Information and Communication in Organizations Online Appendix

Inga Deimen and Dezső Szalay*

Preliminaries:

Let $Y=\left(Y_{1}, Y_{2}\right)$ be an n-dimensional Normal random variable with

$$
\mu=\left(\mu_{1}, \mu_{2}\right), \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

where the dimensions of Y_{1}, μ_{1} and Σ_{11} are m, m, and $m \times m$. The conditional distribution of $\left(Y_{1} \mid Y_{2}=y_{2}\right)$ is Normal with conditional mean vector

$$
\begin{equation*}
\mathbb{E}\left[Y_{1} \mid Y_{2}=y_{2}\right]=\mu_{1}+\left(y_{2}-\mu_{2}\right) \Sigma_{22}^{-1} \Sigma_{21} \tag{A1}
\end{equation*}
$$

and conditional covariance matrix satisfying

$$
\begin{equation*}
\Sigma^{*}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \tag{A2}
\end{equation*}
$$

Applying equation ($A 1$), the conditional expectations are

$$
\begin{equation*}
\mathbb{E}\left[\eta \mid s_{\omega}, s_{\eta}\right]=\alpha^{s} s_{\omega}+\beta^{s} s_{\eta} \tag{A3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[\omega \mid s_{\omega}, s_{\eta}\right]=\alpha^{r} s_{\omega}+\beta^{r} s_{\eta}, \tag{A4}
\end{equation*}
$$

where the weights in the sender's ideal choice are

$$
\alpha^{s}=\sigma_{\varepsilon_{\eta}}^{2} \frac{\rho \sigma^{2}}{\left(\sigma^{2}+\sigma_{\varepsilon_{\omega}}^{2}\right)\left(\sigma^{2}+\sigma_{\varepsilon_{\eta}}^{2}\right)-\left(\rho \sigma^{2}\right)^{2}}
$$

[^0]and
$$
\beta^{s}=\sigma^{2} \frac{\sigma_{\varepsilon_{\omega}}^{2}-\sigma^{2} \rho^{2}+\sigma^{2}}{\left(\sigma^{2}+\sigma_{\varepsilon_{\omega}}^{2}\right)\left(\sigma^{2}+\sigma_{\varepsilon_{\eta}}^{2}\right)-\left(\rho \sigma^{2}\right)^{2}},
$$
and the weights in the receiver's ideal choice are
$$
\alpha^{r}=\sigma^{2} \frac{\sigma_{\varepsilon_{\eta}}^{2}+\sigma^{2}-\sigma^{2} \rho^{2}}{\left(\sigma^{2}+\sigma_{\varepsilon_{\omega}}^{2}\right)\left(\sigma^{2}+\sigma_{\varepsilon_{\eta}}^{2}\right)-\left(\rho \sigma^{2}\right)^{2}}
$$
and
$$
\beta^{r}=\sigma_{\varepsilon_{\omega}}^{2} \frac{\sigma^{2} \rho}{\left(\sigma^{2}+\sigma_{\varepsilon_{\omega}}^{2}\right)\left(\sigma^{2}+\sigma_{\varepsilon_{\eta}}^{2}\right)-\left(\rho \sigma^{2}\right)^{2}} .
$$

Proof of Lemma 1. The second moments of the random variable θ can be calculated as

$$
C=\alpha^{s} \sigma^{2}+\beta^{s} \rho \sigma^{2}=\rho \sigma^{2} \frac{\frac{\sigma_{\varepsilon_{\omega}}^{2}}{\sigma^{2}}+\frac{\sigma_{\varepsilon_{\eta}}^{2}}{\sigma^{2}}+1-\rho^{2}}{\left(1+\frac{\sigma_{\varepsilon \omega}^{2}}{\sigma^{2}}\right)\left(1+\frac{\sigma_{\varepsilon_{\eta}}^{2}}{\sigma^{2}}\right)-\rho^{2}},
$$

