
Online Appendix: Keeping up with “The Joneses”:
reference dependent choice with social comparisons

By Alastair Langtry*

Keeping up with “The Joneses” matters. This paper examines
a model of reference dependent choice where reference points are
determined by social comparisons. An increase in the strength
of social comparisons, even by only a few agents, increases con-
sumption and decreases welfare for everyone. Strikingly, a higher
marginal cost of consumption can increase welfare. In a labour
market, social comparisons with co-workers create a big fish in a
small pond effect, inducing incomplete labour market sorting. Fur-
ther, it is the skilled workers with the weakest social networks who
are induced to give up income to become the big fish.
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Appendix A: A Comment for Policy-makers

Consider a special case where agents’ reference strengths are uncorrelated with
the structure of the social network. Its key feature is that the structure of the
social network will not have any impact on outcomes.

ASSUMPTION A.1 (Uncorrelated case): The reference structure, g, is uncorre-
lated with the reference strength: corr(gij , αj) = 0 for all agents i, j.

While Assumption A.1 is appears rather abstract, it covers the natural case
where all agents have the same reference strength (αi = α for all i), so it is not
vacuous. Under this assumption, the network effects drop out.

COROLLARY A.1: Under Assumption A.1: x∗i and u∗i do not depend on the
reference structure, g.

Assumption A.1 requires that i’s neighbours are, on average, “Mr and Mrs
Average” in terms of how strongly they make social comparisons. In turn, their
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neighbours are also, on average, “Mr and Mrs Average”, and so on throughout
the whole social network. There is no way for a global network effect to build –
it will always get averaged out. The clearest case where this assumption holds is
where all agents have the same reference strength. This shows how homogeneity
of the local social comparisons shuts down the effect of heterogeneity in global
network structure.

This simplification also allows us to make stronger claims about the impact of
reference strengths. First, an equilibrium exists if and only if the average reference
strength is less than one, and Bonacich centralities collapse to a simple function
of the reference strengths (in particular, Cbi = 1 + αi

1−α for all i).
The tight link between an agent’s reference strength and their optimal con-

sumption makes it straightforward to see how changes in the distribution of these
reference strengths feeds through into the distribution of consumption. First [resp.
second] order stochastically dominant shifts in the distribution of the the refer-
ences strengths causes a first [resp. second] order stochastically dominant shift
in the distribution of equilibrium consumption.1 Inequality in social comparisons
drives consumption inequality, even in a setting where agents are otherwise iden-
tical.

Implications for policy-making. Measuring networks in practice – especially
the weighted networks present in my model – is typically difficult and resource
intensive. In a perfect world with unlimited resources and attention, we should
of course examine whether this assumption holds in a network, and proceed ac-
cordingly. In reality, however, corollary A.1 presents a pragmatic approach for
policy-makers and governments short on time and money, so long as the assump-
tion is not violated too egregiously.

Proofs

PROOF OF COROLLARY A.1:
First, let a ≡ diag(α) for convenience. Using a Neumann Series representation,

we can express (I − ag)−1 =
∑∞

k=1(ag)k. Therefore, Cbi =
∑

j(I − ag)−1
j =∑

j

∑∞
k=1[(ag)k]ij . We deal with the first two terms individually, and then all

further terms by induction. Clearly
∑

j 1{i = j} = 1, and
∑

j(ag)ij = αi
∑

j gij =
αi by construction. Induction: for k = 2;∑

j

(ag)2
ij =

∑
j

∑
s

(ag)is(ag)sj =
∑
j

∑
s

αigisαsgsj = αi
∑
s

gisαs
∑
j

gsj

1First Order Stochastic Dominance and Second Order Stochastic Dominance formalise the notions of
(unambiguously) “bigger” and “more spread out” respectively. They are first due to Hadar and Russell
(1969) and Rothschild and Stiglitz (1970). More modern coverage can be found in (Mas-Colell et al.,
1995, Ch 6.D). I prove the claim regarding equilibrium outcomes below. The additional claims follow
straightforwardly from this.
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By Assumption A.1:
∑

s gisαs = α
∑

s gis. Then notice that
∑

j gsj = 1 for any

s. This yields:
∑

j(ag)2
ij = αi · α. Now assume that for k = t > 2,

∑
j(ag)tij =

αi · αt−1. Then show for k = t + 1. By definition
∑

j G
t+1
ij =

∑
j [(ag) · (ag)t]ij .

