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A Model Settings

To study the policy options at the Zero Lower Bound (ZLB) when planning horizon is

�nite, we relax the assumption of perfectly model-consistent expectations in a particular way

proposed in Woodford (2018). More speci�cally, decision makers are assumed to be capable

of explicit forward planning some �nite distance into the future. Within planning horizon h,

agents deduce the consequences of a �nite sequence of possible actions, using known structure

of the environment which includes any newly announced government's policies. Beyond the

limited planning horizon, it is too costly to continue searching all possible branches of the

decision tree, and therefore, agents evaluate the states at the end of planning horizon using

a value function that has been learned from prior experiences, i.e., v(B) for households and

ṽ(P f/P ) for �rms, which necessarily takes into account only a coarse description of the state.

Since the crisis period is temporary, and we focus on temporary policy changes in

response to the disturbances during crisis periods, unless otherwise stated, we assume that

the value functions v(B) and ṽ(P f/P ) are given. In other words, they do not evolve in

response to experiences during crisis, but instead are �xed at particular values, the functions

that would be appropriate to the "normal steady state" that is assumed to have existed

before the exogenous disturbance occurs. On the one hand, we assume that duration of

crisis state is short enough to allow us to abstract from adjustment of value functions owing

to learning about the new regime under crisis. On the other hand, the assumption of non-

evolving value function during crisis can be regarded as a limiting case of the full model, i.e.,

the limit in which learning is very slow. It will simplify the analysis and explanation of the

results, and since we are only interested in temporary disturbances and temporary policy

changes in response to those disturbances, this is not necessarily a bad assumption.

1



Following Woodford (2018), by log-linearization, for decision makers with planning hori-

zon h ≥ 1, we have

yht = Eh
t y

h−1
t+1 − σ[̂ıt − r̂nt − Eh

t π
h−1
t+1 ] (A.1)

πht = κyht + βEh
t π

h−1
t+1 (A.2)

Here, yht and πht are real expenditure by households with planning horizon h and the

rate of price increase by �rms with planning horizon h for a particular fundamental state

at time t. Note that yt is measured as a log-deviation from the steady-state output level

consistent with in�ation target π∗, and πt is measured as a deviation from the target π∗. r̂nt
denotes the deviation from the steady state real return on safe assets, and ı̂t denotes the

current policy choice, which is also written in terms of a deviation from the steady state.

We assume that all agents have a correct awareness of the current fundamental state r̂nt and

of the current policy choice ı̂t. E
h
t [·] means the expected value of future variables under the

beliefs of horizon-h planners, in particular, under the assumption Eh
t [P̃t] = P̃t−1 + Πh

t about

what the lagged �price level gap� will be in the next period. Forward planners correctly

understand how yh−1
t+1 and πh−1

t+1 will depend on P̃t; but in predicting P̃t, they assume that all

price-setters will behave like them, so that the in�ation rate will be πt = πht . For the case of

h = 0, the aggregate demand IS curve and New Keynesian Phillips curve will depend on the

policy regime, which will be discussed later in the analysis of speci�c alternative monetary

and �scal policies.

We consider the e�ects of alternative monetary and �scal policies under the following

scenario: prior to date t = 0, we suppose that the economy has for a long time been in

a regime under which there are no �nancial frictions (hence, natural rate of interest rate

rnt = r∗ > 0), government purchases are constant and government's budget is balanced

in each period, and the in�ation target π∗ has been consistently achieved (the ZLB is no

obstacle to this). As a result, households and �rms have learned the value functions that

are appropriate to such a regime. At time t = 0, unexpected shock on fundamental occurs,

creating a wedge ∆ > 0 between the return on safe assets (balances held at the central bank)

and other assets.

Moe speci�cally about the fundamentals {r̂nt }, it follows an exogenous process, i.e., a

two-state Markov chain. The two states are rnt = r∗ > 0 in �normal� state and rnt = r < 0

in �crisis� state, implying that the �nancial wedge equals ∆ = r∗ − r. We suppose that,

at date t = 0, the economy enters the �crisis� state, and thus rn0 = r after a long time in

the steady state with rnt = r∗ and in�ation equal to π∗. Once in the crisis state, there is a

probability 0 < δ < 1 in each period of continuing to be in the �crisis� state again in the

following period, and a probability 1 − δ of reverting to the �normal� state. For simplicity,
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Table 1: Calibrated Parameter Values
Value

Subject discount factor β = 0.997
Response of in�ation to output gap in Phillips curve κ = 0.00859
Risk aversion σ = 0.862
Fiscal multiplier in �exible price Γ = 0.425
Natural rate in �crisis� state r = −0.010
Probability of staying in �crisis� state δ = 0.903
In�ation target π∗ = 0.005

this probability of exit is independent of the length of time already spent in the �crisis� state.

Once the economy returns to the �normal� state, it is expected to remain there forever, i.e.,

the �nancial wedge becomes zero again and is expected to be zero thereafter. The variable

r̂nt in (A.1) is written in terms of deviations from the steady state value in the �normal�

state, i.e., r̂nt = 0 in the �normal� state while r̂nt = r − r∗ ≡ −∆ < 0 in the �crisis� state.

Since ı̂t is also written in terms of a deviation from the �normal� steady state in which

the constant nominal interest is r∗ + π∗, the zero-lower-bound constraint requires that

ı̂t ≥ −(r∗ + π∗) (A.3)

in all periods. Note that we assume r∗ > 0, π∗ > 0.

A.1 Calibration

In order to compare with the results under rational expectation equilibrium (REE), we

calibrate the parameters to be the same as those in REE analysis, as in Woodford (2011). The

parameters are chosen to �t the size of the contraction experienced by the US economy during

the Great Depression. For a quarter model, we set the subject discount factor β = 0.997, the

response of in�ation to output gap in Phillips curve κ = 0.00859, the inverse of elasticity of

intertemporal substitution σ = 0.862 (i.e., the relative risk aversion), and the �scal multiplier

in �exible price Γ = 0.425. The shock required to account for the size of the contraction

during the Great Depression is r = −0.010 and the probability of staying in �crisis� state

is δ = 0.903. Note that the natural rate in the �normal� time steady state is given by

r∗ = 1/β − 1. In addition, we adopt a 2% annual in�ation target, i.e., π∗ = 0.005. The

calibrated parameter values are summarized in Table 1.
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B Monetary Policy: In�ation Targeting

In this section, we study what should happen when the crisis occurs, if there is no change

in either �scal or monetary policy, and the monetary policy is speci�ed by a strict in�ation

target: in�ation rate π∗ is maintained as long as consistent with the ZLB. More speci�cally,

suppose that the central bank achieves its in�ation target π∗ whenever it is consistent with

(A.3), and sets ı̂t as lower as possible otherwise. Its policy rule therefore requires that

πt ≤ 0 (B.1)

at all times, and that either (A.3) or (B.1) must hold with equality in each period.

Because of the Markovian form of the equilibrium relations including the speci�ed policy

rule (B.1), regardless of planning horizon h, the solution will be Markovian as well. That

is, the value of each of the variables {ykt , πkt }, as well as the value of ı̂t, will depend only on

which of the two states the fundamentals are in at date t.

Solution once �normal� state is reached : in this case, the central bank can ensure πt = 0

forever. Conditions (A.1)-(A.2) for the types with horizon h = 0 require

y0
t = −σı̂t, π0

t = κy0
t (B.2)

which imply constant values y0
t = ȳ0, π0

t = π̄0 as long as ı̂t = ı̄ is constant. Conditions

(A.1)-(A.2) for horizon h = 1 then imply

y1
t = ȳ0 − σı̂t + σπ̄0, π1

t = κy1
t + βπ̄0

so that we also have constant values y1
t = ȳ1, π1

t = π̄1. We can proceed recursively to solve

for yht = ȳh, πht = π̄h for any h ≥ 0. The constant value of ı̂t required to maintain πt = 0

is ı̂t = 0; under this assumption, the above equations imply ȳht = 0, π̄h = 0 for all h ≥ 0.

Hence, πt = 0 in each period, regardless of the assumed distribution of planning horizons.

Solution in the �crisis� state: conditions (A.1)-(A.2) for horizon h = 0 now reduce to

y0
t = −σ[̂ıt + ∆], π0

t = κy0
t , and again imply constant values y0

t = y0, π0
t = π0 as long as

ı̂t = ı̂ is constant. Conditions (A.1)-(A.2) for horizon h = 1 then imply

y1
t = [δy0 + (1− δ)ȳ0]− σ[̂ı+ ∆] + σ[δπ0 + (1− δ)π̄0]

π1
t = κy1

t + β[δπ0 + (1− δ)π̄0]

so that we also have constant values y1
t = y1, π1

t = π1. We can proceed recursively in this
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way to solve for yht = yh, πht = πh for any h ≥ 0, as fundamentals of the assumed constant

interest rate ı̂. If it were possible to set ı̂ = −∆, the above equations would imply yht = 0,

πht = 0 for all h ≥ 0, and the in�ation target would be achieved by this policy. We assume,

however, that ∆ > r∗ + π∗, so that this level of interest rate would violate (A.3). The only

possible solution is therefore the one with ı̂ = −(r∗+π∗), i.e., the lower bound, in the �crisis�

state. We can then solve the following recursive system of equations for {yh, πh}:

y0 = −σ∆̃ π0 = κy0

y1 = δy0 − σ∆̃ + σδπ0 π1 = κy1 + βδπ0

y2 = δy1 − σ∆̃ + σδπ1 π2 = κy2 + βδπ1

· · · · · ·

(B.3)

where ∆̃ ≡ ∆− (r∗ + π∗) > 0.

