Online Appendix for "The Health Impacts of Coal-Fired Power Plants in India and the Cobenefits of Greenhouse Gas Reductions"

By Maureen Cropper, Ryna Cui, Sarath Guttikunda, Nate Hultman, Puja Jawahar, Yongjoon Park, Xinlu Yao, and Xiaopeng Song

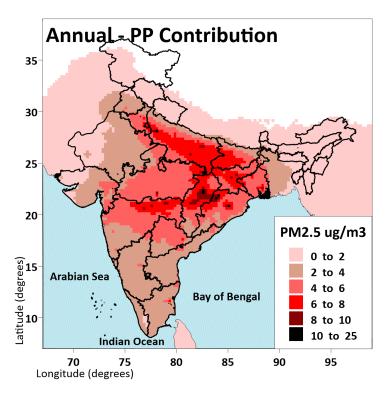


Figure A1a. Impact of 2018 Plants

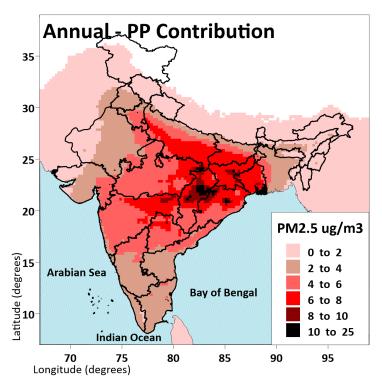


Figure A1b. Impact of 2018 Plants and New Plants

Figure A1. Impact of Coal-Fired Power Plants on Ambient PM_{2.5}

Calculation of Deaths Attributable to Ambient PM_{2.5}

To compute the deaths attributable to ambient $PM_{2.5}$, we calculate deaths for each $0.1^{\circ}x$ 0.1° grid square, by cause of death, and then sum across all causes of death. We first describe the calculations (applied to each cause of death) allowing for exposure to household air pollution.

Ambient PM_{2.5} (PM_A) affects both households who use solid fuels for cooking and those who do not. Let p_H represent the fraction of the population in a grid square who are exposed to solid fuels from cooking and PM_H represent their additional PM_{2.5} exposure over and above PM_A. 1-p_H of the population is exposed only to PM_A. The total deaths due to PM_{2.5} in the grid square (computed for each cause of death) is given by

(1) PM Deaths =
$$PAF(PM_A+PM_H)*Baseline deaths_{AP+HP} + PAF(PM_A)*Baseline deaths_{AP}$$

where Baseline deaths_{AP+HP} represents the total deaths among persons exposed to both ambient (AP) and household (HP) air pollution and Baseline deaths_{AP} represents total deaths among persons exposed only to ambient pollution. (See below for calculation of Baseline deaths_{AP} and Baseline deaths_{AP+HP}.) Let RR(z) represent the relative risk of death at PM = z. The Population Attributable Fraction (PAF) is the proportion of deaths attributable to PM and is given by

(2)
$$PAF(z) = [RR(z) - 1]/RR(z)$$

The PAF is evaluated at $z = PM_A + PM_H$ for persons exposed to both AP and HP and evaluated at $z = PM_A$ for persons exposed to only to AP. Baseline deaths for each sub-group in the population can be calculated from total deaths (M), p_H and the relative risk function, as described below.

The total deaths attributable to AP are calculated as

(3) AP Deaths =
$$[PM_A/(PM_A+PM_H)]$$
 $[PAF(PM_A+PM_H)$ * Baseline deaths_{AAP+HAP}]+ $PAF(PM_A)$ * Baseline deaths_{AAP}

which assumes that AP deaths among persons exposed to both sources of PM are proportional to the share of PM_A in total PM exposure.

When we calculate deaths ignoring household air pollution, the term in the first line of (3) disappears, and Baseline deaths_{AAP} are equal to total deaths (for each cause) in the grid square (M).

Formulas for Baseline Deaths

Let M represent total deaths (for some cause of death) in a grid square. Then

(4)
$$M = \lambda_T * RR(PM_A + PM_H) * Pop * p_H + \lambda_T * RR(PM_A) * Pop * (1-p_H)$$

where λ_T denotes the death rate at the background level of PM, RR(z) is the relative risk of death at exposure level z, Pop is the population of the grid square, and p_H is the fraction of population in the grid square exposed to both HP and AP. Baseline deaths for each subgroup are given by

- (5) Baseline deaths_{AP+HP} = $\lambda_T * RR(PM_A + PM_H) * Pop * p_H$
- (6) Baseline deaths_{AP} = $\lambda_T * RR(PM_A) * Pop * (1-p_H)$

Equation (4) can be solved for λ_T

(7)
$$\lambda_T = [M/pop] * 1/[RR(PM_A + PM_H) * p_H + RR(PM_A) * (1-p_H)]$$

and the result substituted into (5) and (6) to solve for Baseline deaths_{AP+HP} and Baseline deaths_{AP}.

Calculating Deaths Avoided by Not Building Power Plants

If planned power plants are not built and all other sources of PM remain the same, the improvement in PM constitutes a marginal reduction in PM. The deaths avoidable by reducing PM_A from $PM_A{}^0$ to $PM_A{}^1$ are measured by the reduction in risk of death from moving from $PM_A{}^0$ to $PM_A{}^1$ multiplied by baseline deaths

(8)
$$\Delta M = (Baseline deaths_{AP+HP})[RR(PM_A^1+PM_H)/RR(PM_A^0+PM_H) - 1] + (Baseline deaths_{AP})[RR(PM_A^1)/RR(PM_A^0) - 1]$$

We calculate ΔM by setting $PM_A{}^0$ equal to the projected PM_A level once all sources, including planned power plants, are operating, and $PM_A{}^1$ equal to the projected PM_A level without planned plants.

Data on total deaths (M) for each cause of death for the year 2017 and PM_H and p_H for each state are given in the Data Appendix.