For clarity of exposition, we let Gtij = Aij .∑
j

(ag)t+1
ij =

∑
j

∑
s

αigisAsj = αi
∑
s

gis
∑
j

Asj

Using the assumption for k = t,
∑

j Asj = αsα
t−1. Therefore,

∑
j(ag)t+1

ij =

αi · αt−1
∑

s gisαs. Using Assumption A.1 and the fact that rows of g sum
to 1 as before:

∑
j(ag)t+1

ij = αi · αt. Therefore, Cbi =
∑

j

∑∞
k=0[(ag)k]ij =

1 + αi(1 + α + α2 + α3 + ...). Clearly this does not depend on the network.
Finally, it follows from Remark 1 that x∗i and u∗i do not depend on the network
structure, g.

REMARK A.1: Under Assumption A.1: (i) an equilibrium exists if and only if
α < 1, and (ii) when α < 1: Cbi = 1 + αi

1−α for all i, where α = 1
n

∑
i αi

PROOF:
From the proof to Corollary A.1, we have Cbi = 1 +αi/(1−α). An equilibrium

exists if and only if Bonacich centrality, Cbi is well defined. Clearly this happens
if and only if α < 1.
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Appendix B: Non-linear sub-utility

The model in Section 1 assumes that the sub-utility is linear. This was a
simplification compared to the Kőszegi and Rabin (2006) benchmark. However,
this was only for clarity of exposition. It is easier to understand how the model
works when more things are linear. It also allows the proofs to use simpler
machinery that readers, especially those somewhat familiar wit networks, ought
to be more comfortable with.

Here, I introduce non-linear sub-utility. The model is exactly the same as in
Section 1, except that i’s utility function is now:

ui = f

m(xi)− αi
∑
j

gijm(xj)

− cxi + bi
∑
j

αigij(1*)

where m(·) is twice continuously differentiable, strictly increasing, strictly con-
cave, and WLOG m(0) = 0. I will not provide intuition alongside the results
because while the maths becomes more complex with this additional non-linear
function, there is no new economic insight.

One disadvantage of introducing this non-linear sub-utility is that a closed form
characterisation of equilibrium behaviour is no longer possible. This makes the
network effects far harder to see. Nevertheless, existence and uniqueness are
unaffected.

REMARK B.1: Suppose αi < 1 for all i. There is a unique Nash Equilibrium.

Proposition 1 then goes through unaffected.

PROPOSITION B.1: If αi < 1 for all i: (i) x∗i is weakly increasing, and (ii) u∗i
is weakly decreasing, in αj for all i, j, and strictly so if i = j.

Proposition 2 is subject to some minor modification because the threshold in
part (ii) is difficult to characterise with non-linear m(·)

PROPOSITION B.2: If αi < 1 for all i: (i) x∗i is strictly decreasing in c, (ii)
u∗i is strictly increasing in c if x∗i is sufficiently sensitive to c (specifically, if
dx∗i
dc < min{−x

∗
i
c ,

m′(x∗i )
c·m′′(x∗i )}).

Without a closed form solution for x∗i , it is not possible to show the tight link
between changes to the network structure and changes in equilibrium consumption
(i.e. an analogue to Proposition 3). Nevertheless, simply looking at the First
Order Condition is suggestive.

m(xi)− αi
∑
j

gijm(xj) = F

(
c

m′(xi)

)
.(B.1)



VOL. VOL NO. ISSUE KEEPING UP WITH “THE JONESES” 5

We can see that agents’ actions are complements. If one of i’s neighbours
consumes more, this pushes up i’s reference point, which in turn pushes her to
consume more in an effort to keep up. Intuitively, if i shifts from comparing
herself with low consumption friends to high consumption neighbours, then her
reference point increases, and so she chooses to consume more. The more “The
Joneses” consume, the more you need to do to keep up with them.

