Online Appendix for "Similarity Nash Equilibria in Statistical Games"
by Rossella Argenziano and Itzhak Gilboa

a) Calculation of $b(L, W, l, 1.5)>0$.

We evaluate the function $b(L, W, l, \omega)$ at $\omega=1.5$ and find the following expression:

$$
\frac{L * g(L, W, l)}{(-1+L+W)^{2}(L+2 l L+2 l W)^{2}\left(L+2 l L+2 L^{2}+2 l W+2 L W\right)^{2}}
$$

where $g(L, W, l)$ can be expressed as a polynomial in W :

$$
\begin{aligned}
& g(L, W, l) \\
= & \left(32 l^{4}+64 l^{3} L+32 l^{2} L^{2}\right) W^{5} \\
& +16 l\left[2 L^{3}+l^{3}(8 L-1)+2 l^{2} L(1+8 L)+l L^{2}(5+8 L)\right] W^{4} \\
& +4 l L\left[12 l^{3}(4 L-1)+3 l L^{2}(21+16 L)+L^{2}(4+27 L)+8 l^{2}\left(-1+3 L+12 L^{2}\right)\right] W^{3} \\
& +2 L^{2}\left[\begin{array}{c}
-3(L-2) L^{2}+8 l^{4}(8 L-3)+16 l^{3}\left(-2+3 L+8 L^{2}\right)+ \\
2 l^{2}\left(-6-6 L+69 L^{2}+32 L^{3}\right)+2 l L\left(6-L+33 L^{2}\right)
\end{array}\right] W^{2} \\
& +\left[\begin{array}{c}
16 l^{4}(2 L-1)+3 L\left(2+5 L-4 L^{2}\right)+32 l^{3}\left(-1+L+2 L^{2}\right) \\
+4 l^{2}\left(-3-12 L+29 L^{2}+8 L^{3}\right)+4 l\left(-6+15 L-14 L^{2}+17 L^{3}\right)
\end{array}\right] L^{3} W \\
& -3 L^{4}(L-1)^{2}(3+2 L)+12 l^{2} L^{4}(L-1)^{2}+12 l L^{4}(L-1)^{3}
\end{aligned}
$$

Notice that for $W, L>2$ and $l>0$ the terms multiplying W^{5}, W^{4}, and W^{3} are positive. The terms multiplying W^{2} and $L^{3} W$ and the constant are polynomials in l. For $l>0$, all three are increasing in l, as the coefficients of the positive powers of l are positive. Moreover, all three are positive when evaluated are $l=1$, hence for all $l>1$ as well. . In particular, the coefficient of W^{2} evaluated at $l=1$ is equal to $-68+112 L+270 L^{2}+127 L^{3}>0$. The coefficient of $L^{3} W$ evaluated at $l=1$ is equal to $-84+82 L+139 L^{2}+88 L^{3}>0$. Finally, the constant evaluated at $l=1$ is equal to $3 L^{4}(2 L-3)(L-1)^{2}>0$.

We have proved that $g(L, W, l)>0$. Since $\frac{L}{(-1+L+W)^{2}(L+2 l L+2 l W)^{2}\left(L+2 l L+2 L^{2}+2 l W+2 L W\right)^{2}}>$ 0 , this concludes the proof.
b) Calculation of $b(L, W, l,-0.5)>0$ for $l>1$ and $\left[\frac{l W}{L}\right] \geq 1$.

We evaluate the function $b(L, W, l, \omega)$ at $\omega=-0.5$ and find the following
expression:

$$
\frac{-L * h(L, W, l)}{(-1+L+W)^{2}(-3 L+2 l L+2 l W)^{2}\left(-3 L+2 l L+2 L^{2}+2 l W+2 L W\right)^{2}}
$$

where $h(L, W, l)$ can be expressed as a polynomial in L :

