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A Existence of Shirking Equilibrium

We now show that a solution to ODE (12) with boundary condition Vs (1) = α
r
exists,

using an approximation argument. The proof uses a ”bounding box” which has finite upper

and lower boundaries and whose right boundary is fixed below one. For any point on the

boundary of this box, we can find an initial value so that the unique solution to the IVP hits

this point. We then construct a sequence of boxes so that the right boundary approaches 1

and a corresponding sequence of solutions so that the value at the right boundary of the box

converges to α
r
. To show that the limit actually satisfies Vs (1) =

α
r
, we need to show that

the sequence of solutions converges uniformly. For this we use the Arzelà-Ascoli Theorem,

which we apply to a rescaled version of Vs (x) that has a finite derivative.

The bounding box is for all n ∈ N given by

Bn =
{
(x, v) ∈ R2|x ∈ [x0, xn] , v ∈ {−M,M} if x ∈ (x0, xn)

and v ∈ [−M,M ] if x ∈ {x0, xn}}

for some finite M > α
r
. Here, xn is the right boundary of the box. We assume {xn}∞n=1 is an

increasing sequence with xn ∈ (x0, 1) for all n which converges to one as n → ∞. Point 3 of

Lemma 4 then implies that each point on Bn can be reached by some solution to the IVP,

which we show below.

Corollary 1. For each (x̂, v̂) ∈ Bn, there exists a v0n such that the solution to the IVP with

initial condition v0n satisfies Vs (x̂, v0n) = v̂.

Proof. Picking v0n = −M ensures that Vs (x0) = −M and picking v0n = M ensures that

Vs (x0) = M. For any v0n ∈ (−M,M), either hits the upper or lower bounds or it hits the

right boundary at xn. Since Vs (x) is continuous and monotone in v0n by Point 3 of Lemma

4, the continuous mapping theorem implies that for any point (x̂, v̂) ∈ Bn, there exists an

initial condition v0n such that Vs (x̂) = v̂.

We use this result to construct a sequence of solutions which satisfy a boundary condition

at xn. That condition will converge to α
r
. Since we are only interested in the properties of

these solutions as x becomes large, we omit any dependence on the initial condition v0n

to save notation. We denote with Vsn (x) the solution to Equation (12) which satisfies the

boundary condition

Vsn (xn) =
α

r
− κ (1− xn) (1)

for some fixed κ > 0. As n → ∞, the derivative V ′
sn (xn) becomes potentially unbounded, be-

cause xn approaches one and the shirking ODE (12) has a singularity at x = 1. Therefore, we
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cannot use the Arzelà-Ascoli Theorem on Vsn directly. Instead, we study the transformation

gn (x) = Vsn (x) (1− x) ,

which we extend to the entire interval [x0, 1] as follows:

ḡn (x) =

{
Vsn (x) (1− x) if x0 ≤ x ≤ xn

α
r
(1− xn)− κ (1− xn)

2 if xn < x ≤ 1.

Lemma 1. For all n ∈ N, ḡn (x) is uniformly bounded. It is also differentiable at all

x ∈ [x0, 1] except at xn and has a uniformly bounded derivative.

Proof. ḡn (x) is uniformly bounded because we have constructed the sequence Vsn (x) so that

for all x ∈ [x0, xn], Vsn (x) is inside the ”bounding box”, i.e. Vsn (x) ∈ [−M,M ]. Since

gn (x) = Vsn (x) (1− x) , we must also have gn (x) ∈ [−M,M ] . From the definition of ḡn (x)

we can also see that it is uniformly bounded on [xn, 1] for all n.

To show the derivative is uniformly bounded whenever it exists, we only have to consider

the derivatives on the intervals [x0, xn] .
1 We can substitute gn (x) = Vsn (x) (1− x) and

g′n (x) = V ′
sn (x) (1− x)−Vsn (x) into Equation (12) to obtain an ODE for gn (x) . This ODE

is (
r + λ (1− x)2

)
gn (x) = α

(
(1− x)− (1− x)3

)
+ λx (1− x)2 g′n (x) . (2)

For any n, the derivative at xn is bounded. To see this, we first solve for V ′
sn (xn), using

Equation (31) and the condition in Equation (1). This yields

V ′
sn (xn) =

1

xn

(
α

λ
− κ+

(α
r
− rκ

λ

) 1

1− xn

)
.