Proofs

PROOF OF REMARK B.1:

Consider the First Order Condition [FOC] (with some minimal rearranging) –
Equation (B.1). LHS is strictly increasing in xi. m

′(xi) is strictly decreasing in
xi, and F (·) is strictly decreasing in its argument. So RHS is strictly decreasing
in xi. Hence there is a unique value of xi that solves the First Order Condition.
I use x∗i to denote equilibrium consumption (i.e. when all FOCs hold simulta-
neously). For clarity, let x̂i denote the value that solves just agent i’s FOC, for
given values of xj , j 6= i.

Existence. Note that x̂i is increasing in xj . So if no agent wants to choose more
than A when all other agents are choosing A, then there cannot exist an equilib-
rium where any agent chooses A or more. Suppose all other agents choose xj = A.
Then i wants to choose less than A if and only if: m(A)[1− αi] > F (c/m′(A)).2

Since LHS is increasing in A, and RHS is decreasing in A, there must exist some
finite value of A such that this inequality is true for all i. Denote this Â. Given
this, we only need to consider the compact space [0, Â]n. The functions are con-
tinuous by assumption. Therefore Brouwer’s Fixed Point Theorem (e.g. Border
(1985)) guarantees existence.

Uniqueness. Proof by contradiction. Denote the equilibrium with the smallest
action x∗. Suppose there is another equilibrium, x∗′ ≡ x∗ + D (it is convenient
and WLOG to write the second equilibrium as the initial one, plus some change).
Consider the agent i whose action increases the most when moving from x∗ to x∗′.
That is, the agent i such that Di ≥ Dj for all j 6= i. Solve the first order condition
for this agent i, assuming that all other agents are playing the equilibrium x∗′.
That is, we solve:

xi − αi
∑
j

gij [x
∗
j +Dj ]) = F

(
c

m′(xi)

)

2Note that after we pulled m(A) out of the summation,
∑

j gij = 1, and so disappears.
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WLOG let the solution takes the form x∗i + zi.

x∗i + zi − αi
∑
j

gijx
∗
j − αi

∑
j

gijDj = F

(
c

m′(x∗i + zi)

)

Substituting in the solution to the FOC from the initial equilibrium x∗ (and
rearranging):

zi − αi
∑
j

gijDj = F

(
c

m′(x∗i + zi)

)
− F

(
c

m′(x∗i )

)

Since F (·) is decreasing in its argument.

zi − αi
∑
j

gijDj < 0

This actually assumes that zi > 0. But if zi ≤ 0 then we have already reached
a contradiction, since we require the increase in i’s action to be larger than the
increase in all other agents’ actions (when moving from x∗ to x∗′). Then applying
the requirement that Di ≥ Dj for all j 6= i:

zi < αi
∑
j

gijDj ≤ αi
∑
j

gijDi = αiDi < Di

Contradiction.

PROOF OF PROPOSITION B.1:

For some fixed parameters g, α, c, b and functions f(·), m(·) there is a unique
equilibrium x∗. (i) Suppose that αj ↑ for some j. Then x̂j ↑ (i.e. j’s optimal
action rises conditional on all other agents’ actions). In turn x̂j ↑ =⇒ x̂k ↑ for
all k s.t. gkj > 0. In turn this increases xi for all i (but only weakly so, since
there is no guarantee that there exists a directly path from j to i).

Remark B.1 guarantees a unique equilibrium. So this process must eventually
converge to an equilibrium. But clearly all equilibrium actions weakly rises, and
strictly so for the “initial” agent (who experienced the increase in αj). (ii) In
equilibrium we have:

m(x∗i )− αi
∑
j

gijm(x∗j ) = F

(
c

m′(x∗i )

)
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We can substitute this back into the utility function to find equilibrium utility.

u∗i = f

(
F

[
c

m′(x∗i )

])
− cx∗i

We know from (i) that αj ↑ weakly increases x∗i . Finally, notice that u∗i is
strictly decreasing in x∗i . To see this clearly, note that x∗i ↑ =⇒ m′(x∗i ) ↓
=⇒ F (c/m′(x∗i )) ↓ =⇒ f(F (c/m′(x∗i ))) ↓.