$$
\begin{aligned}
& h(L, W, l) \\
= & (20 l-18) L^{7}+\left[-4 l^{2}(8 W-5)+l(-76+92 W)+45-36 W\right] L^{6} \\
& +\left[-36+4(23-10 l) l+(81-4 l(90+l(-75+16 l))) W-2\left(9-78 l+64 l^{2}\right) W^{2}\right] L^{5} \\
& +\left[\begin{array}{c}
9-36 l+20 l^{2}+\left(-54+388 l-528 l^{2}+224 l^{3}-32 l^{4}\right) W \\
+\left(36-492 l+780 l^{2}-256 l^{3}\right) W^{2}+\left(116 l-192 l^{2}\right) W^{3}
\end{array}\right] L^{4} \\
& +\left[\begin{array}{c}
-4 l\left(18-43 l+24 l^{2}-4 l^{3}\right)-4 l\left(-74+234 l-168 l^{2}+32 l^{3}\right) W \\
-4 l\left(52-185 l+96 l^{2}\right) W^{2}-4 l(32 l-8) W^{3}
\end{array}\right] W L^{3} \\
& -8 l^{2} W^{2}\left[-19+56 W-30 W^{2}+4 W^{3}+l^{2}(-6+24 W)+l\left(24-84 W+32 W^{2}\right)\right] L^{2} \\
& -16 l^{3} W^{3}\left[6-3 l+(8 l-14) W+4 W^{2}\right] L-16 l^{4} W^{4}(2 W-1)
\end{aligned}
$$

In what follows, we prove that $h(L, W, l)<0$ for all $l>0$ and $L, W>2$. The constant term is negative. The coefficient of L is negative because it is the product of a negative term and a quadratic expression in W with a positive coefficient on the square which is positive and increasing at $W=2$, hence for any larger W too. Similarly, the coefficient of L^{2} is negative because it is the product of a negative term and a quadratic expression in l with a positive coefficient on the square which is positive and increasing at $l=2$, hence for any larger l too.

The coefficient of L^{3} is the product of W, which is positive, and a third degree polynomial in W which can be shown to be negative in the relevant range. In particular, the polynomial has a negative coefficient on the third and second power. At $W=2$, this polynomial is equal to $-56 l+236 l^{2}-288 l^{3}-$ $240 l^{4}$ which is negative for all $l>1$. Moreover, its derivative at $W=2$ is equal to $-152 l+488 l^{2}-864 l^{3}-128 l^{4}$ which is also negative for all $l>1$. Finally, the fact that this derivative is negative $W=2$ implies that it is also negative for all values of $W>2$, because the negative coefficients on the third and second powers of W guarantee that the function is concave in W for positive W.

The coefficient of L^{4} is a third degree polynomial in W which can be shown
to be negative in the relevant range $(l>1, W>2)$. The polynomial has a negative coefficient on the third power. Evaluated at $W=2$, it takes value $45-300 l+548 l^{2}-576 l^{3}-64 l^{4}<0$ for all $l>1$. Moreover, its derivative w.r.t. W evaluated at $W=2$ is equal to $90-188 l+288 l^{2}-800 l^{3}-32 l^{4}$ which is also negative for all $l>1$. Finally, its second derivative w.r.t. W is equal to $-8\left(-9+123 l-195 l^{2}+64 l^{3}+(144 l-87) l W\right)$ which is negative at $W=2$ and decreasing in W for all positive values of W.

The coefficient of L^{5} is a quadratic function of W with a negative coefficient on the square, which is negative and decreasing at $W=3$, hence negative for all larger values of W too. The coefficient of L^{6} is a quadratic function of l with a negative coefficient on the square, which is positive for $l=2$ and negative for all larger values of l. The coefficient of L^{7} is positive.

Since the coefficient L^{7} is positive, and we want to prove that the whole polynomial in L is negative, we prove that the sum of the terms in L^{7} and L^{5} is negative.

First, notice that the condition $\frac{l W}{L} \geq \frac{1}{2}$ implies that $L \leq 2 l W$, which in turn implies:

$$
(20 l-18) L^{7}<4(20 l-18) L^{5} l^{2} W^{2}
$$

which in turn implies that

$$
\begin{aligned}
& (20 l-18) L^{7}+\left[\begin{array}{c}
-36+4(23-10 l) l \\
+(81-4 l(90+l(-75+16 l))) W-2\left(9-78 l+64 l^{2}\right) W^{2}
\end{array}\right] L^{5} \\
& <4(20 l-18) L^{5} l^{2} W^{2}+\left[\begin{array}{c}
-36+4(23-10 l) l \\
+(81-4 l(90+l(-75+16 l))) W-2\left(9-78 l+64 l^{2}\right) W^{2}
\end{array}\right] L^{5} \\
& =\left[\begin{array}{c}
(80 l-72) l^{2} W^{2}-36+4(23-10 l) l \\
+(81-4 l(90+l(-75+16 l))) W-2\left(9-78 l+64 l^{2}\right) W^{2}
\end{array}\right] L^{5} \\
& =\left[\left(92 l-40 l^{2}-36\right)+\left(300 l^{2}-64 l^{3}-360 l+81\right) W+\left(-128 l^{2}+236 l-90\right) W^{2}\right] L^{5}
\end{aligned}
$$

The last expression is a quadratic in W which is negative for all $W>2$. In particular, it has a negative coefficient on the square, hence it is concave. Evaluated at $W=2$ it is equal to $-128 l^{3}+48 l^{2}+316 l-234<0$ for all $l>1$. Moreover, its derivative evaluated at $W=2$ is equal to $-64 l^{3}-212 l^{2}+584 l-$ $279<0$ for all $l>1$.