Therefore we have

g′n (xn) =
1− xn

xn

(
α

λ
− κ+

(α
r
− rκ

λ

) 1

1− xn

)
− α

r
− κ (1− xn) . (3)

As n → ∞, this expression converges to − r
λ
κ. This means that there exists a K̄ > 0 so that

for all n, |g′n (xn)| ≤ K̄. To see that g′n (x) must be bounded uniformly for all n and x ≤ xn,

we differentiate Equation (2) to obtain

0 = 2λ (1− x) gn (x) + α
(
3 (1− x)2 − 1

)
+λx (1− x)2 g′′n (x)− (r + λ (1− x)x) g′n (x) .

1On [xn, 1], the result follows from inspecting the definition of ḡn (x) above.
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Suppose there exists an n and an x0 ≤ x < xn so that |g′n (x)| > K. We choose K sufficiently

large and larger than K̄. Then, if g′n (x) > K, the equation above immediately implies that

g′′n (x) > 0, since gn (x) is uniformly bounded. But this means that g′n (x
′) > K for all x′ ≥ x.

This is a contradiction, since we have just shown that g′n (xn) is bounded by K̄ for all n.

Similarly, if g′n (x) < −K, then g′′n (x) < 0, which again implies that g′n (xn) < −K̄.

We can now apply the Arzelà-Ascoli Theorem to the sequence of functions ḡn (x) . It

establishes that there is a subsequence that converges to a continuous function g∗ (x) . As

we show below, we can take g∗ (x) to be continuously differentiable on [x0, 1] and to satisfy

the ODE (2) on that interval without loss of generality.

Lemma 2. There exists a subsequence of ḡn (x) which converges uniformly to a function

g∗ (x) which is continuously differentiable and satisfies Equation (2) on [x0, 1] .

Proof. From the previous Lemma and the Arzelà-Ascoli Theorem we know there exists a

subsequence which converges to a continuous function g∗ (x) . We now use a diagonalization

procedure to show that there exists a subsequence such that g∗ (x) is continuously differen-

tiable on [x0, 1). For a given n, the derivative g′n (x) satisfies

g′n (x) =

(
r + λ (1− x)2

)
gn (x)− α

(
(1− x)− (1− x)3

)
λx (1− x)2

on some interval [x0, x̄1] for x̄1 < xn < 1. Since the sequence gn is equicontinuous on that

interval and the right hand side of the above equation is continuous in both x and gn (x),

g′n (x) is equicontinuous on that interval as well.2 Thus, there exists a subsequence of gn which

converges to a limit that is continuously differentiable on [x0, x̄1] . Proceeding iteratively, we

then take a sequence of boundaries x̄k which converges to one as k → ∞. For each such k we

can find a subsequence of gn that converges to a continuously differentiable function. Thus,

we can take the limit g∗ to be continuously differentiable on [x0, 1) without loss of generality.

Because of this, it also satisfies the ODE (2) on [x0, 1).

It remains to establish that g∗ is continuously differentiable at x = 1. This follows from

Equation (3) in the proof of the previous Lemma. We have

lim
n→∞

g∗′ (xn) = lim
n→∞

g′n (xn)

and Equation (3) shows that limn→∞ g′n (xn) = − rκ
λ
. Thus, g∗′ (1) is finite.

We now use the function g∗ to show that our initial sequence of solutions Vsn (x) converges

to a limit that is continuous, solves the shirking ODE (12), and satisfies the boundary

2Note we are holding x̄1 fixed here.
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condition Vs (1) =
α
r
. To do this, we define the following function on the interval [x0, 1]

V ∗ (x) =
g∗ (x)

1− x
.

This function is continuously differentiable except perhaps at x = 1 and it satisfies the ODE

(12), which can be seen by substituting it into Equation (2). We thus only have to show it

satisfies the boundary condition at x = 1. If we let nk denote the subsequence of n for which

gn converges to g∗, we have

V ∗ (x) = lim
k→∞

gnk
(x)

(1− x)
= lim

k→∞
Vnk (x) .

Since for any n, Vn (1) =
α
r
, we have

lim
x→1

V ∗ (x) = lim
x→1

lim
k→∞

Vnk (x)

= lim
k→∞

Vnk (1)

=
α

r
.

This concludes our proof. We have shown that there exists a solution to the shirking

ODE (12) on the interval [x0, 1] which satisfies the boundary condition Vs (1) =
α
r
. Since any

solution to the equation must satisfy V (0) = 0 (by Lemma 4, Point 1), we can extend this

solution to the entire interval [0, 1] .