PROOF OF PROPOSITION B.2:

For some fixed parameters g, α, c, b and functions f(·), m(·) there is a unique
equilibrium x∗. (i) Suppose that c ↑. This decreases RHS of the FOC (Equa-
tion (B.1)). To restore equality, it must be that x̂i ↓ (as this decreases LHS
and increases RHS). In turn x̂i ↓ =⇒ x̂j ↓. Remark B.1 guarantees a unique
equilibrium. So this process must eventually converge to an equilibrium. But all
equilibrium actions strictly decrease. (ii) Equilibrium utility is:

u∗i = f

(
F

[
c

m′(x∗i )

])
− cx∗i .

This was derived in the proof to Proposition B.1. It is clear that a sufficient
condition for u∗i to be strictly increasing in c is that: (a) cx∗i and (b) c/m′(x∗i )
are strictly decreasing in c (recall that f(F (·)) is decreasing in its argument)3

Consider each condition separately. First,

d(cx∗i )

dc
= c · dx

∗
i

dc
+ x∗i ,

which is less that zero if and only if
dx∗i
dc < −x∗i /c. Second,

d(c/m′(x∗i ))

dc
= [m′(x∗i )]

−1 − cm′′(x∗i )[m′(x∗i )]−2dx
∗
i

dc

which is less than zero if and only if
dx∗i
dc < −m′(x∗i )/[c ·m′′(x∗i )].

An equivalent sufficient condition for u∗i to be strictly decreasing in c would
be easy. The method for proving it would be similar to above. The condition

would simply be
dx∗i
dc > max{−x

∗
i
c ,

m′(x∗i )
c·m′′(x∗i )}. Due to the inability to find closed

form solutions for x∗i when m(·) is nonlinear, I am not able to provide a tight link
between network centrality and how welfare is affected by cost changes. Never-
theless, the flavour of Proposition 3 goes through – agent’s whose consumption is

3So a decrease in c/m′(x∗i ) increases f(F (c/m′(x∗i ))).
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highly sensitive to costs end up experiencing welfare gains when the marginal cost
of consumption rises. This is again because the benefits (in terms of a lower ref-
erence point) of lower consumption by neighbours more than offsets the directly
higher cost of consumption.

Appendix C: Loss Aversion

In Section 1 we assume that ui = f(xi − αi
∑

j gijxj), where f(·) is strictly
increasing and concave. This captures references dependence and diminishing
sensitivity, but not loss aversion. To capture loss aversion, we now assume that
f(·) is strictly concave [resp. convex] in the positive [resp. negative] domain, and
kinked at zero. This is in line with the Kahneman and Tversky’s canonical setup
(Tversky and Kahneman, 1979, 1991). Formally, we can write these properties
as the following restrictions on the function f(·): (i) f : a → R for a ∈ R, (ii)
f ′(a) > 0 ∀a, (iii) f ′′(a) < 0 ∀a > 0, f ′′(a) > 0 ∀a < 0, (iv) lima→0− |f ′(a)| >
lima→0+ |f ′(a)|, (v) f ′′(a) ∈ R ∀a 6= 0, f(0) = 0.

Adding the functional form requirements for loss aversion does not affect Re-
mark 1. This is because agents are always able to, and always choose to, consume
above their reference point in this model. Therefore the convexity in the nega-
tive domain that is the core addition of loss averse preferences (over and above
reference dependent preferences) has no bite.

Appendix D: Multiple Goods

In section 1 we assume that there is only 1 good. Here, consider the model with
K goods (i.e. a K-dimensional consumption bundle), as in Kőszegi and Rabin
(2006). This generalisation has no effect.

