Bayesian treatment rule with respect to a full-support

prior p is admissible. Conversely, an admissible treatment rule must be

Bayesian.

4 Proof of Lemma A.1

Proof:

ρ′(∆) =

∑
i
−p2i

(pi∆+1)2∑
i

1−pi
pi∆+1

+

∑
i

pi
pi∆+1(∑

i
1−pi
pi∆+1

)2

(∑
i

(1− pi)pi
(pi∆ + 1)2

)

= B ×A

where

B =

(∑
i

1− pi
pi∆ + 1

)−2

> 0 (1)

and

A =

[(∑
i

pi
pi∆ + 1

)(∑
i

(1− pi)pi
(pi∆ + 1)2

)
−

(∑
i

p2
i

(pi∆ + 1)2

)(∑
i

1− pi
pi∆ + 1

)]
.

(2)
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We show that A < 0:

A =
∑
i

∑
j

pipj(1− pj)
(pi∆ + 1)(pj∆ + 1)2

−
∑
i

∑
j

p2
i (1− pj)

(pi∆ + 1)2(pj∆ + 1)

=
∑
i

∑
j

pipj − pip2
j

(pi∆ + 1)(pj∆ + 1)2
−
∑
j

∑
i

p2
j (1− pi)

(pj∆ + 1)2(pi∆ + 1)

=
∑
i

∑
j

pipj − p2
j

(pi∆ + 1)(pj∆ + 1)2

=
∑
i

∑
j

j 6=i

pj(pi − pj)(pi∆ + 1)

(pi∆ + 1)2(pj∆ + 1)2

=
∑
i

∑
j

j<i

pj(pi − pj)(pi∆ + 1) + pi(pj − pi)(pj∆ + 1)

(pi∆ + 1)2(pj∆ + 1)2
(3)

= −
∑
i

∑
j

j<i

(pi − pj)2

(pi∆ + 1)2(pj∆ + 1)2
,

where the last equality follows from cancellation of the numerator in (3) :

pj(pi − pj)(pi∆ + 1) + pi(pj − pi)(pj∆ + 1) = pjp
2
i∆ + pjpi − p2

jpi∆

− p2
j + pip

2
j∆ + pipj

− p2
i pj∆− p2

i

= −(pi − pj)2.

5 Proof of Lemma A.4

Proof: From Lemma A.1, the function ρ is strictly decreasing in ∆:

ρ′(∆) = BA < 0,

where the terms A,B are defined in (2) and (1). Next, using (11) in the

main text, we write ρ as:

ρ(∆) = BC,
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where

C =

(∑
i

pi
pi∆ + 1

) (∑
i

1− pi
pi∆ + 1

)
.

Thus, the derivative of ζ with respect to ∆ at a fixed (δ1, δ2) may be

written as:

ζ ′ =
δ2

δ1
[ρ′(∆)(1 + ∆) + ρ(∆)]

=
δ2

δ1
B[A(1 + ∆) + C].

Since both B and δ2/δ1 are positive, the sign of ζ ′ is the same as that of

A(1 + ∆) + C.

Recall from Lemma A.1 that

A = −
∑
i

∑
j

j<i

(pi − pj)2

(pi∆ + 1)2(pj∆ + 1)2
.

Furthermore,

C =
∑
i

∑
j

pi(1− pj)
(pi∆ + 1)(pj∆ + 1)

=
∑
i

∑
j

j 6=i

(pi − pipj)(pi∆ + 1)(pj∆ + 1)

(pi∆ + 1)2(pj∆ + 1)2
+
∑
k

pk(1− pk)
(pk∆ + 1)2

=
∑
i

∑
j

j<i

(pi − 2pipj + pj)(pi∆ + 1)(pj∆ + 1)

(pi∆ + 1)2(pj∆ + 1)2
+
∑
k

pk(1− pk)
(pk∆ + 1)2

.

Since the second term in the last equality is obviously positive, the desired

conclusion obtains if the following function of ∆, denoted gij , is positive for

every i and j < i, that is,

gij(∆) = Ãij(∆ + 1) + C̃ij(∆) > 0,

where, by definition,

Ãij = −(pi − pj)2, and C̃ij(∆) = (pi − 2pipj + pj)(pi∆ + 1)(pj∆ + 1).
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We find that:

gij(∆) = 4pipj∆ + pi(1− pj) + pj(1− pi)
+ pipj∆[pi∆− 2pipj∆ + pj∆− 2pi − 2pj ]

= 4pipj∆ + pi(1− pj) + pj(1− pi)
+ pipj∆

2[pi − 2pipj + pj ]− 2pipj∆[pi + pj ]

= pi(1− pi) + pj(1− pj)

+ pipj∆
2
[
pi(1− pj) + pj(1− pi)

]
+ 4pipj∆

[
1− pi + pj

2

]
.

It is easy to check that gij(∆) is quadratic and convex with respect to ∆

and reaches its global minimum at point ∆min
ij , where,

∆min
ij =

−(2− pi − pj)
pi(1− pj) + pj(1− pi)

.

It is also easy to check that ∆min
ij ≤ −1 since this inequality is equivalent

to 1− pi ≥ pj(1− pi), or pj ≤ 1, a true statement. We now evaluate gij at

point ∆ = −1 and we find,

gij(−1) = C̃ij(−1) = [pi(1− pj) + pj(1− pi)] (1− pi)(1− pj) > 0.

This last result ends the proof of the Lemma.
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