B Numerical Appendix

We use a finite difference approximation of the regulator value W (x, V ).3 To improve speed

and accuracy given the highly nonlinear domain, we use an unevenly spaced grid. Specifically,

we start with evenly spaced grid in the x dimension with I elements, X = (x1, ..., xI) and we

denote a generic element xi. Then, we compute a solution to the Hamilton-Jacobi equations

defining the boundaries V̄ (x) and V (x) (Equations (27) and (28)), using MATLAB’s built

in bvp4c function. Since using bvp4c does not guarantee that the grid is the same as the one

we have defined, we linearly interpolate the solutions on the grid X. We denote the resulting

values with ̂̄V i and V̂ i, which are defined at each grid point xi ∈ X.

Similarly, we use bvp4c to compute the ODEs defining the monitor’s boundary conditions

W̄ (x) and W (x) (Equations (29) and (30)) and we denote with ̂̄W i and Ŵ i the linear

3See ? for a characterization of convergence properties.
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interpolation on X. We also obtain the derivatives W̄ ′ (x) and W ′ (x) from bvp4c, which will

be useful later, and we denote the linear interpolations on X as ̂̄W ′
i and Ŵ

′
i.

Next, we construct the grid in the V dimension. We fix a number J , and for each i,

we define an evenly spaced grid with J elements, Vi = (vi1, ..., viJ), with vi1 = V̂ i and

viJ = ̂̄V i. This grid choice has the following desirable property. As can be seen in Figure 2,

the boundaries V̄ (x) and V (x) become simultaneously very steep and very close together as

x becomes small. Our grid features a smaller distance between elements in the V -dimension

on that region, which improves accuracy where it is most needed.

To facilitate indexing, we define the I × J matrix of x-elements as

X =


x1 x1 ... x1

x2 x2 ... x2

...
...

. . .
...

xI xI ... xI


and the I × J matrix of V -elements as

V =


v11 v12 ... v1J

v21 v22 ... v2J
...

. . .
...

vI1 vI2 ... vIJ

 .

Thus, a generic element vi,j of V corresponds to the j’th element of the vector Vi. From

here on, we use the short-hand notation Wi,j = W (xi, vi,j), mi,j = m (xi, vi,j) , etc.

We approximate the partial derivatives Wx (xi, vi,j) and WV (xi, vi,j) using forward dif-

ferences. The derivative in the V dimension is standard and given by

WV (xi, vi,j) ≈
Wi,j+1 −Wi,j

vi,j+1 − vi,j
≡ WV,i,j. (4)

Approximating the derivative in the x dimension faces two challenges. (1) For a given

(xi, vi,j), the pair (xi+1, vi,j) may lie outside the domain. For example, we may have vi,j >V (xi),

but vi,j <V (xi+1) . (2) For a given (xi, vi,j), vi,j may not be an element of Vi+1, i.e. the node

(xi+1, vi,j) does not exist. Thus, we generally cannot compute the “naive” forward difference

Wx (xi, vi,j) ≈
W (xi+1, vi,j)−W (xi, vi,j)

xi+1 − xi

.

To solve the issue of derivatives at the boundaries, we replace the forward difference with
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the interpolated derivatives ̂̄W ′
i and Ŵ

′
i, respectively. That is,

Wx,i,j ≡ Ŵ
′
i (5)

whenever vi,j < V̂ i+1 and

Wx,i,j ≡ ̂̄W ′
i (6)

whenever vi,j >
̂̄V i+1.

To approximate derivatives inside the feasible domain, we compute the nearest neighbor

to vi,j in the vector Vi+1. We denote with n+ (i, j) its index, i.e. vn+(i,j) is the nearest

neighbor to vi,j in Vi+1. Then, we approximate the derivative as

Wx (xi, vi,j) ≈
Wi,n+(i,j) −Wi,j

xi+1 − xi

≡ Wx,i,j. (7)

The finite difference approximation to the regulator’s Hamilton-Jacobi equation (26) is

now defined as

rWi,j = α (1−mi,j) +
((
r + γB,i,j + λmi,j

)
vi,j − α

(
1−m2

i,j

))
WV,i,j

+
(
λxim

2
i,j + xi (1− xi)

(
γB,i,j − γG,i,j

))
Wx,i,j

−
(
λm2

i,j + γBi,j (1− xi)
)
Wi,j + γG,i,jxi

(α
r
−Wi,j

)
.