The solution for actual aggregate output and in�ation in the crisis state then depends

on what we assume about the distribution of forecast horizons in the population. If everyone

has the same planning horizon h, then yt = yh, πt = πh in the �crisis� state. Given the

calibration in Section A.1, Figure 1 shows the constant-level of output and in�ation in �crisis�

state as a function of planning horizon h, where the unit in h indicates one quarter. With

�nite planning horizons, e�ects of the shock are smaller than under rational expectation

equilibrium (REE) analysis such as Eggertsson and Woodford (2003), Eggertsson (2010),

and as agents are more short-foresight, the contraction is less severe.

If instead we assume a distribution of population fractions {ωj}∞j=0, then yt = Σjωjy
j,

πt = Σjωjπ
j. A simple case to solve is the case of an exponential distribution of forecast

horizons, ωj = (1− ρ)ρj for j ≥ 0. In this case, relations B.3 can be summed to yield

ycrisis = δρycrisis − σ∆̃ + σδρπcrisis

πcrisis = κycrisis + βδρπcrisis

This has a unique solution

πcrisis =
−κσ∆̃

[(1− ρδ)(1− βδρ)− κσδρ]
< 0

ycrisis =
−σ(1− βδρ)∆̃

[(1− ρδ)(1− βδρ)− κσδρ]
< 0
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Figure 1: Output and In�ation in �Crisis� State as a Function of Planning Horizon

under the assumption that

(1− ρδ)(1− βδρ)− κσδρ > 0 (B.4)

Note that if (B.4) does not hold, the in�nite sums Σjωjy
j, Σjωjπ

j diverge. But this

possibility is not of realistic interest, since surely there should be some �nite upper bound

beyond which ωj = 0; the assumption of an exponential distribution is an approximation for

the sake of convenience in the algebraic calculation.

C Government Purchases with In�ation Targeting

Since the monetary policy may be constrained by the ZLB during the crisis periods, in

this section, we study real government purchases as a type of ��scal stimulus�: government

purchases are increased by a constant amount as along as �crisis� state persists, and return

to normal level when the economy reverts back to �normal� state. More speci�cally, we

assume that government purchases Gt follow a two-state Markov process, i.e., Gt = 0 in the

�normal� state and Gt = G > 0 in the �crisis� state. Hence, the government purchases gt

as a percentage of steady-state output in �normal� state is given by gt = 0 in the �normal�
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state and gt = G/Ȳ > 0 in the �crisis� state, where Ȳ is the steady-state output level.1

Suppose the fundamentals {r̂nt } follow the same exogenous process as in Section B, and

the monetary policy is also the same as speci�ed in Section B (i.e., in�ation targeting).

For simplicity, we assume a balanced-budget policy, i.e., no change in the time-path of real

government debt bt.

Following Woodford (2011, 2018), by log-linearization, for decision makers with planning

horizon h ≥ 1, we have

yht − gt = Et[y
h−1
t+1 − gt+1]− σ[̂ıt − r̂nt − Etπh−1

t+1 ] (C.1)

πht = κ[yht − Γgt] + βEtπ
h−1
t+1 (C.2)

with

y0
t − gt = −σ[̂ıt − r̂nt ]

π0
t = κ[y0

t − Γgt]

where Γ = ηu/(ηu + ηw) < 1. Note that ηu = −Ȳ u′′/u′ > 0 is the negative elasticity of u′

and ηw = Ȳ w̃′′/w̃′ is the elasticity of w̃ with respect to increases in Y .2

C.1 The Rational Expectation Equilibrium (REE)

Solution once �normal� state is reached : πt = 0 and yt = 0 for all periods, and target in�ation

rate is achieved and is expected to be achieved forever after. This is the result with rational

expectations. No further discussion is needed for this case.

Solution in the �crisis� state: under rational expectations, πt = πRE, yt = yRE in all

periods, where (πRE, yRE) are functions of g that satisfy

yRE − g = δ(yRE − g)− σ(̂ıRE + ∆) + σδπRE

⇒ (1− δ)(yRE − g) = −σ(̂ıRE + ∆) + σδπRE

and

πRE = κ(yRE − Γg) + βδπRE

⇒ (1− βδ)πRE = κ(yRE − Γg)

1At least in the case that G is not very large compared with Ȳ , the log-linear approximation is accurate.
2Similar to the notation in Woodford (2018), the period utility of household i is de�ned as u(Ci

t)−w(Hi
t),

where Ci
t is the quantity consumed in period t andHi

t is hours of labor supplied in period t. As usual, u(·) is an
increasing, strictly concave function, and w(·) is an increasing, convex function. Note that w̃(Y ) = w(f−1(Y ))
is the disutility to the household of supplying a quantity of output Y , and f is the production technology.
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In order to achieve the in�ation target, it requires to have πRE = 0, which implies

yRE = Γg. In this case, we have

σ(̂ıRE + ∆) = −(1− δ)(yRE − g) + σδπRE

= (1− δ)(1− Γ)g

which is feasible (to be consistent with ı̂RE ≥ −(r∗ + π∗) ⇐⇒ ı̂RE + ∆ ≥ ∆̃) if and only if

g ≥ ḡRE, where ḡRE is de�ned by

σ∆̃ = (1− δ)(1− Γ)ḡRE

If instead g < ḡRE, the ZLB binds, and (πRE, yRE) are given by

(1− δ)(yRE − g) = −σ∆̃ + σδπRE

(1− βδ)πRE = κ(yRE − Γg)

which have a solution3

πRE =
κ[(1− δ)(1− Γ)g − σ∆̃]

(1− βδ)(1− δ)− σδκ
< 0

so that the in�ation target cannot be achieved even with ı̂ at its lower bound.

C.2 The Equilibrium with Finite Planning Horizon

For agents with any �nite horizon h ≥ 0, the solution once the �normal� state is reached is

the same with that of REE case, and thus no further discussion needed. Instead, we focus

on the solution in the �crisis� state.

If all have horizon h = 0: then while still in the crisis state, (π0, y0) are functions of g

that satisfy

y0 − g = −σ(̂ı0 + ∆)

π0 = κ(y0 − Γg)

In order to achieve the in�ation target, it requires to have π0 = 0 ⇒ y0 = ΓĜ. In this

case, we have

σ(̂ı0 + ∆) = −(y0 − g) = (1− Γ)g

3We assume that δσκ < (1− βδ)(1− δ), so that the REE solution exists.
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which implies ı̂0 = 1−Γ
σ
g −∆, and it is feasible if and only if g ≥ ḡ0, where ḡ0 is de�ned by

(1− Γ)ḡ0 = σ∆̃

and satis�es 0 < ḡ0 < ḡRE.

If instead g < ḡ0, the ZLB binds and (π0, y0) are given by

π0 = κ[(1− Γ)g − σ∆̃] < 0 (C.3)

y0 = g − σ∆̃ (C.4)

For any �nite horizon h ≥ 1: then while in the crisis state, (πh, yh) are functions of g

that satisfy

yh − g = δ[yh−1 − g]− σ(̂ıh + ∆) + σδπh−1

πh = κ[yh − ΓĜ] + βδπh−1

1. If g ≥ ḡRE: then the in�ation target is achieved, and is expected to be achieved over

the rest of the planning horizon. Consequently, we have

πh = πh−1 = 0⇒ yh = ΓĜ

• Proof: Proceed by induction. Suppose that we have already shown that

πj = 0, yj = ΓĜ

for all j ≤ h− 1. We wish to show that it is also true for j = h. Since πj−1 = 0,

achievement of πh = 0 would require yh = ΓĜ. This would then require that

−σ(̂ıh + ∆) = yh − g − δ(yh−1 − g)− σδπh−1

= −(1− δ)(1− Γ)g

⇒ ı̂h =
(1− δ)(1− Γ)

σ
g −∆

But this is consistent with the ZLB as long as g ≥ ḡRE. Q.E.D.

2. If ḡ0 ≤ g < ḡRE: then the ZLB binds, and is expected to continue to bind for h periods,

but is not expected to bind in the �nal period of the �nite-horizon planning exercise.
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We have already shown that if h = 0, the ZLB does not bind in this case, i.e.,

π0 = 0, y0 = Γg (C.5)

Under the above conjecture, (πh, yh) for any h ≥ 1 must satisfy

yh − g = δ[yh−1 − g]− σ∆̃ + σδπh−1 (C.6a)

πh = κ[yh − Γg] + βδπh−1 (C.6b)

The system (C.6a)-(C.6b) can be solved recursively, starting from the initial values

(C.5). It needs to shown that the solution to this system satis�es πh < 0 for all h ≥ 1,

thus verifying that the ZLB binds.

• Proof: again proceed by induction. Suppose that we have already shown that

πj ≤ 0, yj ≤ Γg (C.7)

for all j ≤ h− 1. Then, (C.6a) implies that

yh − Γg = (1− Γ)g + δ[yh−1 − g]− σ∆̃ + σδπh−1

≤ (1− δ)(1− Γ)g − σ∆̃ < 0

and (C.6b) then implies that

πh ≤ κ(yh − Γg) < 0

Since we have already established in (C.5) that (C.7) holds when j = 0, we get

πh ≤ 0, yh ≤ Γg for all h ≥ 1. Q.E.D.

