
TECHNICAL (ONLINE) APPENDIX:

“Public Debt, Interest Rates, and Negative Shocks,”
by Richard W. Evans

T-1 Blanchard (2019) model and calibration

This section shows the characterization and derivation of the Blanchard (2019) model.
The next Section T-2 shows how Blanchard (2019) is a nested case of the current
paper, Evans (2020). For the full citations of the references in this technical appendix,
see the references section at the end of Evans (2020).

T-1.1 Households

Blanchard (2019) assumes that a unit measure of identical households is born each
period and live for two periods. A household supplies a unit of labor inelastically
when young n1,t = 1 for all t and does not work when old n2,t = 0 for all t. Young
households have lump sum amount H̄ taken from them and given to the current
period old each period. Young households also receive an endowment x1 each period.
This endowment comes exogenously from some other economy and does not figure
into this economy’s government budget constraint. Households choose how much to
consume each period c1,t and c2,t+1 and how much to save in terms of risky savings
k2,t+1 and riskless bonds b2,t+1. The household maximization problem is the following,

max
k2,t+1,b2,t+1

(1− β) ln(c1,t) + β
1

1− γ
ln
(
Et
[
(c2,t+1)1−γ]) ∀t (1)

such that c1,t + k2,t+1 + ptb2,t+1 = wt + x1 − H̄ (T.1.1)

and c2,t+1 = Rt+1k2,t+1 + b2,t+1 + H̄ (T.1.2)

and c1,t, c2,t+1, k2,t+1 ≥ 0 (4)

where Rt is the gross return on risky savings, wt is the wage on the unit of inelastically
supplied labor by the young, and pt is the price per unit of the riskless bond.

The functional form for lifetime utility in (1) is the Epstein-Zin-Weil utility used
in Blanchard (2019). See also Epstein and Zin (2013) and Weil (1990). The value
x1 in the young age s = 1 budget constraint (2) is the endowment that the young
receive, and H̄ is the lump sum government transfer taken from the young and given
to the old each period. In Blanchard (2019), the endowment x1 guarantees that this
is always the case.

The resulting Euler equation for optimal risky savings k2,t+1 is the following.The
resulting Euler equation for optimal risky savings k2,t+1 is the following.

1− β
c1,t

= β
Et

[
Rt+1

(
c2,t+1

)−γ]
Et

[(
c2,t+1

)1−γ
] ∀t (5)
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And the resulting Euler equation for optimal riskless savings b2,t+1 is the following.

1

R̄t

≡ pt =

(
β

1− β

) (c1,t)Et

[(
c2,t+1

)−γ]
Et

[(
c2,t+1

)1−γ
] ∀t

⇒ R̄t =

(
1− β
β

) Et

[(
c2,t+1

)1−γ
]

(c1,t)Et

[(
c2,t+1

)−γ] ∀t

(6)

Substituting the period budget constraints (T.1.1) and (T.1.2) into the two Euler
equations (5) and (6), we can show that optimal risky savings k2,t+1 and riskless
savings b2,t+1 are functions ψ(·) and φ(·), respectively, of the time paths of transfers
and prices over the lifetime of the household,

k2,t+1 = ψ
(
H̄, wt, Rt+1

)
∀t (T.1.3)

b2,t+1 = φ
(
H̄, wt, Rt+1

)
∀t (T.1.4)

where Rt+1 is in the expectations operator.
Implicit in Blanchard (2019) is the assumption of, generally, an exogenous supply

of riskless bonds that is nonnegative Bt ≥ 0 for all t. However, this model specifically
assumes a zero supply of riskless bonds Bt = 0. So the general version of our riskless
bond market clearing condition is the following.

b2,t = Bt ∀t (T.1.5)

With the zero supply assumption Bt = 0, the household demand for riskless bonds is
zero in equilibrium through the market clearing condition,

b2,t = 0 ∀t (T.1.6)

all the other endogenous variables are determined by the equilibrium described with-
out the riskless bonds, and the riskless return R̄t is characterized by Euler equation
(6).

