Information and Communication in Organizations Online Appendix

Inga Deimen and Dezső Szalay*

Preliminaries:

Let $Y = (Y_1, Y_2)$ be an *n*-dimensional Normal random variable with

$$\mu = (\mu_1, \mu_2), \quad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix},$$

where the dimensions of Y_1 , μ_1 and Σ_{11} are m, m, and $m \times m$. The conditional distribution of $(Y_1|Y_2 = y_2)$ is Normal with conditional mean vector

$$\mathbb{E}\left[Y_1|Y_2 = y_2\right] = \mu_1 + (y_2 - \mu_2) \Sigma_{22}^{-1} \Sigma_{21}$$
(A1)

and conditional covariance matrix satisfying

$$\Sigma^* = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}.$$
 (A2)

Applying equation (A1), the conditional expectations are

$$\mathbb{E}\left[\eta|s_{\omega}, s_{\eta}\right] = \alpha^{s} s_{\omega} + \beta^{s} s_{\eta} \tag{A3}$$

and

$$\mathbb{E}\left[\omega|s_{\omega}, s_{\eta}\right] = \alpha^{r} s_{\omega} + \beta^{r} s_{\eta}, \tag{A4}$$

where the weights in the sender's ideal choice are

$$\alpha^s = \sigma_{\varepsilon_\eta}^2 \frac{\rho \sigma^2}{(\sigma^2 + \sigma_{\varepsilon_\omega}^2)(\sigma^2 + \sigma_{\varepsilon_\eta}^2) - (\rho \sigma^2)^2}$$

^{*}Inga Deimen: University of Arizona, Eller College of Management, 1130 E Helen St, Tucson, AZ 85721, ideimen@email.arizona.edu. Dezső Szalay: University of Bonn, Institute for Microeconomics, Adenauerallee 24-42, 53113 Bonn, Germany, szalay@uni-bonn.de.

and

$$\beta^s = \sigma^2 \frac{\sigma_{\varepsilon_\omega}^2 - \sigma^2 \rho^2 + \sigma^2}{(\sigma^2 + \sigma_{\varepsilon_\omega}^2)(\sigma^2 + \sigma_{\varepsilon_\eta}^2) - (\rho\sigma^2)^2},$$

and the weights in the receiver's ideal choice are

$$\alpha^{r} = \sigma^{2} \frac{\sigma_{\varepsilon_{\eta}}^{2} + \sigma^{2} - \sigma^{2} \rho^{2}}{(\sigma^{2} + \sigma_{\varepsilon_{\omega}}^{2})(\sigma^{2} + \sigma_{\varepsilon_{\eta}}^{2}) - (\rho \sigma^{2})^{2}}$$

and

$$\beta^r = \sigma_{\varepsilon_\omega}^2 \frac{\sigma^2 \rho}{(\sigma^2 + \sigma_{\varepsilon_\omega}^2)(\sigma^2 + \sigma_{\varepsilon_\eta}^2) - (\rho \sigma^2)^2}.$$

Proof of Lemma 1. The second moments of the random variable θ can be calculated as

$$C = \alpha^{s} \sigma^{2} + \beta^{s} \rho \sigma^{2} = \rho \sigma^{2} \frac{\frac{\sigma_{\varepsilon\omega}^{2}}{\sigma^{2}} + \frac{\sigma_{\varepsilon\eta}^{2}}{\sigma^{2}} + 1 - \rho^{2}}{\left(1 + \frac{\sigma_{\varepsilon\omega}^{2}}{\sigma^{2}}\right) \left(1 + \frac{\sigma_{\varepsilon\eta}^{2}}{\sigma^{2}}\right) - \rho^{2}}$$

which for $\sigma_{\varepsilon_\omega}^2=0$ amounts to

$$C = \rho \sigma^2$$
.