3. If g < ḡ0: then the ZLB binds, and is expected to continue to bind over the entire

planning horizon. Because the ZLB binds even when h = 0, we have (π0, y0) given by

(C.3)-(C.4). For any h ≥ 1, (πh, yh) must again satisfy (C.6a)-(C.6b). This system

can also be solved recursively, starting from the initial values (C.3)-(C.4). It needs to

be shown that the solution satis�es πh < 0 for all h ≥ 0, thus verifying that the ZLB

binds.

• Proof: proceed by induction. In fact, the proof for the case of ḡ0 ≤ g < ḡRE

works again. If (C.7) holds for all j ≤ h − 1, then (C.6a)-(C.6b) imply that
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Figure 2: Output as a Function of Government Purchases during �Crisis� Periods

πh ≤ 0, yh ≤ Γg. Since we have already shown, in (C.3)-(C.4), that (C.7) holds

when j = 0, by induction, πh ≤ 0, yh < Γg for all h ≥ 0, and the ZLB does indeed

binds for all h ≥ 0. Q.E.D.

The solution for actual aggregate output and in�ation in the crisis state then depends on

what we assume about the distribution of forecast horizons in the population. If everyone

has the same horizon h, then yt = yh, πt = πh in the �crisis� state. Given the calibration in

Section A.1, Figure 2 shows the output response to government purchases in �crisis� state

with di�erent planning horizons. Through the intercept on y-axis, it also illustrates how the

planning horizon a�ects the output contraction induced by the negative fundamentals. The

two dotted lines indicates the thresholds of ḡ0 and ḡRE, respectively.

Foresight is crucial to the size of �scal multiplier. REE analysis by Eggertsson (2010),

Christiano et al. (2011), and Woodford (2011) �nd a multiplier well above 1 if the crisis

state is expected to be consistent. But with �nite planning horizons, �scal multipliers can

be much smaller. When the government purchase is small (i.e., g < ḡ0), Figure 3 shows the

�scal multiplier with respect to di�erent planning horizons, and if the horizon h is short, the

initial multiplier can be as low as 1.4 In contrast with REE analysis, when h is �nite, initial

4While the tick markers indicates the planning horizons in quarters, the planning horizons are shown on
a log scale on x-axis.
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Figure 3: Fiscal Multiplier with Small Government Purchases

multiplier does not continue to apply for any very substantial increase in g, i.e., ḡ0 ≤ g < ḡRE.

With a substantial increase in g, Figure 4 shows the �scal multiplier with respect to di�erent

planning horizons, and if horizon h is short, the initial multiplier can be even less than 1.

In the numerical calibration, increasing g by even 1 percent of GDP is enough to make

the �scal multiplier fall to lower level. Actually, this depends on assuming a quarterly model

used for forward planning � if periods are shorter, the increase in g that causes the multiplier

to fall is even smaller � zero in the continuous-time limit. Therefore, the relevant multiplier

is really the one associated with the intermediate region in 2, where output gap is eliminated

for the case of h = 0, and as illustrated in Figure 4.

D Lump-sum Transfer Financed by Government Debt

with In�ation Targeting

Allowing for shorter planning horizons increases the predicted e�ectiveness of ��scal stimulus�

programs in one respect: it provides a reason for de�cit-�nanced government spending to

be more stimulative. Ricardian equivalence will not hold with �nite planning horizons, if

we assume that people have not already learned to condition their value functions on the

size of public debt. In this section, we consider a government lump-sum transfer �nanced by

government debt with in�ation targeting as speci�ed in Section B.
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Figure 4: Fiscal Multiplier with Large Government Purchases

Consider a policy under which, when the �crisis� state is entered, the government makes

a lump-sum transfer to households, �nanced by issuing government debt. Thereafter, lump-

sum taxes or transfers occur each period of whatever size is needed to maintain a constant

level of real public debt. The policy is completely described by a single number, the new

level of real public debt B∗ ≥ 0. We assume no change in government purchases to focus on

a pure transfer policy.

The policy rule can be written as Bt+1 = B∗ for all t ≥ 0 where t = 0 is the period

in which the �crisis� state is entered. It implies that a structural equation for the level of

lump-sum taxes collected each period is given by

τ0 = − B∗

1 + i0

τt = B∗t (Pt−1/Pt)−
Bt+1

1 + it

= B∗t (Pt−1/Pt)−
B∗

1 + it

for all t ≥ 0.

Monetary policy is assumed to be the same as in Section B: the in�ation target is

achieved whenever it is consistent with the ZLB; otherwise, the nominal interest rate is set
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as low as possible. We conjecture that this will mean that during the �crisis� period, the

ZLB will bind, so that we will have it = 0, Pt ≤ Pt−1Π̄ for all t; and that during the �normal�

period, the in�ation target will be achieved, so that Pt/Pt−1 = Π̄, it ≥ 0 for all t. We will

look for a solution in which the equations are satis�ed, and then check that the inequalities

are satis�ed as well.

In the forward planning by a household with planning horizon h in any period t, it is

assumed that all other households also have the same planning horizon h in period t, and

a planning horizon h − j in any period t + j, for 0 ≤ j ≤ h. Hence, the household's plan

assumes that, in each period t + j (0 ≤ j ≤ h), income yh−jt+j will be equal to the amount

of spending ch−jt+j that it plans; it follows that the household's plan must involve terminal

wealth Bt+k equal to the aggregate supply of government debt at that time, namely, B∗. It

implies that the F.O.C. for the �nal period of the plan will be5

uc(C
0
t+h) = β(1 + i0t+h)v

′(B∗) = β
1 + i0t+h

Π̄
uc(Ȳ +

1− β
Π̄

B∗)

By log-linearization, this becomes

c0
t+h − %t+h = −σı̂0t+h + (1− β)b∗

where b∗ = B∗

Π̄Ȳ
≥ 0 and log(uc(C

0
t+h)/uc(C̄)) = −σ−1(c0

t+h − %t). Note that the quantity %t
measures the disturbances to the urgency of spending.

Given that %t = 0 at all times in the case that we are analyzing, in the anticipated

evolution of the economy, we must have

y0
t+h = −σı̂0t+h + (1− β)b∗

at all times. Importantly, the addition of the constant term (1−β)b∗ is what makes the lump-

sum transfer policy di�erent from the outcomes under the policy in Section B. Alternatively,

we can rewrite this expression into

y0
t+h = −σı̂0t+h + y∗

where y∗ = (1− β)b∗ ≥ 0.

Dynamics after reversion to the �normal� state: (yht , π
h
t , ı̂

h
t ) are time-invariant, and

5The derivation of the F.O.C. can be found in Woodford (2018).
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satisfy the recursions as speci�ed in (A.1)-(A.2):

ȳh = ȳh−1 − σ[̂ıh − π̄h−1], ∀h ≥ 1

ȳ0 = −σı̂0 + y∗

π̄h = κȳh + βπ̄h−1, ∀h ≥ 1

π̄0 = κȳ0

If we conjecture a solution in which the in�ation target is achieved, regardless of the

planning horizon h, then π̄h = 0 for all h ≥ 0, and then we must have ȳh = 0 for all h ≥ 0

as well. It implies

ı̂0 = σ−1y∗ ≥ 0

ı̂h = 0, ∀h ≥ 1

which are consistent with the ZLB. Since the ZLB is satis�ed, the conjecture that there is a

solution of this form is con�rmed.

Dynamics in the �crisis� state: (yht , π
h
t , ı̂

h
t ) are again time-invariant, and satisfy the

recursions as speci�ed in (A.1)-(A.2):

yh = [δyh−1 + (1− δ)ȳh−1]− σ[̂ıh + ∆] + σ[δπh−1 + (1− δ)π̄h−1], ∀h ≥ 1

y0 = −σ[̂ı0 + ∆] + y∗

πh = κyh + β[δπh−1 + (1− δ)π̄h−1], ∀h ≥ 1

π0 = κy0

Substituting the solution π̄h = ȳh = 0 for all h ≥ 0, these equations reduce to

yh = δyh−1 − σ[̂ıh + ∆] + σδπh−1, ∀h ≥ 1

y0 = −σ[̂ı0 + ∆] + y∗

πh = κyh + βδπh−1, ∀h ≥ 1

π0 = κy0

Consider now whether the ZLB binds for the case of horizon h = 0. Achieving π0 = 0

would require y0 = 0, and hence ı̂ = σ−1y∗ −∆. This is consistent with ı̂0 ≥ ı̂ = −(r∗ + π∗)
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if and only if y∗ ≥ σ∆̃ > 0. Thus, for all y∗ ≤ σ∆̃, the ZLB binds for horizon h = 0, and

y0 = y∗ − σ∆̃ ≤ 0 (D.1)

π0 = κ[y∗ − σ∆̃] ≤ 0 (D.2)

If instead y∗ ≥ σ∆̃, the in�ation target is achieved for horizon h = 0, and π0 = y0 = 0,

ı̂0 − ı̂ = σ−1[y∗ − σ∆̃] ≥ 0. In this case, i.e., y∗ ≥ σ∆̃, since π0 = y0 = 0, the recursion

reduces to

yh = δyh−1 − σ[̂ıh + ∆] + σδπh−1, ∀h ≥ 2

y1 = −σ[̂ı1 + ∆]

πh = κyh + βδπh−1, ∀h ≥ 2

π1 = κy1

It is obvious that the ZLB necessarily binds for horizon h = 1, and

y1 = −σ∆̃ < 0 (D.3)