which for $\sigma_{\varepsilon_{\omega}}^{2}=0$ amounts to

$$
C=\rho \sigma^{2}
$$

Similarly,

$$
\begin{aligned}
V & =\left(\alpha^{s}\right)^{2} \operatorname{Var}\left(s_{\omega}\right)+\left(\beta^{s}\right)^{2} \operatorname{Var}\left(s_{\eta}\right)+2 \alpha^{s} \beta^{s} \operatorname{Cov}\left(s_{\omega}, s_{\eta}\right) \\
& =\left(\alpha^{s}\right)^{2}\left(\sigma^{2}+\sigma_{\varepsilon_{\omega}}^{2}\right)+\left(\beta^{s}\right) 2\left(\sigma^{2}+\sigma_{\varepsilon_{\eta}}^{2}\right)+2 \alpha^{s} \beta^{s} \rho \sigma^{2}=\sigma^{2} \frac{\frac{\sigma_{\varepsilon_{\omega}}^{2}}{\sigma^{2}}+\frac{\sigma_{\varepsilon_{\eta}}^{2}}{\sigma^{2}} \rho^{2}+1-\rho^{2}}{\left(1+\frac{\sigma_{\varepsilon_{\omega}}^{2}}{\sigma^{2}}\right)\left(1+\frac{\sigma_{\varepsilon_{\eta}}^{2}}{\sigma^{2}}\right)-\rho^{2}}
\end{aligned}
$$

which for $\sigma_{\varepsilon_{\omega}}^{2}=0$ amounts to

$$
V=\sigma^{2} \frac{\frac{\sigma_{\frac{\varepsilon_{\eta}}{2}}^{\sigma^{2}} \rho^{2}+1-\rho^{2}}{\frac{\sigma_{\varepsilon_{\eta}}^{2}}{\sigma^{2}}+1-\rho^{2}} . . . ~}{\text {. }}
$$

For $\sigma_{\varepsilon_{\eta}}^{2} \rightarrow 0$, we get $V=\sigma^{2}$. Applying l'Hospital, for $\sigma_{\varepsilon_{\eta}}^{2} \rightarrow \infty$ we get $V=\rho^{2} \sigma^{2}$.

Lemma A1 Expected losses are minimized for the receiver and for the sender for an action $x^{*}=\mathbb{E}\left[y \mid s_{\omega}, s_{\eta}\right]$ for $y=\omega, \eta$, respectively.
Proof of Lemma A1. Let $u^{s}(\cdot)=u^{r}(\cdot) \equiv u(\cdot)=-\ell(\cdot)$ and $y=\omega, \eta$. Consider the problem

$$
\max _{x} \int_{-\infty}^{\infty} u(x-y) f\left(y \mid s_{\omega}, s_{\eta}\right) d y
$$

where $f\left(y \mid s_{\omega}, s_{\eta}\right)$ is the conditional density of $y=\omega, \eta$ given the signals. Since the utility depends only on the distance between x and y we have $u^{\prime}(x-y)>0$ for $y>x, u^{\prime}(x-y)=0$ for $x=y$, and $u^{\prime}(x-y)<0$ for $y<x$.

Consider the candidate solution $x^{*}=\mu_{y} \equiv \mathbb{E}\left[y \mid s_{\omega}, s_{\eta}\right]$. The first-order condition can be written as

$$
\int_{-\infty}^{\infty} u^{\prime}\left(x^{*}-y\right) f\left(y \mid s_{\omega}, s_{\eta}\right) d y=\int_{-\infty}^{\infty} u^{\prime}\left(\mu_{y}-y\right) f\left(y \mid s_{\omega}, s_{\eta}\right) d y=0
$$

Consider two points $y_{1}=\mu_{y}-\Delta$ and $y_{2}=\mu_{y}+\Delta$ for arbitrary $\Delta>0$. By symmetry of u around its bliss point and symmetry of the distribution around μ_{y}, we have

$$
u^{\prime}(\Delta) f\left(\mu_{y}-\Delta \mid s_{\omega}, s_{\eta}\right)=-u^{\prime}(-\Delta) f\left(\mu_{y}+\Delta \mid s_{\omega}, s_{\eta}\right) .
$$

Since this holds point-wise for each Δ, it also holds if we integrate over Δ. Thus, the firstorder condition is satisfied at $x^{*}=\mu_{y}$. By concavity of u in x, only one value of x satisfies the first-order condition.
Proof of Proposition 1. Recall that $u(\cdot)=-\ell(\cdot)$. An optimal information structure solves:
$\max _{V \in\left[\rho^{2} \sigma^{2}, \sigma^{2}\right]} \int u\left(z\left(\sigma^{2}-\frac{\left(\rho \sigma^{2}\right)^{2}}{V}\right)^{\frac{1}{2}}\right) \phi(z) d z+\int u\left(\left(\frac{\left(\rho \sigma^{2}\right)^{2}}{V}-2\left(\rho \sigma^{2}\right)+\sigma^{2}\right)^{\frac{1}{2}} t\right) \phi(t) d t$.