Similarly,

$$V = (\alpha^{s})^{2} \operatorname{Var}(s_{\omega}) + (\beta^{s})^{2} \operatorname{Var}(s_{\eta}) + 2\alpha^{s} \beta^{s} \operatorname{Cov}(s_{\omega}, s_{\eta})$$

$$= (\alpha^{s})^{2} \left(\sigma^{2} + \sigma_{\varepsilon_{\omega}}^{2}\right) + (\beta^{s}) 2 \left(\sigma^{2} + \sigma_{\varepsilon_{\eta}}^{2}\right) + 2\alpha^{s} \beta^{s} \rho \sigma^{2} = \sigma^{2} \frac{\frac{\sigma_{\varepsilon_{\omega}}^{2}}{\sigma^{2}} + \frac{\sigma_{\varepsilon_{\eta}}^{2}}{\sigma^{2}} \rho^{2} + 1 - \rho^{2}}{\left(1 + \frac{\sigma_{\varepsilon_{\omega}}^{2}}{\sigma^{2}}\right) \left(1 + \frac{\sigma_{\varepsilon_{\eta}}^{2}}{\sigma^{2}}\right) - \rho^{2}},$$

which for $\sigma_{\varepsilon_{\omega}}^2 = 0$ amounts to

$$V = \sigma^2 \frac{\frac{\sigma_{\varepsilon_{\eta}}^2}{\sigma^2} \rho^2 + 1 - \rho^2}{\frac{\sigma_{\varepsilon_{\eta}}^2}{\sigma^2} + 1 - \rho^2}.$$

For $\sigma_{\varepsilon_{\eta}}^2 \to 0$, we get $V = \sigma^2$. Applying l'Hospital, for $\sigma_{\varepsilon_{\eta}}^2 \to \infty$ we get $V = \rho^2 \sigma^2$.

Lemma A1 Expected losses are minimized for the receiver and for the sender for an action $x^* = \mathbb{E}[y|s_{\omega}, s_{\eta}]$ for $y = \omega, \eta$, respectively.

Proof of Lemma A1. Let $u^{s}(\cdot) = u^{r}(\cdot) \equiv u(\cdot) = -\ell(\cdot)$ and $y = \omega, \eta$. Consider the problem

$$\max_{x} \int_{-\infty}^{\infty} u(x-y) f(y|s_{\omega}, s_{\eta}) dy,$$

where $f(y|s_{\omega}, s_{\eta})$ is the conditional density of $y = \omega, \eta$ given the signals. Since the utility depends only on the distance between x and y we have u'(x - y) > 0 for y > x, u'(x - y) = 0 for x = y, and u'(x - y) < 0 for y < x.

Consider the candidate solution $x^* = \mu_y \equiv \mathbb{E}[y|s_{\omega}, s_{\eta}]$. The first-order condition can be written as

$$\int_{-\infty}^{\infty} u'\left(x^*-y\right) f\left(y|s_{\omega},s_{\eta}\right) dy = \int_{-\infty}^{\infty} u'\left(\mu_y-y\right) f\left(y|s_{\omega},s_{\eta}\right) dy = 0.$$

Consider two points $y_1 = \mu_y - \Delta$ and $y_2 = \mu_y + \Delta$ for arbitrary $\Delta > 0$. By symmetry of u around its bliss point and symmetry of the distribution around μ_y , we have

$$u'(\Delta) f(\mu_y - \Delta | s_\omega, s_\eta) = -u'(-\Delta) f(\mu_y + \Delta | s_\omega, s_\eta).$$

Since this holds point-wise for each Δ , it also holds if we integrate over Δ . Thus, the first-order condition is satisfied at $x^* = \mu_y$. By concavity of u in x, only one value of x satisfies the first-order condition.