π1 = −κσ∆̃ < 0 (D.4)

This implies that the ZLB binds even more tightly for horizon h = 2, and that y2, π2

are even more negative. Hence, the ZLB binds even more tightly for horizon h = 3, and so

on. One can show that the ZLB binds for all h ≥ 1, and thus the {yh, πh} for h ≥ 1 are

given by the recursion

yh = δyh−1 − σ∆ + σδπh−1 (D.5)

πh = κyh + βδπh−1 (D.6)

for all h ≥ 2, starting from the initial values (D.3)-(D.4) for h = 1. Note that conditions

(D.3)-(D.4) and (D.5)-(D.6) are exactly the same recursion as equations in (B.3) in Section

B, which recursively de�ne the sequences {yh, πh}, except that h corresponds to h − 1 in

(D.3)-(D.4). Thus, the sequences de�ned by (D.3)-(D.4) and (D.5)-(D.6) are given by

yh = yh−1, πh = πh−1, ∀h ≥ 1

where {yh, πh} are the sequences studied in Section B. Also, note that this solution is

independent of the value of y∗, as long as y∗ ≥ σ∆̃.
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Suppose instead that y∗ ≤ σ∆̃, so that the ZLB binds for horizon h = 0, and equations

(D.1)-(D.2) hold. In this case, if y0 and π0 are negative, this only causes the ZLB to bind

even more tightly for horizon h = 1, and so on. The above arguments continue to hold, and

we again conclude that the ZLB must also bind for all horizons h ≥ 1. Then, {yh, πh} for all
h ≥ 0 are given by the recursion (D.5)-(D.6) for all h ≥ 1, not just h ≥ 2 as above, starting

from the initial values (D.1)-(D.2) for h = 0.

When y∗ = 0, this recursion is exactly the same as equations (B.3) in Section B, and

has a solution

yh = yh, πh = πh, ∀h ≥ 0

Furthermore, for any values 0 ≤ y∗ ≤ σ∆̃, the recursive system of equations is linear

with a boundary condition that is linear in y∗. It follows that the solutions for each of the

{yh, πh} must be linear functions of y∗ over the range of 0 ≤ y∗ ≤ σ∆̃. Thus, they must be

convex combinations of the solutions for the cases y∗ = 0 and y∗ = σ∆̃, both of which have

already been solved for. We then obtain the general solution

yh =
σ∆̃− y∗

σ∆̃
yh +

y∗

σ∆̃
yh−1, ∀h ≥ 1 (D.7)

y0 =
σ∆̃− y∗

σ∆̃
y0 = y∗ − σ∆̃

πh =
σ∆̃− y∗

σ∆̃
πh +

y∗

σ∆̃
πh−1, ∀h ≥ 1 (D.8)

π0 =
σ∆̃− y∗

σ∆̃
π0 = κ(y∗ − σ∆̃)

Note that since yh < yh−1, πh < πh−1 for all h ≥ 1, equations (D.1)-(D.2) and (D.7)-

(D.8) imply that both yh and πh are increasing functions of y∗, and hence of b∗, for all h ≥ 0

over the range of 0 ≤ y∗ ≤ σ∆̃. Beyond that point, further increases in the size of public

debt have no further e�ect.

One consequence is that, even though a debt �nanced �scal transfer to the private

sector can reduce the size of output contraction and de�ation caused by the �crisis�, it does

not follow that a large enough ��scal stimulus� program can eliminate it altogether. The

maximum e�ect of �scal stimulus � assuming that monetary policy continues to be the

in�ation targeting regime � is when y∗ = σ∆̃, and in that case, we still have yh = yh−1 < 0,

and πh = πh−1 < 0 for all h ≥ 1. Output and in�ation still fall, and indeed the predicted

contraction and de�ation continue to be quite severe if h is large. Given the calibration in

Section A.1, Figure 5 shows the output and in�ation in �crisis� state as a function of planning
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Figure 5: Output and In�ation in �Crisis� State with Di�erent Size of Government Transfers

horizon h with di�erent size of government transfers. In the calibrated example, bmax = 1.44,

i.e., less than 4.5 months' GDP, and any larger b∗ than bmax does not further reduce output

contraction and de�ation. Even this magnitude of bmax depends on assuming a quarterly

planning model. With shorter periods, bmax would be even smaller, and approaches zero in

the continuous-time limit.

A conclusion is that, in order to completely eliminate the contracting and de�ating

e�ects of the �crisis� shock, a transfer policy alone is insu�cient: it must be combined with

an accomodative monetary policy � that is, the central bank must promise to allow in�ation

above the target rate π∗, at least during the crisis period. Note that this is not true if

the ��scal stimulus� involves government purchases as studied in Section C, rather than

debt-�nanced transfers alone.

E Lump-sum Transfer Financed by Government Debt

with Accomodative Monetary Regime

The limited e�ect of government transfer studied in Section D is due to the expectation that

in�ation target would be pursued even during the crisis state, if consistent with the ZLB.
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In this section, we consider a combination of �scal and monetary policies, i.e., combining

the government transfer with a commitment to maintain interest rate at the ZLB as long as

the �crisis� state persists (instead of strict in�ation targeting during the crisis periods), and

show that the monetary-�scal coordination has an e�ect larger than the sum of the e�ects

of either policy individually.

Consider a �scal policy similar to that in Section D but with an accomodative monetary

policy. More speci�cally, there is a debt-�nanced �scal lump-sum transfer and a permanent

increase in the real public debt, parameterized by B∗, the same as the speci�ed �scal policy

in Section D. But, instead of assuming that monetary policy is speci�ed by the in�ation

target, we consider a di�erent monetary policy: the interest rate is held at the ZLB as long

as the "crisis" state continues, even if this involves in�ation above the target rate, but as

soon as the economy reverts to the "normal" state, monetary policy is again set by the

in�ation targeting rule. Under this policy, even though for any case with b∗ ≤ bmax, the

accomodative monetary policy considered will be identical to the policy in Section D, we

expect that additional increases in b∗ beyond the level bmax will provide further stimulus. It

would be desirable to explore the e�ects of larger values of b∗ under this policy; in particular,

to see how large b∗ needs to be, in the calibrated example, in order for there to be no initial

decline in output.

Dynamics in the normal state is exactly the same with that in Section D. No further dis-

cussion is needed. Dynamics in the �crisis� state, instead, is di�erent under the accomodative

monetary policy: (yht , π
h
t , ı̂

h
t ) are time-invariant, and satisfy the recursions:

yh = [δyh−1 + (1− δ)ȳh−1]− σ∆̃ + σ[δπh−1 + (1− δ)π̄h−1], ∀h ≥ 1

y0 = −σ∆̃ + y∗

πh = κyh + β[δπh−1 + (1− δ)π̄h−1], ∀h ≥ 1

π0 = κy0

which reduce to

yh = δyh−1 − σ∆̃ + σδπh−1, ∀h ≥ 1

y0 = −σ∆̃ + y∗

πh = κyh + βδπh−1, ∀h ≥ 1

π0 = κy0
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Figure 6: Output and In�ation in �Crisis� State with Coordinated Monetary-�scal Policy

It is obvious that both yh and πh are linear and increasing functions of y∗. Compared

with the policy in Section D, the accomodative monetary policy allows the �scal stimulus to

be able to completely eliminate output contraction and de�ation as long as the government

transfer is large enough. Given the calibration in Section A.1, Figure 6 shows the output and

in�ation in �crisis� state as a function of planning horizon h with di�erent size of government

transfers and accomodative monetary policy. Compared with Figure 5, with an accomodative

monetary policy, larger government transfer can improve output contraction and de�ation,

and even fully eliminate output contraction.

Apart from the fact that it should be a more e�ective policy than that in Section D, an

interesting feature of the coordinated policy is that a �combination� of a change in monetary

policy and a change in �scal policy can accomplish the goal that neither kind of policy can

achieve on its own. On the one hand, simply changing monetary policy during the "crisis"

state, while policy is expected to be determined by the in�ation target outside the �crisis�

state, changes nothing; the outcome would continue to be the same as under simply in�ation

targeting rule in Section B. On the other hand, simply changing �scal policy as in Section

D also accomplishes very little; in fact, as the length of a �period� in the model approaches

the continuous-time limit, the e�ect of �scal stimulus in Section D, even when b∗ is large,
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Figure 7: Government Transfers Needed to Fully Eliminate Output Contraction

approaches zero. But �combining� the monetary policy change and the �scal policy change

can instead be quite stimulative. That will be a useful lesson about how the results under the

analysis with �nite-horizon planning can be quite di�erent from under rational-expectations

analysis.

Figure 7 indicates the government transfer needed to fully eliminate output contraction

with respect to di�erent planning horizons. Although the coordinated policy could achieve

more desirable crisis response, the size of transfer needed is very large. For example, as

shown in Figure 6, when h = 40, i.e., 10 years, increasing public debt by 200 percent of GDP

only raises output during crisis period by less than 1 percent. Another drawback is that the

size of transfers needed to prevent output collapse if h is long will be so large as to be highly

in�ationary if h is short.

Moreover, even if policymakers know the exact distribution of the planning horizons in

economy, and can calibrate the size of transfer accordingly, if planning horizons are hetero-

geneous, then no choice of b∗ can avoid distortions induced by the fact that the same policy

will be understood as much more expansionary by some households and �rms than by others.