Here, γB,i,j and γG,i,j are the approximate optimal controls, which are given by

γB,i,j =

{
γ̄ if vi,jWV,i,j + xi (1− xi)Wx,i,j − (1− xi)Wi,j ≥ 0

0 if vi,jWV,i,j + xi (1− xi)Wx,i,j − (1− xi)Wi,j < 0

and

γG,i,j =

{
γ̄ if −xi (1− xi)Wx,i,j + xi

(
α
r
−Wi,j

)
≥ 0

0 if −xi (1− xi)Wx,i,j + xi

(
α
r
−Wi,j

)
< 0.

We use an explicit method to calculate a solution to the above equation. We start with

an initial guess W 0
i,j, which is given by a linear interpolation between ̂̄W i and Ŵ i at each i
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and vi,j.
4 Then, we update W n

i,j, as

W n+1
i,j −W n

i,j

∆
+ rWi,j = α (1−mi,j) (8)

+
((
r + γn

B,i,j + λmi,j

)
vi,j − α

(
1−m2

i,j

))
W n

V,i,j

+
(
λxim

2
i,j + xi (1− xi)

(
γn
B,i,j − γn

G,i,j

))
W n

x,i,j

−
(
λm2

i,j + γn
Bi,j (1− xi)

)
W n

i,j + γn
G,i,jxi

(α
r
−W n

i,j

)
.

Here, ∆ is the step size of the iteration and γn
B,i,j and γn

G,i,j are defined analogously as

γn
B,i,j =

{
γ̄ if vi,jW

n
V,i,j + xi (1− xi)W

n
x,i,j − (1− xi)W

n
i,j ≥ 0

0 if vi,jW
n
V,i,j + xi (1− xi)W

n
x,i,j − (1− xi)W

n
i,j < 0

(9)

and

γn
G,i,j =

{
γ̄ if −xi (1− xi)W

n
x,i,j + xi

(
α
r
−W n

i,j

)
≥ 0

0 if −xi (1− xi)W
n
x,i,j + xi

(
α
r
−W n

i,j

)
< 0.

(10)

The algorithm can be summarized as follows.

1. Start with guess W 0
i,j.

2. Compute Wx,i,j and WV,i,j using Equations (4), (6), (5), and (7).

3. Compute γn
B,i,j and γn

G,i,j using Equations (9) and (10).

4. Compute W n+1
i,j using Equation (8).

5. Stop if the maximum distance

max
i,j

∣∣W n+1
i,j −W n

i,j

∣∣
is below a specified tolerance, otherwise go to step 2.

Running this scheme on the entire x-domain [0, 1] results in a number of problems. (1) As

can be seen from Figure 2, the regulator is indifferent between any disclosure policy for any

x ≥ xh.
5 This may lead the policies γn

B,i,j and γn
G,i,j to oscillate on the region [xh, 1], which

may lead to convergence failures. (2) The law of motion for beliefs may have an endogenous

4That is,

W 0
i,j = Ŵ i + (vi,j − vi,1)

̂̄W i − Ŵ i

vi,J − vi,1
.

5Note that this is consistent with our previous qualitative results in Section 4.
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interior singularity at high x values. To see this, consider again the shirking region [xh, 1].

On this region, m (x, V ) = 1 − x, independently of V or the regulator’s disclosure policy.

Then, we can calculate the law of xt as

dxt

dt
= λxt (1− xt)

2 + (γBt − γGt)xt (1− xt)

= xt (1− xt) (λ (1− xt) + γBt − γGt) .

When xt is sufficiently large and γBt = 0, the dxt/dt may change sign depending on whether

γGt = 0 and γGt > 0. (3) The law for Vt may change sign depending on whether γBt > 0 or

γBt = 0 for high values of x.

To avoid these issues, we use our theoretical characterization to restrict the problem as

follows. For x > xh, we know that the monitor shirks irrespective of the disclosure policy

and that the regulator’s value is linear (see also Figure 2). Thus, without loss of generality,

the optimal disclosure policy at any xt > xh is given by γBt = γGt = 0. The regulator’s

boundary values coincide at xh, i.e. W̄ (xh) =W (xh). We can now restrict the grid of x-values

to [0, xh] and use the boundary condition W (xh, V ) = W̄ (xh) for any V ∈
[
V (xh) , V̄ (xh)

]
.

With this modification, and sufficiently small step size ∆, and a sufficiently fine grid X, the

explicit scheme converges monotonically.
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