To conclude the proof that the whole polynomial in L is negative, we still need to address the fact that the coefficient of L^{6} is positive at $l=2$.

In particular, we do so by proving that the sum of the terms in L^{6} and L^{4} is negative at $l=2$. First, notice that the condition $\frac{l W}{L} \geq \frac{1}{2}$ implies that $L \leq 2 l W$, which in turn implies:

$$
\begin{aligned}
& {\left[-4 l^{2}(8 W-5)+l(-76+92 W)+45-36 W\right] / l=2 L^{6} } \\
< & 4\left[-4 l^{2}(8 W-5)+l(-76+92 W)+45-36 W\right] / l=2 L^{4} l^{2} W^{2}
\end{aligned}
$$

which in turn implies that

$$
\begin{aligned}
= & {\left[-4 l^{2}(8 W-5)+l(-76+92 W)+45-36 W\right] / l=2 L^{6} } \\
& +L^{4}\left[\begin{array}{c}
9-36 l+20 l^{2}+\left(-54+388 l-528 l^{2}+224 l^{3}-32 l^{4}\right) W \\
+\left(36-492 l+780 l^{2}-256 l^{3}\right) W^{2}+\left(116 l-192 l^{2}\right) W^{3}
\end{array}\right] / /=2 \\
< & 4\left[-4 l^{2}(8 W-5)+l(-76+92 W)+45-36 W\right] / l=2 L^{4} l^{2} W^{2} \\
& +L^{4}\left[\begin{array}{c}
9-36 l+20 l^{2}+\left(-54+388 l-528 l^{2}+224 l^{3}-32 l^{4}\right) W \\
+\left(36-492 l+780 l^{2}-256 l^{3}\right) W^{2}+\left(116 l-192 l^{2}\right) W^{3}
\end{array}\right] / l=2 \\
= & \left(-216 W^{3}-308 W^{2}-110 W+17\right) L^{4}<0 \text { for all } W>2 .
\end{aligned}
$$

This concludes the proof that $b(L, W, l,-0.5)>0$ for $l>1$.
Calculation of $b(L, W, l, 0.5)>0$ for $l>1$ and $\left[\frac{l W}{L}\right]=0$.
We evaluate the function $b(L, W, l, \omega)$ at $\omega=0.5$ and find the following expression:

$$
\frac{L * \eta(L, W, l)}{(L+W-1)^{2}\left(-L+2 L W+2 l W+2 L l+2 L^{2}\right)(-L+2 l W+2 L l)}
$$

where $\eta(L, W, l)$ can be expressed as a polynomial in L : in which all the coefficients, as well as the constant, are positive:

$$
\begin{aligned}
& \eta(L, W, l) \\
= & (12 l-2) L^{7}+\left[W(4 l-4)+l(32 W-28)+32 l^{2} W+12 l^{2}+3\right] L^{6} \\
& +\left[\begin{array}{c}
64 l^{3} W+l^{2} W(100 W-44)+l^{2}\left(28 W^{2}-24\right) \\
+W^{2}(6 l-2)+l W(30 W-72)+20 l+7 W
\end{array}\right] L^{5} \\
& +\left[\begin{array}{c}
6 l^{4} W+l^{3} W(156 W-96)+l^{2} W^{2}(192 W-204)+16 l^{2} W\left(l^{2}-1\right)+12 l W^{3} \\
+l W^{2}\left(100 l^{2}-60\right)+(44 l W-1)+l(12 l-4)+2 W(2 W-1)
\end{array}\right] L^{4} \\
& +\left[\begin{array}{c}
l^{4} W(128 W-16)+l^{3} W^{2}(300 W-288)+32 l^{3} W+l^{2} W^{3}(128 W-228) \\
+40 l^{2} W^{2}+20 l^{2} W+l W^{3}\left(84 l^{2}-16\right)+l W(24 W-8)
\end{array}\right] L^{3} \\
& +\left[\begin{array}{c}
l^{4} W^{2}(192 W-48)+l^{2} W^{4}(156 l-80)+l^{3} W^{3}(100 W-288)+64 l^{3} W^{2} \\
+32 l^{2} W^{5}+32 l^{2} W^{3}+8 l^{2} W^{2}
\end{array}\right] L^{2} \\
& +\left[l^{4} W^{3}(128 W-48)+l^{3} W^{4}(64 W-96)+32 l^{3} W^{3}\right] L+16 l^{4} W^{4}(2 W-1)
\end{aligned}
$$

c) Calculation of $\frac{\partial b(L, W, l, \omega)}{\partial \omega}<0$ for all $\omega \geq-\frac{W}{L}$ for the case $l=1$