Other types of commitment to temporary departure from the in�ation target may be less

prone to such diverse interpretations.
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F Temporary Price-level Targeting (TPLT)

The scope of what can be achieved by commitments to (temporarily) looser monetary policy

is increased if the central bank can credibly commit to looser monetary policy even after

reversion of fundamentals to the �normal� state. In this case, monetary policy commitment

can be e�ective source of stimulus even without any change in �scal policy. E�ects of such

�forward guidance� on aggregate demand obviously depend on people's ability to anticipate

consequences of di�erent future monetary policy for future economic conditions. Hence, rela-

tive to the REE analysis of Eggertsson and Woodford (2003), the predicted e�ects on output

and in�ation during the crisis will be weakened with �nite planning horizons. Nonetheless,

even when horizons are �nite if not too short, such policies can still provide an e�ective form

of stimulus.

Moreover, the fact that the e�ect is weaker in the case of households and �rms with

shorter horizons is consistent with producing similar responses of spending and price in-

creases on the part of households and �rms with heterogeneous horizons, a feature of a

desirable stabilization policy as it reduces distortions resulting from di�ering interpretations

of economic outlook.

In this section, we study the e�ects of a commitment to keep interest rate at the ZLB

until price level is restored to trend path with constant in�ation rate π∗, i.e., temporary

price-level targeting rule. We focus on the case under which the decision makers in the

economy do not update their value function, since it can be simply a commitment when a

rare �nancial shock occurs. It captures the idea of �temporary price-level target� suggested

by Bernanke (2017).

Consider a policy in which the central bank de�nes a price level target path {P ∗t } that
grows deterministically at rate π∗, i.e., logP ∗t+1 = logP ∗t +π∗t for all t, and achieves this target

whenever it is consistent with the ZLB constraint, and sets ı̂t as low as possible otherwise.

Its policy rule therefore requires that

P̃t ≤ 0 (F.1)

at all times, where the price-level gap is de�ned as p̃t ≡ logPt− logP ∗t , and that either (B.1)

or (F.1) must hold with equality in each period.

Evolution equation for the price-level gap is given by

p̃t = p̃t−1 + πt (F.2)

where πt is again the in�ation rate in excess of the target rate π∗t .

The solution is also in the Markovian form: under this policy commitment, the structural

22



equations looking forward from any date t depend only on the value of p̃t−1, which enters

(F.2), and the current fundamental state rnt either in �normal� or �crisis� state. Thus, once

the �normal� state is reached, the solution will be of the form

yht = ȳh(p̃t−1), πht = π̄h(p̃t−1)

thereafter; while in the �crisis� state, the solution will be of the form

yht = yh(p̃t−1), πht = πh(p̃t−1)

Our goal is to compute the functions ȳh(p̃), π̄h(p̃), yh(p̃), πh(p̃) for arbitrary h ≥ 0 and

arbitrary values of p̃ ≤ 0.

F.1 Temporary Price-level Targeting: Theoretical Derivation

Solutions once the �normal state� is reached : the solution is of the following form. There

exists a sequence of critical values {p̃j} for the price-level gap, which is left to be computed,

with the property that

· · · < p̃3 < p̃2 < p̃1 < p̃0 < 0 (F.3)

and, for any horizon j ≥ 0, the �price gap� p̃j satis�es the property such that (i) if p̃t−1 ≥ p̃j,

the price level target is expected to be reached before the end of the planning horizon (i.e.,

by period t+ j or earlier), while (ii) if p̃t−1 < p̃j, the ZLB is expected to bind over the entire

planning horizon, i.e., through period t+ j.

If p̃j ≤ p̃t−1 < p̃j−1, then decisions are the same for all horizons h ≥ j, i.e., for all agents

such that p̃h ≤ p̃t−1: π
h
t and y

h
t depend only on the length of time until the price-level target

is expected to be realized, i.e., j periods in the future, not the exact horizon of the agent.

But if instead h < j, πht = π̂h and yht = ŷh are independent of the value of p̃t−1: π
h
t and yht

depend only on the planning horizon, not the size of the current price gap.

Thus, for any price gap p̃t−1 ≤ 0, there is a horizon τ(p̃t−1), which is a monotonically

decreasing function of p̃t−1 (i.e., as horizon τ is longer, the more negative the price gap is),

with the property that the price-level target is expected to be reached at t+τ by all decision

makers with horizons long enough to expect the target to be reached during their planning

horizon.

For any planning horizon h ≥ τ(p̃t−1),we have

πht = π̄(p̃t−1), yht = ȳ(p̃t−1)
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where the functions π̄(p̃t−1), ȳ(p̃t−1) are horizon-independent; while for any planning horizon

h < τ(p̃t−1), we have

πht = π̂h, yht = ŷh

where the sequences {π̂h, ŷh} are independent of the price gap. Furthermore, for each h ≥ 0,

π̂h = π̄(p̃h), ŷh = ȳ(p̃h)

Hence, for any planning horizon h, we have

πht = π̄(p̃t−1) if h ≥ τ(p̃t−1), πht = π̄(p̃h) otherwise

yht = ȳ(p̃t−1) if h ≥ τ(p̃t−1), yht = ȳ(p̃h) otherwise

or equivalently,

πht = π̄(p̃t−1) if p̃t−1 ≥ p̃h, πht = π̄(p̃h) if p̃t−1 ≤ p̃h

yht = ȳ(p̃t−1) if p̃t−1 ≥ p̃h, yht = ȳ(p̃h) if p̃t−1 ≤ p̃h

By stating in this way, we see that the solution can be completely described by a pair of

functions ȳ(p̃t−1), π̄(p̃t−1) and the function τ(p̃t−1), which encodes the values of the sequence

{p̃j}.
Another description of the solution can be that there is a function F (p̃t−1) indicating

what p̃t is expected to be by any agent with a planning horizon h ≥ τ(p̃t−1), i.e., long enough

that the price-level target is expected to be achieved within the planning horizon.

When p̃t−1 ≥ p̃0, so that the price-level target is expected to be achieved in the current

period, F (p̃t−1) = 0, and the functions ȳ(p̃t−1), π̄(p̃t−1) satisfy

ȳ(p̃t−1) = ȳ(F (p̃t−1))− σı̄(p̃t−1) + σπ̄(F (p̃t−1))⇒ ȳ(p̃t−1) = −σı̄(p̃t−1)

π̄(p̃t−1) = κȳ(p̃t−1) + βπ̄(F (p̃t−1))⇒ π̄(p̃t−1) = κȳ(p̃t−1)

π̄(p̃t−1) = F (p̃t−1)− p̃t−1 ⇒ π̄(p̃t−1) = −p̃t−1

which gives

ȳ(p̃t−1) = −1

κ
p̃t−1, π̄(p̃t−1) = −p̃t−1, ı̄(p̃t−1) =

1

κσ
p̃t−1

The boundaries of the range over which this solution applies are the range of values
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of p̃t−1 for which this solution satis�es the ZLB: ı̄(p̃t−1) ≥ −(r? + π?) ⇒ p̃t−1 ≥ p̃0 ≡
−κσ(r? + π?).

When p̃t−1 ≤ p̃0, the ZLB binds in period t, and the functions ȳ(p̃t−1), π(p̃t−1) and

F (p̃t−1) instead satisfy

ȳ(p̃t−1) = ȳ(F (p̃t−1)) + σ(r? + π?) + σπ̄(F (p̃t−1)) (F.4a)

π̄(p̃t−1) = κȳ(p̃t−1) + βπ̄(F (p̃t−1)) (F.4b)

π̄(p̃t−1) = F (p̃t−1)− p̃t−1 (F.4c)

The system (F.4a)-(F.4c) can be solved for ȳ(p̃t−1), π̄(p̃t−1), F (p̃t−1) if p̃t−1 is in a range

such that ȳ(F (p̃t−1)) and π̄(F (p̃t−1)) are already known as functions of F (p̃t−1). Hence, the

solution for ȳ(p̃t−1), π̄(p̃t−1) when p̃0 ≤ p̃t−1 ≤ 0 allows us to obtain solutions for ȳ(p̃t−1),

π̄(p̃t−1), F (p̃t−1) for values of p̃t−1 in the interval p̃1 ≤ p̃t−1 ≤ p̃0, which is the range of values

such that (F.4a)-(F.4c) have a solution with p̃0 ≤ F (p̃t−1) ≤ 0.

Note that boundaries of this interval requires that p̃0 satis�es

ȳ(p̃0) = ȳ(0) + σ(r? + π?) + σπ̄(0), π̄(p̃0) = κȳ(p̃0) + βπ̄(0), π̄(p̃0) = 0− p̃0

and p̃1 satis�es

ȳ(p̃1) = ȳ(p̃0) + σ(r? + π?) + σπ̄(p̃0), π̄(p̃1) = κȳ(p̃1) + βπ̄(p̃0), π̄(p̃1) = p̃0 − p̃1

This solution in turn allows us to obtain solutions for ȳ(p̃t−1), π̄(p̃t−1), F (p̃t−1) for values

in the interval p̃2 ≤ p̃t−1 ≤ p̃1, which is the range of values such that (F.4a)-(F.4c) have a

solution with p̃1 ≤ F (p̃t−1) ≤ p̃0.