T-1.2 Firms

A unit measure of identical perfectly competitive firms exist in this economy that
hire aggregate labor Lt at wage wt and rent aggregate capital Kt at rental rate rt
every period in order to produce consumption good Yt according to a Cobb-Douglas
production function,

Yt = F (Kt, Lt, zt) = At

[
α(Kt)

ε−1
ε + (1− α)(Lt)

ε−1
ε

] ε
ε−1 ∀t (7)

where the capital share of income is given by α ∈ (0, 1) and ε > 0 is the constant
elasticity of substitution between capital and labor in the production process. Total
factor productivity At ≡ ezt > 0 is distributed log normally, and zt follows a normally
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distributed AR(1) process. Two important special parameterizations are the unit
elasticity case ε = 1 in which the limit of (7) is the Cobb-Douglas production function
and the perfectly elastic case ε =∞ in which the production function is linear in Kt

and Lt (perfect substitutes).

zt = ρzt−1 + (1− ρ)µ+ εt

where ρ ∈ [0, 1), µ ≥ 0, and εt ∼ N(0, σ)
(8)

The firm’s problem each period is to choose how much capital Kt to rent and how
much labor Lt to hire in order to maximize profits,

max
Kt,Lt

Prt = F (Kt, Lt, zt)− wtLt −RtKt ∀t (9)

where this equation implies full depreciation of capital each period δ = 1. Profit
maximization implies that the real wage and real rental rate are determined by the
standard first order conditions for the firm.

Rt = α(At)
ε−1
ε

[
Yt
Kt

] 1
ε

∀t (10)

wt = (1− α)(At)
ε−1
ε

[
Yt
Lt

] 1
ε

∀t (11)

Because the risky interest rate Rt in (10) is not defined when the capital stock is
zero Kt = 0 and because the wage wt in (11) is not defined when aggregate labor is
zero Lt = 0, we know that both values must be strictly positive Kt, Lt > 0.

Blanchard (2019) looks at two cases of the production function. Perfect substi-
tutes (ε =∞) is the simplest case in which the production function simplifies to the
following linear function of Kt and Lt and the first order conditions become indepen-
dent of Kt and Lt and simply functions of α and At.

Yt = At
[
αKt + (1− α)Lt

]
∀t (T.1.7)

Rt = αAt ∀t (T.1.8)

wt = (1− α)(At) ∀t (T.1.9)

The second case is that of unit elasticity (ε = 1), which results in a Cobb-Douglas
production function of Kt and Lt with the corresponding first order conditions.

Yt = At
(
Kt

)α(
Lt
)1−α ∀t (T.1.10)

Rt = αAt

(
Lt
Kt

)1−α

∀t (T.1.11)

wt = (1− α)(At)

(
Kt

Lt

)α
∀t (T.1.12)
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T-1.3 Government budget constraint and market clearing

The government budget constraint in Blanchard (2019) is a simple balanced one in
which revenues taken lump sum from the young in every period H̄ equal transfer
expenditures given to the old each period H̄. This does not cause any default or
inability for the young to pay because the Blanchard analysis assumes the endowment
x1 is big enough so that no adverse shock will make H̄ ≥ wt + x1.

The model includes four market clearing conditions, only three of which are nec-
essary for the solution–the risky capital market (13), the labor market (14), riskless
bond market (15), and the goods market (16). We will leave the goods market clearing
condition (16) out of the solution method due to its redundancy by Walras’ Law.

Kt = k2,t ∀t (13)

Lt = 1 ∀t (14)

Bt = 0 ∀t (15)

Yt = Ct +Kt+1 ∀t
where Ct ≡ c1,t + c2,t and Kt+1 = It

(16)

T-1.4 Equilibrium

The equilibrium in Blanchard (2019) is the following.

Definition 1 (Blanchard (2019) functional stationary equilibrium). A non-
autarkic functional stationary equilibrium in the two-period-lived overlapping gener-
ations model with exogenous labor supply and aggregate shocks in Blanchard (2019)
is defined by stationary price functions R(k, z), w(k, z), and R̄(k, z) and a stationary
risky savings function k′ = ψ(k, z) for all current state wealth k and total factor
productivity component z such that:

i. households optimize according to (T.1.1) and (T.1.2), (5), and (6)

ii. firms optimize according to (10) and (11),

iii. markets clear according to (13), (14), and (15).
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T-1.4.1 Zero transfers and perfect substitutes

When transfers are zero H̄ = 0 and capital and labor are perfect substitutes in
production ε =∞, the equilibrium has an analytical solution.

Rt = αezt ∀zt (T.1.13)

wt = (1− α)ezt ∀zt (T.1.14)

R̄t = αeρzt+(1−ρ)µ+
σ2(1−2γ)

2 ∀zt (T.1.15)

c1,t = (1− β)
(

[1− α]ezt + x1

)
∀zt (T.1.16)

k2,t+1 = β
(

[1− α]ezt + x1

)
∀zt (T.1.17)

c2,t = αeztk2,t ∀k2,t, zt (T.1.18)

An important relationship that comes out of the equilibrium solution described
above is the percent spread between the expected risky gross return next period and
the current riskless return.