For $l=1$, the $b(L, W, l, \omega)$ function and its derivative with respect to ω are

$$
\begin{gathered}
b(L, W, 1, \omega)=\frac{L W(L+W)}{(L+W-1)^{2}}+\frac{L+W+L \omega}{W+L \omega} \\
-\frac{(1+L)(W+L W+L \omega)\left(L+L^{2}+W+L W+L \omega\right)}{\left(L^{2}+W+L W+L \omega\right)^{2}} \\
\frac{\partial b(L, W, 1, \omega)}{\partial \omega}=\frac{-L^{3} \phi(L, W, \omega)}{(W+L \omega)^{2}\left(L^{2}+W+L W+L \omega\right)^{3}}
\end{gathered}
$$

where $\phi(L, W, \omega)$ is the following cubic expression in ω in which all the coefficients, including the constant, are positive.

$$
\begin{aligned}
& \phi(L, W, \omega) \\
= & L^{5}+3 L^{3} W+3 L^{4} W+4 L W^{2}+8 L^{2} W^{2}+4 L^{3} W^{2}+2 W^{3}+4 L W^{3}+2 L^{2} W^{3} \\
& +\omega\left(3 L^{4}+8 L^{2} W+10 L^{3} W+2 L^{4} W+4 L W^{2}+6 L^{2} W^{2}+2 L^{3} W^{2}\right) \\
& +\omega^{2}\left(4 L^{3}+2 L^{4}+L^{5}+2 L^{2} W+3 L^{3} W+L^{4} W\right)+\omega^{3} L^{4}
\end{aligned}
$$

The sign of the coefficients guarantees that the expression is positive, for all $\omega \geq 0$. To examine the sign of $\phi(L, W, \omega)$ for $w \in\left[-\frac{W}{L}, 0\right)$, notice that:
a) $\phi\left(L, W,-\frac{W}{L}\right)=L^{2}(L+W)^{3}>0$
b) $\phi(L, W, 0)=L^{5}+3 L^{3} W+3 L^{4} W+4 L W^{2}+8 L^{2} W^{2}+4 L^{3} W^{2}+2 W^{3}+$ $4 L W^{3}+2 L^{2} W^{3}>0$
c)

$$
\begin{aligned}
\frac{\partial \phi(L, W, \omega)}{\partial \omega}= & \left(3 L^{4}+8 L^{2} W+10 L^{3} W+2 L^{4} W+4 L W^{2}+6 L^{2} W^{2}+2 L^{3} W^{2}\right) \\
& +2 \omega\left(4 L^{3}+2 L^{4}+L^{5}+2 L^{2} W+3 L^{3} W+L^{4} W\right)+3 L^{4} \omega^{2} \\
\geq & \left(3 L^{4}+8 L^{2} W+10 L^{3} W+2 L^{4} W+4 L W^{2}+6 L^{2} W^{2}+2 L^{3} W^{2}\right) \\
& +2 \omega\left(4 L^{3}+2 L^{4}+L^{5}+2 L^{2} W+3 L^{3} W+L^{4} W\right) \\
> & \left(3 L^{4}+8 L^{2} W+10 L^{3} W+2 L^{4} W+4 L W^{2}+6 L^{2} W^{2}+2 L^{3} W^{2}\right) \\
& -2 \frac{W}{L}\left(4 L^{3}+2 L^{4}+L^{5}+2 L^{2} W+3 L^{3} W+L^{4} W\right) \\
= & 3 L^{3}(L+2 W)>0
\end{aligned}
$$

where the first inequality follows from the fact that $3 L^{4} \omega^{2} \geq 0$ and the second from the fact that $\omega>-\frac{W}{L}$.

Hence we can conclude that $\phi(L, W, \omega)$ is positive and increasing in the whole interval $\left(-\frac{W}{L}, 0\right)$, hence the function $b(L, W, 1, \omega)$ is decreasing for all $\omega>-\frac{W}{L}$.