Here, p̃2 satis�es

ȳ(p̃2) = ȳ(p̃1) + σ(r? + π?) + σπ̄(p̃1), π̄(p̃2) = κȳ(p̃2) + βπ̄(p̃1), π̄(p̃2) = p̃1 − p̃2

Similarly, for each progressively lower range of price gaps p̃j ≤ p̃t−1 ≤ p̃j−1, we can solve

for ȳ(p̃t−1), π̄(p̃t−1), F (p̃t−1) and de�ne p̃j accordingly. In this way, F (p̃t−1) is a continuous,

non-decreasing function de�ned for all p̃t−1 ≤ 0; it is constant over the range p̃0 ≤ p̃t−1 ≤ 0,

where F (p̃t−1) = 0, and otherwise it is monotonically increasing. One can also show that it

is a piece-wise linear function, and concave. Meanwhile, by the de�nition of p̃j, it is easily

veri�ed that the sequence {p̃j}∞j=0 satis�es the characteristics as conjectured in (F.3). Then,
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τ(p̃t−1) is just the smallest integer such that F τ (p̃t−1) = 0, and we observe that

τ(p̃t−1) = j ⇔ p̃j ≤ p̃t−1 < p̃j−1

Once we �nd the function F (p̃t−1), then π̄(p̃t−1) = F (p̃t−1) − p̃t−1; this will also be a

continuous, piece-wise linear function. Also, we have

ȳ(p̃t−1) =
1

κ
[π̄(p̃t−1)− βπ̄(F (p̃t−1))] =

1

κ
[F (p̃t−1)− p̃t−1 − β[F (F (p̃t−1))− F (p̃t−1)]]

which is also a continuous, piece-wise linear function.

Now, suppose that we change the length of the time steps in our discrete-time model,

making successive �steps� only a very short period of additional time. In the continuous limit,

τ(p̃) becomes a continuously decreasing function. In this limiting case, we can equivalently

describe any given price gap p̃ using the implied length of time τ(p̃) until the price-level

target is expected to be reached, by any agent with a horizon equal to τ(p̃) or longer. We

can rewrite the functions ȳ(p̃), π̄(p̃) as ȳ(τ), π̄(τ) instead.

In this continuous limit, the system (F.4a)-(F.4c) becomes

dȳ

dτ
= σρ? + σπ̄(τ) (F.5a)

dπ̄

dτ
= γ[ȳ(τ)− λπ̄(τ)] (F.5b)

for all τ > 0. Note that ρ? > 0 is the instantaneous nominal interest rate corresponding to

the one-period nominal interest rate r? + π?, i.e., ρ?∆ = (r? + π?), where ∆ is the length

of a �period� in the discrete-time model, γ > 0 is the slope of the continuous time Philips

curve relation corresponding to the slope κ in the discrete-time model, i.e., γ = κ
∆2 , and

λ > 0 is the slope of the relationship between steady-state in�ation and steady-state output

implied by the NK Phillips Curve, i.e., λ = (1−β)∆
κ

. The system (F.5a)-(F.5b) is solved from

boundary conditions π̄(0) = ȳ(0) = 0.

The system (F.5a)-(F.5b) can be expressed in matrix form:[
ẏ

π̇

]
=

[
0 σ

γ −λγ

][
y + λρ?

π + ρ?

]
(F.6)

where the matrix has two real eigenvalues µ1 < 0 < µ2, i.e., the roots of µ
2 + λγµ− σγ = 0.

The solution consistent with the boundary conditions is then given by
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[
ȳ(τ)

π̄(τ)

]
=

[
−λρ?

−ρ?

]
+

[
σµ2

µ1(µ2−µ1)
µ2

µ2−µ1

]
ρ?eµ1τ +

[
−σµ1

µ2(µ2−µ1)
−µ1
µ2−µ1

]
ρ?eµ2τ (F.7)

for all τ ≥ 0. We can then integrate the solution for π̄(τ) to obtain

p̄(τ) ≡ −
∫ τ

0

π̄(s)ds = ρ?τ + ρ?
µ2

µ1(µ2 − µ1)
[1− eµ1τ ]− ρ? µ1

µ2(µ2 − µ1)
[1− eµ2τ ] (F.8)

Note that (F.7) implies that

π̄(τ) > −ρ? + ρ?
µ2

(µ2 − µ1)
(1 + µ1τ)− ρ? µ1

(µ2 − µ1)
(1 + µ1τ) = 0

for all τ > 0, so that p̄(τ) must be a monotonically decreasing continuous function. Hence,

we can invert the function p̄(τ) to obtain

τ(p̃) ≡ (p̄)−1[p̃] ≥ 0 (F.9)

for any p̃ ≤ 0. Note that, though we cannot give an analytical expression for this function,

it can be numerically computed by computing the function p̄(τ) given by (F.8).

The solution for dynamics in the �normal� state, in the continuous limit, are then

given by: for any agent with a horizon h such that p̃(t) ≥ p̄(h), where p̃(t) is the current

existing price-level gap when decision is made and p̄(h) is de�ned in (F.8), the solution is

ȳh(t) = ȳ(τ(p̃(t))), π̄h(t) = π̄(τ(p̃(t))), where the functions ȳ(τ), π̄(τ) are de�ned in (F.7)

and τ(p̃) is given by (F.9).6 For any agent with a horizon h such that p̃(t) ≤ p̄(h), the

solution is ȳh(t) = ȳ(h), π̄h(t) = π̄(h).

Thus, if the economy enters the �normal� state at time T , for an agent with a horizon

h such that p̃(T ) ≥ p̄(h), the subsequent evolution will be expected to be:

y(t)

= ȳ(τ(p̃(T ))− (t− T )) for all T ≤ t ≤ T + τ(p̃(T ))

= 0 for all T + τ(p̃(T )) ≤ t ≤ T + h

π(t)

= π̄(τ(p̃(T ))− (t− T )) for all T ≤ t ≤ T + τ(p̃(T ))

= 0 for all T + τ(p̃(T )) ≤ t ≤ T + h

p̃(t)

= p̄(τ(p̃(T ))− (t− T )) for all T ≤ t ≤ T + τ(p̃(T ))

= 0 for all T + τ(p̃(T )) ≤ t ≤ T + h

6Note that h is now a continuous length of time instead of a discrete number of periods.
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If everyone has the same horizon h, the actual dynamics for t ≥ T will be exactly

the same as expected. Even though the expected dynamics assumes that everyone's horizon

shrinks as time goes forward, and this is not true for the actual dynamics (actually everyone's

horizon continues to be h at all times), it continues to be true that p̃(t) ≥ p̄(h) for all t ≥ T

since π(t) ≥ 0 implies p̃(t) to be non-decreasing in t. Thus, the solution for the actual

dynamics continues to be given by the same formulas as are assumed in people's forward

planning.

For an agent with a horizon h such that p̃(T ) ≤ p̄(h), the subsequent evolution will

instead be expected to be

y(t) = ȳ(h− (t− T )) for all T ≤ t ≤ T + h

y(t) = ȳ(h− (t− T )) for all T ≤ t ≤ T + h

π(t) = π̄(h− (t− T )) for all T ≤ t ≤ T + h

p̃(t) = [p̃(T )− p̄(h)] + p̄(h− (t− T )) for all T ≤ t ≤ T + h

But the actual dynamics, if everyone has the same horizon h and p̃(T ) ≤ p̄(h), will be

given by

y(t) = ȳ(h), π(t) = π̄(h), p̃(t) = p̃(T ) + π̄(h) · (t− T )

as long as it continues to be the case that p̃(t) ≤ p̄(h). This latter inequality will hold as

long as t ≤ T + [p̄(h)−p̃(T )]
π̄(h)

. Note that at this latter date, p̃(t) = p̄(h) ≤ 0, so the ZLB will

still be binding, and the solution calculated above will still apply. But after that �nite date,

we will have p̃(t) ≥ p̄(h), and the solution in the case of p̃(T ) ≥ p̄(h) will apply from then

on. Thus, the actual dynamics will be given by

y(t) = ȳ(h), π(t) = π̄(h), p̃(t) = p̃(T ) + π̄(h) · (t− T ) for all T ≤ t ≤ T +
[p̄(h)− p̃(T )]

π̄(h)

y(t)

= ȳ(h− (t− T )) for all T + [p̄(h)−p̃(T )]
π̄(h)

≤ t ≤ T + [p̄(h)−p̃(T )]
π̄(h)

+ h

= 0 for all t ≥ T + [p̄(h)−p̃(T )]
π̄(h)

+ h

π(t)

= π̄(h− (t− T )) for all T + [p̄(h)−p̃(T )]
π̄(h)

≤ t ≤ T + [p̄(h)−p̃(T )]
π̄(h)

+ h

= 0 for all t ≥ T + [p̄(h)−p̃(T )]
π̄(h)

+ h

p̃(t)

= p̄(h− (t− T )) for all T + [p̄(h)−p̃(T )]
π̄(h)

≤ t ≤ T + [p̄(h)−p̃(T )]
π̄(h)

+ h

= 0 for all t ≥ T + [p̄(h)−p̃(T )]
π̄(h)

+ h
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Now, consider the solution while still in the �crisis� state: instead of the di�erential

equations speci�ed in the system (F.5a)-(F.5b) that apply in the �normal� state, we have

−dy
dt

= −σ∆? + σπ + ν[ȳ − y]

−dπ
dt

= γ[y − λπ] + ν[π̄ − π]

where ∆? > 0 is the instantaneous nominal rate corresponding to the one-period rate ∆̃,

i.e., ∆? = ∆̃
∆
where ∆ is the length of one period, and ν > 0 is the continuous arrival rate

(Poisson rate) of transitions from the �crisis� state to the �normal� state, i.e., ν = (1−δ)
∆

.