There are K goods, x1, ..., xK . Each agent i simultaneously chooses a con-
sumption bundle (xi1, xi2, ..., xiK) ∈ Rn+. Following Kőszegi and Rabin (2006), I
assume that preferences are additively separable over goods. All other elements
of the model are the same as in section 1. Therefore i’s utility function is:

ui =
K∑
k=1

f
xik −∑

j

αigijxjk

− ckxik
+ bi

∑
j

αigij(D.1)

where f(·) has the same properties as in section 1. Now consider agents’ First
Order Conditions.

dui
dxik

= f ′

xik −∑
j

αigijxjk

− ck = 0 for all i and for all k(D.2)

These First Order Conditions are clearly identical to those in the 1-good case.
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Obviously there are now K First Order Conditions for each agent, but xik only
appears in the First Order Conditions relating to good k, and never in any relating
to k′ 6= k. Therefore the solution for each good k is the same as it would be if k
were the only good.

Appendix E: Network Structure

This section presents technical results regarding the effects of comparison shifts,
and formalises claims made in section 2. The natural starting point is to charac-
terise the exact impact of a single comparison shift.

LEMMA E.1: The change in agent i’s consumption due a comparison shift D,
∆x∗i , is equal to:

φBir(C
b
u − Cbd)

1− φ(Bur −Bdr)
· f ′−1(c)

This exact characterisation is not very user-friendly and is largely technical.
However, it is useful because it forms the basis for a number of further results,
most importantly Proposition 3. Its implications for the effects of a comparison
shift on different agents are immediate.

COROLLARY E.1: Given a comparison shift D, the change in optimal actions
is:
(i) in the same direction for all agents,
(ii) proportional to the amount that agent i compares herself to r (the subject of
the comparison shift) prior to the shift.

It also allows us to examine the nature of the returns to the magnitude of a
comparison shift. When an agent r moves from direct comparison with a lower
centrality agent to direct comparison with a higher centrality agent (i.e. Cbu > Cbd),
then there are increasing returns to the magnitude of a comparison shift if and
only if agent r influences agent u more than she influences agent d, but the gap
is not too large.

COROLLARY E.2: Given a comparison shift D, if Cbu > Cbd, then for all i, x∗i
is: convex in φ if and only if Bur −Bdr ∈ (0, 1

φ) , and concave in φ otherwise.

Now consider a composite comparison shift, D̂ = D1 + ... + DZ , which is con-
structed by summing up n ≥ 2 comparison shifts. The impact of a composite
comparison shift is not equal to the sum of the effects of each comparison shift
that form part of it. This is because the impact of any one comparison shift
depends on the whole network immediately before it occurs.

COROLLARY E.3: Consider a composite comparison shift D̂. The impact of
D̂ = D1 + ...+DZ is not the same as the sum of the impacts of D1, ..., DZ .
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For a given network, it would be straightforward to calculate the change in
actions due to a more complex change in the reference structure using an ap-
plication of the formula provided by Chang (2006). However, we cannot obtain
analytic results due to the interactions between the effects of each comparison
shift. Even with a few comparison shifts, the outcome would be too complicated
to yield any insight. However, if the comparison shifts are all of an equal size, for
example ∆, then interactions between the are of the order ∆2. Therefore, when
considering small changes to the network (i.e. small Z · ∆) we can reasonably
disregard the interactions – a naive summation is a close approximation for the
actual aggregate effect.

COROLLARY E.4: If the total change to the network, Z ·∆, is small,then the
impact of a composite comparison shift D̂ approximately equal to the sum of the
impacts of each comparison shift that makes up D̂.

This approach works because we are able to take a linear approximation (i.e.
ignore any terms that are O(δ2)). The total change to agents’ Bonacich centrality
will be well approximated by simply adding up the effects of each comparison shift.
However, we should be very wary of extrapolating from small changes to large
ones. It is difficult to characterise the interactions and small changes may not be
indicative of large ones. Past observations from small or localised changes may
cease to be a useful guide in the face of large-scale social change happens.

