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Monetary Policy Frameworks and the Effective Lower Bound on Interest Rates

By Thomas M. Mertens and John C. Williams4

Online Appendix

A1. Derivation of inflation equations

Combining equations (1) and (2) from the New Keynesian model yields the equation for
inflation

πt − Etπt+1 = µt + κ(ϵt − α(it − Etπt+1 − r∗))) + βEt(πt+1 − πt+2).

With the interest rate rules of the form (4), the final term is zero and inflation is determined
by

πt = (1 + ακ)Etπt+1 + µt + κϵt − ακ(it − r∗).

Plugging in the interest rate rule from equation (4) for when the central bank is uncon-
strained, delivers inflation of the form

(A1) πt = ακ(r∗ − θ0) + (1 + ακ(1− θE))Etπt+1 + (1− ακθµ)µt + κ(1− αθϵ)ϵt.

In the case where the interest rate rule would ask for nominal rates below the lower bound,
the central bank sets the policy rate as low as possible, to iLB

(A2) πt = µt + κϵt − ακ(iLB − r∗) + (1 + ακ)Etπt+1.

These two equations in the appendix are used in the main body of the paper. Note that
they imply the existence of two steady-state equilibria in the deterministic version of the
model. In both equation, inflation expectations and inflation rates appear linearly. Hence
each equation may be associated with a steady-state equilibrium. We refer to the equilibrium
associated with the first equation to the “target equilibrium” and the one associated with
the second equation as a “liquidity trap”.

A2. Derivation of inflation expectations

With demand or supply shocks, the lower bound can become an occasionally binding
constraint. In this case, both equations for inflation (A1) and (A2) have to be used to
determine inflation expectations

(A3) Eπ = Prob
(
ioptt < iLB

)
E
[
πt|ioptt < iLB

]
+ Prob

(
ioptt ≥ iLB

)
E
[
πt|ioptt ≥ iLB

]
.

For this equation, we drop the period t subscript from the expectations operator. In this
model with the specified monetary policy rule, there is no information at time t that predicts
period t+1 inflation and therefore conditional and unconditional expectations are identical.

For illustrative purposes, we drop the demand shock from the model, i.e., we set its variance
to zero. Then the constraint on nominal interest rates binds when µt falls below a cutoff
value µ̄ = 1

θµ
(iLB − θ0 − θEEπt+1).
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There are three different cases: The cutoff value µ̄ can fall below, in, or above the support
of the distribution for the supply shock. The probability of being constrained by the lower
bound can thus be expressed as

Prob
(
ioptt < iLB

)
=


1 if − µ̄ ≤ −µ̂
1
2µ̂
(µ̂+ µ̄) if − µ̂ < −µ̄ < µ̂

0 if − µ̄ ≥ µ̂.

If we plug this expression in equation (A3) and compute conditional expectations of inflation
from equations (A1) and (A2) respectively, we get inflation expectations as

Eπt =


−ακ(iLB − r∗) + (1 + ακ)Eπt+1 if − µ̄ ≤ −µ̂

−ακ
4µ̂

(µ̄−µ̂)2

θµ
+ (1 + ακ(1− θE))Eπt+1 − ακ(θ0 − r∗) if − µ̂ < −µ̄ < µ̂

−ακ(θ0 − r∗) + (1 + ακ)Eπt+1 if − µ̄ ≥ µ̂.

The expression in the middle where the constraint is occasionally binding is of particular
interest. The cutoff for the supply shock that depends linearly on inflation expectations
appears quadratically. To find a steady-state equilibrium for inflation expectations, we need
to solve a quadratic equation which results in two solutions for a parameter range.5

A3. Inflation expectations in the presence of an upper bound

The derivation of inflation expectations for the case where both a lower and upper bound
are present follows the same steps as in Appendix A.A2. Due to the additional constraint,
however, the list of distinct cases increases. With various conditions CLB

· and CUB
· on the

lower and upper bounds, respectively, we distinguish the cases:

E[πt] =



(1 + ακ)E[πt+1]− ακ(iLB − r∗) if CLB
c

ακ

4θµµ̂

(
iUB + iLB − 2θ0 − 2θEE[πt+1]

)(
(iUB − iLB)− 2θµµ̂

)
+

+ (1 + ακ(1− θE))E[πt+1] + ακ(r∗ − θ0)

if CLB
o and CUB

o

−
ακθµ

4µ̂

(
µ̂+

1

θµ

(
iLB − θ0 − θEE[πt+1]

))2

+

+ (1 + ακ(1− θE))E[πt+1] + ακ(r∗ − θ0)

if CLB
o and CUB

u

(1 + ακ)E[πt+1]− ακ(iUB − r∗) if CUB
c

ακθµ

4µ̂

(
µ̂−

1

θµ

(
iUB − θ0 − θEE[πt+1]

))2

+

+ (1 + ακ(1− θE))E[πt+1] + ακ(r∗ − θ0)

if CLB
u and CUB

o

(1 + ακ(1− θE))E[πt+1] + ακ(r∗ − θ0) if CLB
u and CUB

u

The various conditions determine whether a constraint never binds, C·
u, always binds, C·

c, or
occasionally binds, C·

o. The specific conditions on the lower bound are

CLB
u =

{
1

θµ
(iLB − θ0 − θEE[πt+1]) < −µ̂

}

5For cases of a single equilibrium or non-existence, see Mertens and Williams (2018).
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for the lower bound to never bind,

CLB
o =

{
−µ̂ ≤ 1

θµ
(iLB − θ0 − θEE[πt+1]) ≤ µ̂

}
for the lower bound to occasionally bind, and

CLB
c =

{
1

θµ
(iLB − θ0 − θEE[πt+1]) > µ̂

}
for the lower bound to always bind.

For the upper bound, the conditions are

CUB
u =

{
1

θµ
(iUB − θ0 − θEE[πt+1]) > µ̂

}
for the upper to never bind,

CUB
o =

{
−µ̂ ≤ 1

θµ
(iUB − θ0 − θEE[πt+1]) ≤ µ̂

}
for the upper bound to occasionally bind, and

CUB
c =

{
1

θµ
(iUB − θ0 − θEE[πt+1]) < −µ̂

}
for the upper bound to always bind.

When solving for inflation expectations, a third equilibrium besides the target equilibrium
and the liquidity trap emerges. This equilibrium is associated with the upper bound on
nominal interest rates. As in the case with only a lower bound, we restrict our analysis to
the target equilibrium.
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A4. Comparison of policies

Table A1 shows a comparison of various statistics from the simulations using the different
policies.

Table A1—Comparison of policies

Discretion Dovish Policies AIT PLT
No lower
bound

Symmetric
upper bound Optimal θµ Eπ = 0 Optimal θ0 Optimal θp

E(πt) 0.000 -0.244 0.000 -0.085 0.000 0.104 0.000
V(πt) 0.287 0.675 0.642 0.668 0.501 0.446 0.190
E(xt) 0.000 -0.003 0.000 -0.001 0.000 0.001 0.002
V(xt) 2.934 2.053 2.035 1.912 2.381 2.501 2.788
E(π2

t ) + λE(x2
t ) 1.020 1.248 1.150 1.153 1.096 1.082 0.887

P(it = iLB) —– 0.273 0.184 0.172 0.205 0.178 0.076
E(πt|it = iLB) —– -1.389 -1.193 -1.402 -1.124 -1.005 -0.652
E(πt|it > iLB) 0.000 0.185 0.269 0.189 0.290 0.344 0.054
θ0 1.000 1.000 1.000 1.000 0.900 0.850 1.000
θµ 0.719 0.719 0.719 0.626 0.719 0.719 0.719
θE 1.722 1.722 1.722 1.722 1.722 1.722 1.722
θp 0.000 0.000 0.000 0.000 0.000 0.000 0.360

Note: The above table shows various statistics for the simulations discussed in the main body of the paper.