Let y(p̃, h), π(p̃, h) be the solution when the price-level gap is p̃ and decision makers

have planning horizon h. Then, in a forward planning exercise, we have

dy

dt
=
∂y

∂p̃

dp̃

dt
+
∂y

∂h

dh

dt
=
∂y

∂p̃
· π(p̃, h)− ∂y

∂h

dπ

dt
=
∂π

∂p̃

dp̃

dt
+
∂π

∂h

dh

dt
=
∂π

∂p̃
· π(p̃, h)− ∂π

∂h

so that the Euler equations give rise to a system of partial di�erential equations, i.e.,

−∂y(p̃, h)

∂p̃
· π(p̃, h) +

∂y(p̃, h)

∂h
= −σ∆? + σπ(p̃, h) + v[ȳ(p̃, h)− y(p̃, h)] (F.10a)

−∂π(p̃, h)

∂p̃
· π(p̃, h) +

∂π(p̃, h)

∂h
= γ[y(p̃, h)− λπ(p̃, h)] + v[π̄(p̃, h)− π(p̃, h)] (F.10b)

with boundary conditions y(p̃, 0) = π(p̃, 0) = 0. The functions ȳ(p̃, h), π̄(p̃, h) are the

functions given by

ȳ(p̃, h)

= ȳ(τ(p̃)) if p̃ ≥ p̄(h)

= ȳ(h) if p̃ ≤ p̄(h)

π̄(p̃, h)

= π̄(τ(p̃)) if p̃ ≥ p̄(h)

= π̄(h) if p̃ ≤ p̄(h)

which have already been solved in the case of �normal� state.
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F.2 Temporary Price-level Targeting: Numerical Methods and Re-

sults

Now, we propose a numerical method for approximate solutions of the PDEs (F.10a)-(F.10b):

de�ne a discrete grid of values for (p̃, h) and let (j, k) in the grid corresponding to p̃ = p̄(j · ε)
and h = k · ε for some ε > 0, where (j, k) are both non-negative integers.7

For each integer j ≥ 0, the goal is to compute sequences of values {y(j, k), π(j, k), p̃(j, k)}
for progressively higher values of k. Consider the recursive computation, i.e., given the values

for (y(j, k − 1), π(j, k − 1), p̃(j, k − 1)), we compute

y(j, k) = y(j, k− 1)− σ∆?ε+ σπ(j, k− 1)ε+ vε · [ȳ(p̃(j, k− 1), k− 1)− y(j, k− 1)] (F.11a)

π(j, k) = π(j, k−1)+γε[y(j, k−1)−λπ(j, k−1)]+vε·[π̄(p̃(j, k−1), k−1)−π(j, k−1)] (F.11b)

p̃(j, k) = p̃(j, k − 1)− επ(j, k) (F.11c)

The idea is that a sequence {y(j, k), π(j, k), p̃(j, k)} represents a possible trajectory

(y(t), π(t), p̃(t)) along which the economy remains in the �crisis� state, though it is not

known in advance that this will be the case. Along this trajectory, y(t) = y(p̃(t), h(t)),

π(t) = π(p̃(t), h(t)) for all t, and p̃(t) and h(t) evolve according to

dp̃(t)

dt
= π(t),

dh(t)

dt
= −1

The successive values of k index the remaining horizon h(t); the value of j indexes the

particular trajectory, which is determined by the terminal values from which one initiates

the recursive computation.

For any j ≥ 0, we start from terminal values y(j, 0) = π(j, 0) = 0 and some speci�ed

value for p̃(j, 0), then iteratively apply (F.11a)-(F.11c) to compute {y(j, k), π(j, k), p̃(j, k)}
for progressively higher values of k. Thus, the complete trajectory depends on the value

assumed for p̃(j, 0) ≤ 0.

In equations (F.11a)-(F.11c), the functions ȳ(p̃(j, k− 1), k− 1), π(p̃(j, k− 1), k− 1) are

given by:

ȳ(p̃, k − 1) =

ȳ(τ(p̃)) if p̃ ≥ p̄((k − 1) · ε)

ȳ((k − 1) · ε) if p̃ ≤ p̄((k − 1) · ε)

7The ε measures how �ne the grid is, and in the numerical calculation, we take ε = 0.2. The results are
robust by using di�erent values of ε.
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π̄(p̃, k − 1) =

π̄(τ(p̃)) if p̃ ≥ p̄((k − 1) · ε)

π̄((k − 1) · ε) if p̃ ≤ p̄((k − 1) · ε)

We continue iterating the trajectories until either (i) the value k = K is reached, i.e,

some pre-speci�ed upper-bound on the range of values of k that are of interest, or (ii) one

reaches a value of k at which p̃(j, k) ≥ 0.8 In the latter case, we stop iterating the trajectory

at this point, and de�ne

k∗(j) ≡ max{k|p̃(j, k) < 0}+ 1

as the largest value of k for trajectory j.

Now, we characterize the terminal values {p̃(j, 0)} for the di�erent values of j. The

{p̃(j, 0)} is a monotonically decreasing sequence, i.e., p̃(j + 1, 0) < p̃(j, 0) < 0 for all j ≥
1. Furthermore, the sequence of values {p̃(j, 0)} that are considered is dense enough, i.e.,

successive values of p̃(j, 0) should be close enough to one another, to ensure that for every

value of k of interest (i.e., a value of k for which we intend to simulate the equilibrium

dynamics), there exists some j such that k∗(j) = k. In the numerical exercise, given the

calibration in Section A.1, we �nd there existing a p̃∗ < 0 such that, for any terminal values

p̃∗ < p̃(j, 0) < 0, there always exists a k∗(j) as de�ned before, but for any terminal values

p̃(j, 0) < p̃∗, p̃(j, k) < 0 for ∀k ≥ 0, i.e., p̃(j, k) becomes negatively exploding starting for

some �nite k. In other words, in the latter scenario, there does not exist a k∗(j). Figure 8

illustrates the price trajectories with respect to planning horizons, and shows the decreasing

sequence of terminal values on y-axis. Nonetheless, as long as we choose the the terminal

values {p̃(j, 0)} to be smaller than p̃∗ and make it dense enough, we will still be able to �nd

some j such that k∗(j) = k for each k ≤ K.

Then, for each of the values of k of interest, we de�ne

̂(k) ≡ max{j|k?(h) = k}

Now, we characterize the predicted dynamics in response to a shock. Let the planning

horizon k be given (one of the values of k �of interest�). Consider �rst the dynamics for

period t < N · ε = T , so that the economy remains in the �crisis state�. In any period t of the

simulation, we can approximate the value of p̃(t) by interpolation. We start the simulation

in period t = 0, and set p̃(0) = 0. The price-level gap is approximated by

p̃(t) = (1− λt)p̃(jt, k) + λtp̃(jt + 1, k)

8In this numerical calculation, we take K = 300.
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Figure 8: Price-gap Trajectories in �Crisis� State as a Function of Planning Horizon

where

jt ≡ max{j ≥ ̂(k)|p̃(t) ≤ p̃(jt, k)} (F.12a)

λt ≡
p̃(t)− p̃(jt, k)

p̃(jt + 1, k)− p̃(jt, k)
(F.12b)

Note that, since there exists a ̂(k) such that p̃(̂(k), k) ≥ 0 has been computed, and

there also exists at least one higher value of j for which p̃(j, k) < 0 has also been computed,

we can necessarily �nd such a jt, and both p̃(jt, k) and p̃(jt + 1, k) will have been computed

unless we �nd that there exist no j such that p̃(t) < p̃(jt, k). The latter problem can be

avoided by adding to the �rst of trajectories j that are computed some additional trajectories

starting from lower terminal values {p̃(j, 0)}.
We can then approximate the values of y(p̃(t), h), π(p̃(t), h) by linear interpolation, i.e.,

for all 0 ≤ t ≤ N − 1,

y(t) = (1− λt)y(jt, k) + λty(jt + 1, k) (F.13a)

π(t) = (1− λt)π(jt, k) + λtπ(jt + 1, k) (F.13b)

p̃(t+ 1) = p̃(t) + π(t) · ε (F.13c)

where the sequences of values {y(j, k), π(j, k)} for values j ≥ ̂(k) have been computed using

(F.11a)-(F.11c).
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Figure 9: Price-gap Dynamics under Temporary Price-level Targeting
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Figure 10: Output Dynamics under Temporary Price-level Targeting

The value at p̃(N) obtained from (F.13c) when t = N − 1 is then the initial condition

for the closed-form solution obtained for the period after reversion to the �normal� state.

Under the temporary price-level targeting rule, Figure 9, 10, and 11 show the full

dynamics of price, output, and in�ation, respectively. In the numerical exercise, given the

calibration in Section A.1, we assume that the economy enters �crisis� state at t = 0, and

reverts to �normal� state at T = 10, i.e., 10 quarters after crisis happens.