Finally, we prove that assuming αi < 1 for all i is sufficient to guarantee exis-
tence, even after a comparison shift (something we claimed, but did not prove, in
section 2).

COROLLARY E.5: If αi < 1 ∀i ∈ N then (I−(ag+D))−1 exists for any network
ag, and any comparison shift D.

However, if αi > 1 for some i, then it is possible that a solution exists for
some, but not all, reference structures g. In this instance it is necessary to check
that a solution exists both before and after the shift. That is: λ1(G) < 1 and
λ1(G + D) < 1. While it is possible for only one of these conditions to be met,
the results cannot apply unless both hold.

Proofs

PROOF OF LEMMA E.1:
This is a restatement of Lemma 3 (which was needed to prove other results

from the main text).

PROOF OF COROLLARY E.1:
Proposition E.1 characterises the change in agent i’s optimal action, ∆x∗i . The

only term in the expression for ∆x∗i that depends on i is Bir. (i) Since Bij ≥ 0
for all i, j, ∆x∗i has the same sign for all i. (ii) ∆x∗i is equal to Bir multiplied by
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some terms that do not depend on i. Therefore ∆x∗i is proportional to Bir (i.e.
the amount that i compares herself to r).

PROOF OF COROLLARY E.2:
For ease of exposition, let: Bir(C

b
u − Cbd)f

′−1(c) ≡ y and (Bur − Bdr) ≡ z.
Let x̂∗i ≡ x∗i + ∆x∗i be the new equilibrium value of consumption. So x̂∗i =

x∗i + yφ(1 − zφ)−1. Now consider the second derivative.
d2x̂∗i
dφ2

= 2yz(1 − zφ)−3.

We can partition values of z into three cases: (i) z < 0, (ii) 0 ≤ z ≤ 1
φ , (iii) z > 1

φ .

In case (ii),
d2x̂∗i
dφ2
≥ 0. In cases (i) and (iii),

d2x̂∗i
dφ2

< 0. These observations follow

straightforwardly from the fact that y > 0 and φ > 0. The second derivative
determines convexity/concavity. Note that if (Cbu−Cbd) < 0 then y < 0 and so all
results flip.

PROOF OF COROLLARY E.3:
W.L.O.G any composite comparison shift D̂ can be expressed as the sum of

comparison shifts D1, ..., DZ : D̂ ≡
∑Z

i=1Di. It follows from Lemma 2 that H is
a function of both the comparison shifts Di and (I −G)−1.

Trivially (I −G −X)−1 6= (I −G)−1 for any X 6= 0. Therefore the effect of a
comparison shift Di depends on the network immediately prior to the comparison
shift: H(Di, (I−G−

∑i−1
j=1Di)

−1) 6= H(Di, (I−G)−1). The effect of a composite

comparison shift D̂ is therefore not equal to the sum of the effects of individual
comparison shifts:

∑Z
i=1H(Di, (I −G−

∑i−1
j=1Di)

−1) 6=
∑Z

i=1H(Di, (I −G)−1).

PROOF OF COROLLARY E.4:
Let the composite comparison shift D̂ be constructed from a series of compar-

ison shifts (D1, ..., DZ), each of a size ∆. H(Di, (I −G−X)−1) is the change in
the optimal actions following a comparison shift Di, when the starting network is
(G+X). From Lemma 2: H(Di, (I −G)−1) = ∆ · fn((I −G)−1) = O(∆). Then
H(Di, (I −G−Dj)

−1) = ∆ · fn((I −G−Dj)
−1) = ∆ · fn((I −G)−1 +O(∆)) =

H(Di, (I − G)−1) + O(∆2). By a simple induction argument we can see that

H(Di, (I −G−
∑J

j=1Dj)
−1) = H(Di, (I −G)−1) +O(∆2). Therefore the effect

of the earlier comparison shifts D1, ..., Di−1 on the change in optimal actions in-
duced by Di is on the order ∆2. If Z ·∆ is sufficiently small, then we can ignore
these interaction effects, which are collectively of the order Z ·∆2.