Proof of Proposition 1. Recall that $u(\cdot) = -\ell(\cdot)$. An optimal information structure solves:

$$\max_{V \in [\rho^2 \sigma^2, \sigma^2]} \int u \left(z \left(\sigma^2 - \frac{(\rho \sigma^2)^2}{V} \right)^{\frac{1}{2}} \right) \phi(z) \, dz + \int u \left(\left(\frac{(\rho \sigma^2)^2}{V} - 2 \left(\rho \sigma^2 \right) + \sigma^2 \right)^{\frac{1}{2}} t \right) \phi(t) \, dt.$$

The derivative wrt V is

$$\frac{1}{2} \frac{(\rho \sigma^2)^2}{V^2} \int z \left(\sigma^2 - \frac{(\rho \sigma^2)^2}{V} \right)^{-\frac{1}{2}} u' \left(z \left(\sigma^2 - \frac{(\rho \sigma^2)^2}{V} \right)^{\frac{1}{2}} \right) \phi(z) \, dz \\ -\frac{1}{2} \frac{(\rho \sigma^2)^2}{V^2} \int \left(\frac{(\rho \sigma^2)^2}{V} - 2 \left(\rho \sigma^2 \right) + \sigma^2 \right)^{-\frac{1}{2}} t u' \left(\left(\frac{(\rho \sigma^2)^2}{V} - 2 \left(\rho \sigma^2 \right) + \sigma^2 \right)^{\frac{1}{2}} t \right) \phi(t) \, dt.$$
(A5)

First, suppose $V = \rho \sigma^2$. Then, the derivative wrt V satisfies

$$\int \frac{1}{2} z \left(\sigma^{2} - \rho\sigma^{2}\right)^{-\frac{1}{2}} u' \left(z \left(\sigma^{2} - \rho\sigma^{2}\right)^{\frac{1}{2}}\right) \phi(z) dz - \int \frac{1}{2} \left(-\rho\sigma^{2} + \sigma^{2}\right)^{-\frac{1}{2}} t u' \left(\left(-\rho\sigma^{2} + \sigma^{2}\right)^{\frac{1}{2}} t\right) \phi(t) dt = 0.$$

Now suppose $V \neq \rho \sigma^2$. Note that both integrands in (A5) have the common representation

$$\int \frac{1}{a} k u'(ak) \phi(k) \, dk. \tag{A6}$$

Differentiating wrt a, we observe that (A6) is monotone decreasing in a,

$$-\frac{1}{a^{3}}\int aku'(ak)\,\phi(k)\,dk + \frac{1}{a^{3}}\int a^{2}k^{2}u''(ak)\,\phi(k)\,dk \le 0,$$

where the inequality follows from the curvature condition

$$q\frac{u''(q)}{u'(q)} = q\frac{\ell''(q)}{\ell'(q)} \ge 1.$$
 (A7)

 $V < \rho \sigma^2$ implies $\frac{(\rho \sigma^2)^2}{V} - 2\rho \sigma^2 + \sigma^2 > \sigma^2 - \frac{(\rho \sigma^2)^2}{V}$. The curvature condition (A7) implies monotonicity and therefore

$$\frac{1}{2} \frac{(\rho \sigma^2)^2}{V^2} \int z \left(\sigma^2 - \frac{(\rho \sigma^2)^2}{V} \right)^{-\frac{1}{2}} u' \left(z \left(\sigma^2 - \frac{(\rho \sigma^2)^2}{V} \right)^{\frac{1}{2}} \right) \phi(z) \, dz$$

$$\geq \frac{1}{2} \frac{(\rho \sigma^2)^2}{V^2} \int \left(\frac{(\rho \sigma^2)^2}{V} - 2 \left(\rho \sigma^2 \right) + \sigma^2 \right)^{-\frac{1}{2}} t u' \left(\left(\frac{(\rho \sigma^2)^2}{V} - 2 \left(\rho \sigma^2 \right) + \sigma^2 \right)^{\frac{1}{2}} t \right) \phi(t) \, dt.$$

Hence the derivative is non-negative for $V < \rho \sigma^2$. By symmetry, the derivative is non-positive for $V > \rho \sigma^2$. These inequalities become strict for functions that satisfy the curvature condition (A7) with strict inequality. It follows that the problem is maximized in V for $V = \rho \sigma^2$.