The derivative wrt V is

$$
\begin{align*}
& \frac{1}{2} \frac{\left(\rho \sigma^{2}\right)^{2}}{V^{2}} \int z\left(\sigma^{2}-\frac{\left(\rho \sigma^{2}\right)^{2}}{V}\right)^{-\frac{1}{2}} u^{\prime}\left(z\left(\sigma^{2}-\frac{\left(\rho \sigma^{2}\right)^{2}}{V}\right)^{\frac{1}{2}}\right) \phi(z) d z \\
- & \frac{1}{2} \frac{\left(\rho \sigma^{2}\right)^{2}}{V^{2}} \int\left(\frac{\left(\rho \sigma^{2}\right)^{2}}{V}-2\left(\rho \sigma^{2}\right)+\sigma^{2}\right)^{-\frac{1}{2}} t u^{\prime}\left(\left(\frac{\left(\rho \sigma^{2}\right)^{2}}{V}-2\left(\rho \sigma^{2}\right)+\sigma^{2}\right)^{\frac{1}{2}} t\right) \phi(t) d t . \tag{A5}
\end{align*}
$$

First, suppose $V=\rho \sigma^{2}$. Then, the derivative wrt V satisfies

$$
\begin{aligned}
& \int \frac{1}{2} z\left(\sigma^{2}-\rho \sigma^{2}\right)^{-\frac{1}{2}} u^{\prime}\left(z\left(\sigma^{2}-\rho \sigma^{2}\right)^{\frac{1}{2}}\right) \phi(z) d z \\
& -\int \frac{1}{2}\left(-\rho \sigma^{2}+\sigma^{2}\right)^{-\frac{1}{2}} t u^{\prime}\left(\left(-\rho \sigma^{2}+\sigma^{2}\right)^{\frac{1}{2}} t\right) \phi(t) d t \\
= & 0 .
\end{aligned}
$$

Now suppose $V \neq \rho \sigma^{2}$. Note that both integrands in (A5) have the common representation

$$
\begin{equation*}
\int \frac{1}{a} k u^{\prime}(a k) \phi(k) d k \tag{A6}
\end{equation*}
$$

Differentiating wrt a, we observe that (A6) is monotone decreasing in a,

$$
-\frac{1}{a^{3}} \int a k u^{\prime}(a k) \phi(k) d k+\frac{1}{a^{3}} \int a^{2} k^{2} u^{\prime \prime}(a k) \phi(k) d k \leq 0
$$

where the inequality follows from the curvature condition

$$
\begin{equation*}
q \frac{u^{\prime \prime}(q)}{u^{\prime}(q)}=q \frac{\ell^{\prime \prime}(q)}{\ell^{\prime}(q)} \geq 1 \tag{A7}
\end{equation*}
$$

$V<\rho \sigma^{2}$ implies $\frac{\left(\rho \sigma^{2}\right)^{2}}{V}-2 \rho \sigma^{2}+\sigma^{2}>\sigma^{2}-\frac{\left(\rho \sigma^{2}\right)^{2}}{V}$. The curvature condition (A7) implies monotonicity and therefore

$$
\begin{aligned}
& \frac{1}{2} \frac{\left(\rho \sigma^{2}\right)^{2}}{V^{2}} \int z\left(\sigma^{2}-\frac{\left(\rho \sigma^{2}\right)^{2}}{V}\right)^{-\frac{1}{2}} u^{\prime}\left(z\left(\sigma^{2}-\frac{\left(\rho \sigma^{2}\right)^{2}}{V}\right)^{\frac{1}{2}}\right) \phi(z) d z \\
\geq & \frac{1}{2} \frac{\left(\rho \sigma^{2}\right)^{2}}{V^{2}} \int\left(\frac{\left(\rho \sigma^{2}\right)^{2}}{V}-2\left(\rho \sigma^{2}\right)+\sigma^{2}\right)^{-\frac{1}{2}} t u^{\prime}\left(\left(\frac{\left(\rho \sigma^{2}\right)^{2}}{V}-2\left(\rho \sigma^{2}\right)+\sigma^{2}\right)^{\frac{1}{2}} t\right) \phi(t) d t
\end{aligned}
$$

Hence the derivative is non-negative for $V<\rho \sigma^{2}$. By symmetry, the derivative is nonpositive for $V>\rho \sigma^{2}$. These inequalities become strict for functions that satisfy the curvature condition (A7) with strict inequality. It follows that the problem is maximized in V for $V=\rho \sigma^{2}$.

[^0]: *Inga Deimen: University of Arizona, Eller College of Management, 1130 E Helen St, Tucson, AZ 85721, ideimen@email.arizona.edu. Dezső Szalay: University of Bonn, Institute for Microeconomics, Adenauerallee 24-42, 53113 Bonn, Germany, szalay@uni-bonn.de.