PROOF OF COROLLARY E.5:
This follows trivially from Remark 1, which proves that αi < 1 for all i is a

sufficient condition to ensure equilibrium existence for any network G. Since a
comparison shift leaves αi unchanged for all i (by definition), then Remark 1
continues to apply.
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Appendix F: Chang (2006): A perturbation theorem

I restate Lemma 2 for clarity and then present a proof. This is a special case
of Chang (2006), which simplifies the proof. I have also aligned the notation to
match my paper.

LEMMA 2 (A perturbation theorem. Chang (2006)): If D is a comparison shift,
then (I − [G+D])−1 − (I −G)−1 = H. Where:

H =
φ

1− φ(Bur −Bdr)

B1r(Bu1 −Bd1) · · · B1r(Bun −Bdn)
...

. . .
...

Bnr(Bu1 −Bd1) · · · Bnr(Bun −Bdn)


PROOF OF LEMMA 2 :

This proof is a simplified version of Chang (2006). By the Woodbury Identity
Matrix: if A and D are n× n matrices, and A is non-singular, then (A−D)−1 =
E + E(I − DE)−1DE, where E ≡ A−1 [Woodbury (1950) and Sherman and
Morrison (1949)]. Now partition the matrices D and E:

D =

[
D 0
0 0

]
E =

[
E E2

E1 E3

]
E =

[
E
E1

]
E =

[
E BE

]
where D is the smallest matrix that contains non-zero elements of D, and E
contains the transpose of the elements in E.4 Simple matrix algebra yields: (A−
D)−1 = E + E(I −D E)−1D E.

Now recall that D is a ‘comparison shift’ (as per Definition 2). Therefore: D =[
Dru Drd

]
=
[
φ −φ

]
, and so:

E =

[
Eur
Edr

]
, E =

E1r
...

Enr

 and E =

[
Eu1 · · · Eun
Ed1 · · · Edn

]

This yields;

(A−D)−1 = E +

E1r
...

Enr

 · (I − [Dru Drd

] [Eur
Edr

])−1

·
[
Dru Drd

]
·
[
Eu1 · · · Eun
Ed1 · · · Edn

]

Now multiply out, substitute in Dru = φ and Drd = −φ, noticing that the matrix

4So if D consists of elements Dij for i ∈ I , j ∈ J , then D consists of elements Dji for i ∈ I , j ∈ J .
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inverse (I −D E)−1 is a scalar, and rearrange.

(A−D)−1 −A−1 =
φ

1− φ(Bur −Bdr)

B1r(Bu1 −Bd1) · · · B1r(Bun −Bdn)
...

. . .
...

Bnr(Bu1 −Bd1) · · · Bnr(Bun −Bdn)


This result holds for any non-singular n×n matrix A. Letting A = (I−G) yields
the result.

Appendix G: Heterogeneous Costs

The cost parameter ci reflects agents’ underlying propensity/ability to take
the action, xi. In this section, we examine the implications of introducing cost
heterogeneity. The key takeaway is that allowing for heterogeneous costs has
relatively little impact on the insights of the main model.

With this generalisation, equilibrium play depends on the individual entries in
the full matrix B, rather than only on Bonacich centralities (the row sums of
B). Nevertheless, the existence condition is unaffected, and the solution takes a
similar form. At this point, it is helpful to interpret individual elements of the
matrix B and to introduce a notion of “generalised Bonacich centrality”.

DEFINITION G.1 (Comparisons): The comparison matrix is B ≡ (I − G)−1,
where Bij captures how much i compares herself to j.