Et
[
Rt+1

]
= αeρzt+(1−ρ)µ+σ2

2 ∀t (T.1.19)

ln
(
Et
[
Rt+1

])
− ln

(
R̄t

)
= γσ2 ∀t (T.1.20)

T-1.4.2 Zero transfers and unit elasticity

When transfers are zero H̄ = 0 and capital and labor have unit elasticity in the
production function ε = 1, the equilibrium also has an analytical solution.

Rt = αezt
(
k2,t

)α−1 ∀k2,t, zt (T.1.21)

wt = (1− α)ezt
(
k2,t

)α ∀k2,t, zt (T.1.22)

R̄t =
αeρzt+(1−ρ)µ+

σ2(1−2γ)
2(

β
[
(1− α)ezt(k2,t)α + x1

])1−α ∀k2,t, zt (T.1.23)

c1,t = (1− β)
(

[1− α]ezt
(
k2,t

)α
+ x1

)
∀k2,t, zt (T.1.24)

k2,t+1 = β
(

[1− α]ezt
(
k2,t

)α
+ x1

)
∀k2,t, zt (T.1.25)

c2,t = αezt
(
k2,t

)α ∀k2,t, zt (T.1.26)

The analogous relationship to (T.1.20) that comes out of the equilibrium solution
described above is the percent spread between the expected risky gross return next
period and the current riskless return.

Et
[
Rt+1

]
= αeρzt+(1−ρ)µ+σ2

2

(
k2,t+1

)α−1 ∀t (T.1.27)

ln
(
Et
[
Rt+1

])
− ln

(
R̄t

)
= γσ2 ∀t (T.1.20)
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T-1.5 Calibration

Blanchard assumes that households inelastically supply a unit of labor when young
n1,t = 1 and supply no labor when old n2,t = 0 for all t. He calibrates the capital
share of income parameter α = 1/3. He calibrates the annual standard deviation of
the normally distributed component of zt the total factor productivity process to be
σan = 0.2, which implies a model 25-year standard deviation of σ ≈ 0.615. Blanchard
assumes full depreciation of capital each period δ = 1. Table 6 summarizes the
Blanchard calibration.

Table 6: Blanchard (2019) calibration values

Variable Value(s) Variable Value(s) Variable Value(s)

α 0.33 E[Rt+1,an] [0.00, 0.04] β func. of E[Rt+1]

ε 1.0 or ∞ avg. R̄t,an [-0.02, 0.01] x1 func. of E[Rt+1]

ρan 0.95 µ func. of E[Rt+1] avg. k2,t func. of E[Rt+1]

ρ 0.21 γ func. of E[Rt+1] H̄ [0, 0.05(avg. k2,t)]

z0 µ and avg. R̄t
σan 0.200

σ 0.615

Given a calibrated value for σ, Blanchard (2019, p. 1213) identifies the value of µ
independently of β using the linear production expression for the expected value of
the marginal product of capital (T.1.19),

Et
[
Rt+1

]
= αeρzt+(1−ρ)µ+σ2

2 ∀t (T.1.19)

and calibrates γ from the difference in the expected marginal product from the riskless
rate (T.1.20), which expression holds in both the linear and Cobb-Douglas production
cases.

ln
(
Et
[
Rt+1

])
− ln

(
R̄t

)
= γσ2 ∀t (T.1.20)

He then identifies β independent of µ using the Cobb-Douglas expression for the
expected value of the marginal product of capital, the derivation of which is given
below in the lead up to (T.1.35). This use of two separate models to identify two
respective parameters to be used in the same model is justified given the independence
of the identifying equations on the other parameter.

To derive the independent expression for β from the Cobb-Douglas specification
of the model, we must solve for the long run average of Rt+1, k2,t and wt, of which x1

is a function. The long-run expected value version of the expected marginal product
of capital from (T.1.27) is the following.

E
[
Rt+1

]
= αeµ+σ2

2 βα−1
[
(1− α)eµ(k̄2)α + x1

]α−1
(T.1.28)

16



We solve for the average capital stock as the expected value of savings tomorrow
Et
[
k2,t+2

]
.

Et
[
k2,t+2

]
= β

[
(1− α)eρzt+(1−ρ)µ+σ2

2

(
k2,t+1

)α
+ x1

]
∀t (T.1.29)

Then let k̄2 be the average k2,t across a simulation by setting k2,t = k̄2 for all t in
(T.1.29) and set zt to its average value zt = µ for all t.

k̄2 = β
[
(1− α)eµ+σ2

2

(
k̄2

)α
+ x1

]
(T.1.30)

We solve for the average wage as the expected value of the wage tomorrow Et[wt+1].