To compare the results of the temporary price-level targeting with the strict in�ation

targeting rule as in Section B, Figure 12, 13, and 14 show the comparison of full dynamics for

price, output, and in�ation, respectively. Though, under the temporary price-level targeting

rule, there is an over-shooting for in�ation and output after reversion back to the �normal�

state, it is much more e�ective in limiting the e�ects of the ��nancial crisis� shock than the

standard in�ation targeting policy.
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Figure 11: In�ation Dynamics under Temporary Price-level Targeting

0 5 10 15 20
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
10-2

Inflation Target
Temporary PLT

0 5 10 15 20
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
10-2

0 5 10 15 20
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
10-2

Figure 12: Price-gap Dynamics under In�ation Targeting versus Temporary PLT
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Figure 13: Output Dynamics under In�ation Targeting versus Temporary PLT
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Figure 14: In�ation Dynamics under In�ation Targeting versus Temporary PLT
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G Systematic Price-level Targeting (PLT Rule)

In this section, suppose that the price-level target is not simply an ad hoc commitment (form

of forward guidance) introduced when the �crisis� shock occurs; instead, it is followed all the

time, so that people obtain extensive experience with the dynamics under a price-level target

during periods when the �crisis� shock never occurs. In this case, we name the price-level

targeting rule as systematic price-level targeting. Then, people should eventually be able to

learn the value functions v(p̃t+k), ṽ(p̃t+k) that are correct under such a regime. Under such

a regime, v and ṽ are not constants if there are shocks that occasionally cause the central

bank to miss the price-level target; instead, v and ṽ depend on the price-level gap at the

time that the forward planning is truncated, and the value function is used to evaluate a

terminal state.

The two price-level targeting rules, i.e., temporary price-level targeting and systematic

price-level targeting, result in di�erent responses during crisis due to the fact that: with �nite

planning horizon, no matter how credible the temporary commitment might be, pursuit of a

di�erent policy systematically outside of crisis periods can allow learning of di�erent value

functions by households and �rms, and then matter for the behavior during the crisis. In

contrast, under REE analysis, one can achieve the same equilibrium response to a �nancial

shock as under a consistently pursued price-level targeting regime simply by committing

when such a shock occurs to keep interest rate at the ZLB until the price-level target path

is regained.

For the speci�cation of the price-level targeting policy, we adopt similar notations as in

Section F.2. The functions v(p̃) and ṽ(p̃) are such that v = ṽ = 0 if p̃ = 0, i.e., the steady

state around which we log-linearate the structural equation is also a stationary equilibrium

under the price-level targeting regime, i.e., one in which the price-level target is always

achieved, so that p̃t = 0 at all times.

Dynamics in the �normal� state: once the correct value functions for the normal state

have been learned, we have

ȳ(t) = ȳ(τ(p̃(t)))

π̄(t) = π̄(τ(p̃(t)))

dp̃(t)

dt
= π̄(t)

Starting from initial condition p̃(T ) when the �normal� state is entered at t = T , and

continuing until date t? at which p̃(t?) = 0. ȳ(τ), π̄(τ) are again given by equation (F.7)

for all τ ≥ 0, and τ(p̃) is the function obtained by inverting the function p̄(τ) derived in
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(F.8). Note that this solution applies regardless of the planning horizon h, and not only when

h ≥ τ(p̃(t)) as before; because if a agent has a horizon such that the price-level target is

not expected to be reached within the planning horizon, the value function used to evaluate

the terminal state is correct, i.e., the same valuation as would be calculated by an agent

with a longer planning horizon, which is long enough to see forward to a date at which the

price-level target is achieved.

Thus, if the economy enters the �normal� state at date T , regardless of the horizon h,

the subsequent evolution is and is expected to be

y(t) =

ȳ(τ(p̃(T ))− (t− T )) for all T ≤ t ≤ T + τ(p̃(T ))

0 for all t ≥ T + τ(p̃(T ))

π(t) =

π̄(τ(p̃(T ))− (t− T )) for all T ≤ t ≤ T + τ(p̃(T ))

0 for all t ≥ T + τ(p̃(T ))

p̃(t) =

p̄(τ(p̃(T ))− (t− T )) for all T ≤ t ≤ T + τ(p̃(T ))

0 for all t ≥ T + τ(p̃(T ))

Here, there are no longer �two phases� of the solution for the evolution after date T , i.e.,

no longer depending on whether p̃(t) is greater or less than p̄(h); instead, there is only one

phase. The solution for the dynamics of y(t), π(t), p̃(t) can be computed in closed form

using equations (F.7) and (F.8), once one has determined the value of τ(p̃(T )).

Now, consider the dynamics in the �crisis� state: under the assumption that the value

function, which is learned and also used in the �crisis� state, is the one that is correct in the

�normal� state (the only state in which people have had prior experiences from which to learn

the value function). Then, the trajectory that is anticipated by a �nite-horizon planner in

the �crisis� state is given by paths {y(t), π(t), p̃(t), h(t)}, where h(t) is the remaining planning

horizon at each point in time t, starting from the time at which the planning takes place.

The paths {y(t), π(t), p̃(t), h(t)} satisfy a system of di�erential equations:

−dy
dt

= −σ∆? + σπ(t) + v[ȳ(τ(p̃(t)))− y(t)] (G.1a)

−dπ
dt

= γ[y(t)− λπ(t)] + v[π̄(τ(p̃(t)))− π(t)] (G.1b)

dp̃

dt
= π(t) (G.1c)
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dh

dt
= −1 (G.1d)

where ȳ(t) is the value if there is reversion to the �normal� sate at time t.

The system of (G.1a)-(G.1d) is from time t = t0 (the time at which the planning exercise

is undertaken) until t = t0 + h0 (the actual planning horizon of the agent), starting from

initial conditions p̃(t0) (given by actual dynamics up to time t0) and h(t0) = h0 (the agent's

actual planning horizon when the planning exercise is undertaken), and also satisfy terminal

conditions

y(t0 + h0) = ȳ(τ(p̃(t0 + h0))), π(t0 + h0) = π̄(τ(p̃(t0 + h0))) (G.2)

Here, the terminal conditions (G.2) re�ect the fact that the value functions v(p̃) and

ṽ(p̃) that are used when the planning process is terminated at time t0 +h0 are the ones that

would be correct under the dynamics in the �normal� state. That is, these are beliefs that

would be correct if it were expected that, at time t0 +h0, the economy will necessarily revert

to the �normal� state if it has not already done so previously. Hence, the terminal beliefs are

the same as the beliefs that would be jumped to in the event of a Poisson transition to the

�normal� state.

Similar to Section F.2, an anticipated trajectory in the �crisis� state also has to satisfy

equations (G.1a)-(G.1d), but instead of terminal conditions (G.2), we impose the terminal

conditions

y(t0 + h0) = 0, π(t0 + h0) = 0

regardless of the value of p̃(t0 + h0). In addition to the di�erent terminal conditions, the

method used in Section F.2 has a more complex speci�cation of ȳ(p̃(t), h(t)); in contrast,

equations (G.1a)-(G.1b) under systematic price-level targeting apply only in the case of

h(t) ≥ τ(p̃(t))⇔ p̃(t) ≥ p̃(h(t)) as in Section F.2.

We then numerically solve the system using the same method as in Section F.2. Each

trajectory j is associated with a particular possible value τ(p̃(t0 +h0)) = τj > 0. We assume

that the {τj} are a monotonically increasing sequence. For remaining horizon k = 0, from

(G.2), we then have

y(j, 0) = ȳ(τj), π(j, 0) = π̄(τj), p̃(j, 0) = p̄(τj)

Starting from these initial values, we then use equations (F.11a)-(F.11c) to recursively

calculate y(j, k), π(j, k), p̃(j, k) for progressively higher values of k. The process is continued

for values of k up to k = K, i.e., the longest horizon of interest for purposes of the simulations,

or until one reaches a value of k at which p̃(j, k) ≥ 0.

Given a numerical solution for a set of trajectories indexed by j, we can compute
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Figure 15: Price-gap Dynamics under Systematic Price-level Targeting (PLT Rule)
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Figure 16: Output Dynamics under Systematic Price-level Targeting (PLT Rule)

simulated paths using the same method as in Section F.2. Under the systematic price-level

targeting rule, Figure 15, 16, and 17 show the full dynamics of price, output, and in�ation,

respectively. In the numerical exercise, as in Section F.2, the economy enters �crisis� state

at t = 0, and reverts to �normal� state at T = 10.

To compare the results of temporary price-level targeting rule with systematic price-

level targeting rule, Figure 18, 19, and 20 show the comparison of full dynamics for price,

output, and in�ation under these two policies, respectively. If the planning horizon is large,

e.g., more than �ve years, i.e., h ≥ 20, there is not much di�erence between the two price-

level targeting rules. But, if the planning horizon is short for some portion of the people, the

systematic price-level targeting rule would improve output and in�ation during crisis much

better. Thus, following a systematic price-level targeting rule, even when �nancial frictions

are unimportant, can be more e�ective in limiting the e�ects of the ��nancial crisis� shock

than a temporary price-level targeting rule introduced only when crisis occurs,

Some might suppose that recognizing limitations on people's ability to correctly antici-

pate future consequences of a new policy should reduce the bene�ts from policy commitment,

and hence favor a purely discretionary approach to policy. In our analysis, instead, recogniz-
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Figure 17: In�ation Dynamics under Systematic Price-level Targeting (PLT Rule)
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Figure 18: Price-gap Dynamics under Temporary PLT versus PLT Rule
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Figure 19: Output Dynamics under Temporary PLT versus PLT Rule
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Figure 20: In�ation Dynamics under Temporary PLT versus PLT Rule
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ing that planning horizon may not be too long reduces the predicted e�cacy of temporary

commitments in response to a special situation, and strengthens the case of seeking to design

regimes that apply all the time.
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