Bonacich centrality captures an agent’s connectedness to the network as a
whole. The comparison matrix breaks this down to the individual agent level.
An element Bij measures the total weight of walks from i to j, and captures the
extent to which i compares herself to j. This is a dis-aggregation of Bonacich
centrality. We can then weight these individual level comparisons with a function
of the cost parameters to obtain a generalised notion Bonacich centrality.5

DEFINITION G.2 (Generalised Bonacich Centrality): The vector of Bonacich
centralities for a network G ≡ ag is Cgen = B · f ′−1(c) The Bonacich centrality
of agent i is Cgeni =

∑
j Bijf

′−1(cj)

With this definition we can restate Remark 1, accounting for heterogeneous costs.
The condition for existence depends only on the network and so is unaffected by
cost heterogeneity. However, the optimal actions are now proportional to our new
notion of generalised centrality, rather than the usual Bonacich centralities.

REMARK G.1 (Existence and Solution): With heterogeneous costs, an equilib-
rium exists if and only if λ1 < 1. If this condition is met, then there is a unique
Nash Equilibrium: x∗i = Cgeni

5It is clear that when cj = c for all j this collapses back to the original Bonacich centrality.
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PROOF OF REMARK G.1 :
This follows from the proofs to Remark 1, with the only change that f

′−1(cj)
now depends on j, and so cannot be pulled out through the summation sign.

The other results from Section 2 also extend to this heterogeneous cost setting.
The proofs here only provide the required extension from their homogeneous cost
analogues.

PROPOSITION G.1 (Reference strength): If λ1 < 1: (i) x∗i is weakly increas-
ing, and (ii) u∗i is weakly decreasing, in αj for all i, j, and strictly so if i = j.

PROOF OF PROPOSITION G.1 :
(i) Proposition 1 shows that if a given αj increases, then all elements of (ag)k

weakly increase for any k. Consequently, all elements (I − ag)−1
ij increase. (ii)

having found that x∗i is increasing in αk, the second part of the proof to Propo-
sition 1 goes through unchanged.

PROPOSITION G.2 (Cost): If λ1 < 1: (i) x∗i is strictly decreasing and convex
in cj for all j, (ii) u∗i is strictly increasing in cj for all j 6= i.

PROOF OF PROPOSITION G.2 :
(i) follows straightforwardly from Remark G.1 and the fact that F (·) is strictly

decreasing and convex. (ii) equilibrium utility is u∗i = f(x∗i −
∑

k 6=iGikx
∗
k)− cix∗i .

Differentiate with respect to cj :

du∗i
dcj

=

dx∗i
dcj
−
∑
k 6=i

Gik
dx∗k
dcj

 f ′(·)− ci
dx∗i
dcj

Now recall that f ′(x∗i −
∑

j x
∗
j ) − ci = 0 in equilibrium, and that x∗i = Cgeni for

all i,
dx∗k
dcj

=
dCgen

k
dcj

= BkjF
′(cj) < 0. Substituting these in yields:

du∗i
dcj

= −f ′(·)
∑
k 6=i

GikBkjF
′(cj) < 0

This result is somewhat different to the homogeneous cost version. Because the
cost parameter is now agent-specific, the outcome is much simpler. An increase
in an agent j’s cost pushes down her consumption, relaxing the need for others
to keep up with “The Joneses” (in this case, agent j). This increases welfare for
all i 6= j. Since i has not experienced an increase in her own costs, there is no
off-setting effect. The impact of someone else’s cost parameter on your welfare is
unambiguous.
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PROPOSITION G.3: The change in agent i’s action due a comparison shift D
is equal to;

φBir(C
gen
u − Cgend )

1− φ(Bur −Bdr)

PROOF OF PROPOSITION G.3 :
This follows from Proposition E.1 but replacing Cbi · f

′−1(c) with Cgeni .

All other results concerning comparison shifts also follow as a result of this,
including an analogue to Proposition 3. This is because they are also based on
Lemma E.1 (i.e. Lemma 3) in the homogeneous cost case.

PROPOSITION G.4 (Endogenous network): In all pairwise stable networks, if

bi ≥ cif
′−1(ci), then Gij > 0 only if bi

ci
=

bj
cj

.

PROOF OF PROPOSITION G.4 :
This follows straightforwardly from the proof to Proposition 4, replacing c with

the agent-specific version as appropriate.

*
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