Et
[
wt+1

]
= (1− α)eρzt+(1−ρ)µ+σ2

2

(
k2,t+1

)α ∀t (T.1.31)

Then set k2,t = k̄2 and zt = µ for all t, and the average wage w̄ is the following.

w̄ = (1− α)eµ+σ2

2

(
k̄2

)α
(T.1.32)

If we calibrate x1 to be 100 percent of the average wage, then we can rewrite (T.1.32).

x1 = (1− α)eµ+σ2

2

(
k̄2

)α
(T.1.33)

Substituting (T.1.33) into (T.1.30) gives the following equation.

k̄2 = 2βx1 (T.1.34)

Then dividing (T.1.33) by (T.1.28) and substituting in (T.1.34) gives an expression
for β independent of µ, x1, and k̄2.

β =

(
α

1− α

)
1

2E[Rt+1]
(T.1.35)

Substituting (T.1.34) into (T.1.33), we can solve for x1 as a function of µ and β.

x1 =
[
(1− α)eµ+σ2

2 (2β)α
] 1

1−α
(T.1.36)

Finally, we solve for the long-run value of wealth k̄2 by substituting the expression
for x1 from (T.1.36) into (T.1.34).

k̄2 = 2β
[
(1− α)eµ+σ2

2 (2β)α
] 1

1−α
(T.1.37)
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T-2 Evans (2020) model

This section shows how the Blanchard (2019) model is a nested case of the model
described in the body of this paper, and it derives and computes some of the results
from Blanchard (2019).

The only difference in the household problem in the more general Evans (2020)
specification is the specification of the government transfer as Ht in young and old
agent budget constraints.

c1,t + k2,t+1 = wt + x1 −Ht ∀t (2)

c2,t+1 = Rt+1k2,t+1 +Ht+1 ∀t (3)

In general, Ht equals the promised amount H̄, as in Blanchard’s specification (T.1.1)
and (T.1.2). In Blanchard (2019), the endowment x1 guarantees that this is always
the case. But I will allow x1 to be small enough that the government might not
always be able to collect H̄ in every period, as is the case in Evans et al. (2013). I
will specify Ht in more detail in Equation (12).

The government has committed to a balanced-budget lump-sum transfer each
period H̄ ≥ 0 from the young to the old subject to feasibility of the transfer. Let
cmin > 0 and Kmin > 0 be minimum positive levels of consumption and aggregate
capital. Then the government transfer rule characterizing Ht is that it equals H̄
except in periods when the promised transfer is greater than the total income minus
minimum values of consumption and aggregate capital (subsistence income). I remain
agnostic about what happens after the government defaults on its promised transfer
H̄ in any period in which wt < H̄ − x1 + cmin + Kmin as shown in the second case
in (12). This case forces the consumption of young agents to be the minimum value
c1,t = cmin. Technically, that household can survive beyond the default period because
consumption is positive. Evans et al. (2013) study cases in which the government
default causes either a complete economic shut down and reversion to autarky or
cases in which it causes a regime shift to a new tax regime.

Ht ≡

{
H̄ if wt ≥ H̄ − x1 + cmin +Kmin

wt + x1 − cmin −Kmin if wt < H̄ − x1 + cmin +Kmin

∀t

= min
(
H̄, wt + x1 − cmin −Kmin

)
∀t

(12)

Other than the two household budget constraints (2) and (2) and the government
transfer rule (12), all of the other household characterizing equations are the same as
in Blanchard (2019)—the Euler equation for risky savings (5) and the Euler equation
for riskless savings (6).

The representative competitive firm’s production function (7), total factor pro-
ductivity process (8), profit function (9), and first order conditions (10) and (11) are
all the same. And the market clearing conditions for risky capital (13), labor (14),
riskless bonds (15), and goods (16) are all the same. The equilibrium definition for
Evans (2020) is the following.
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Definition 2 (Evans (2020) functional stationary equilibrium). A non-autarkic
functional stationary equilibrium in the two-period-lived overlapping generations model
with exogenous labor supply and aggregate shocks in Evans (2020) is defined by sta-
tionary price functions R(k, z), w(k, z), and R̄(k, z) and a stationary risky savings
function k′ = ψ(k, z) for all current state wealth k and total factor productivity
component z such that:

i. households optimize according to (2) and (3), (5), and (6)

ii. firms optimize according to (10) and (11),

iii. The government makes transfers according to (12) rule

iv. markets clear according to (13), (14), and (15).
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