
Online Appendix: Inference for Support Vector Regression under `1
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Yuehao Bai,∗Hung Ho,†Guillaume A. Pouliot,‡Joshua Shea§

A Additional results

A.1 Constructing the `1-SVR regression rankscore test statistic

We collect a characterization of the complementary slackness condition for the `1-SVR problem which will
be key in the design of our proposed test statistic.

Lemma A.1. The solution to (6) of the main paper satisfies:

(a) If Yi − Z ′iγ0 −X ′iβ̂n > ε, then â−i = −1 and â+i = 1.

(b) If Yi − Z ′iγ0 −X ′iβ̂n < −ε, then â−i = −1 and â+i = −1.

(c) If 0 < |Yi − Z ′iγ0 −X ′iβ̂n| < ε, then â+i = â−i = 0.

(0, 0)

Y = Xβ̂n

Y = Xβ̂n + ε

Y = Xβ̂n − ε

â+ = −1

â+ = 1

â+ = 0

Figure 1: â+ in Different Regions of Regression Residuals Y −Xβ̂n

Lemma A.1 provides an alternative intuitive interpretation for Tn(Wn, γ0) in (7) of the main paper.
Since λn → 0, we intuitively view it as 0. First, as shown in Lemma A.1 and Figure 1, â+i is a monotonic

transformation of the residuals ûi = Yi − Z ′iγ0 −X ′iβ̂n. If H0 holds, i.e., γ(P ) = γ0, then we expect a low
correlation between Z and û, and any monotonic transformation of û. Therefore Z′nâ

+ should be small under
the null, but larger the more γ(P ) differs from γ0.
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Remark A.1. The complementary slackness conditions in (5) and (6) are the key ingredients in the con-
struction of the test statistic in (7). These conditions are summarized in Lemma A.1. Figure 1 displays the
regions defined by regression residuals and the corresponding values of â+. For simplicity, we assume dx = 2,
the intercept is 0, and γ0 = 0. Note that unit i contributes to Tn(Wn, γ0) only when |Yi −Xiβ̂n| > ε. The
graph is different from that under the median regression, where the shaded region in which â+i = 0 collapses
to a single line.

Remark A.2. The `1-SVR regression rankscore test is equivalent to the median regression rankscore test
when ε = λ = 0 and p̂n is set to 1

2 . See Figure 2.
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Figure 2: Loss Functions for Median Regression (QR) and for Support Vector Regression (SVR)

Remark A.3. Let θ = (β, γ) and V = (X,Z). Then

n1/2(θ̂n − θ)
d→ N

(
0,

1

2
E[ViV

′
i fY (V ′i θ − ε | Vi)]−1×

E[ViV
′
i FY (V ′i θ − ε | Vi)]×

E[ViV
′
i fY (V ′i θ − ε | Vi)]−1

)
,

from which the Wald confidence interval obtains. See the supplementary appendix for the derivation. How-
ever, as shown in Figure 1 of the main paper, Wald confidence intervals are highly sensitive to the bandwidth
used for density estimation.

Remark A.4. If P violates Assumption I.2(b) but satisfies Assumption I.2(a), it is straightforward to
construct a consistent estimator of the asymptotic variance in (11) by using the law of iterated expectations.
This estimator involves conditional distributions rather than densities, thus does not require a choice of
bandwidth. The statistic studentized by the estimate of the asymptotic variance will be asymptotically exact.
If P violates Assumption I.2(a), it is also possible to construct consistent estimators of the asymptotic
variance in (11). The statistic studentized by any consistent estimator of the asymptotic variance will also
be asymptotically exact. However, the studentization involves density estimation, which is why Assumption
I.2(a) is important for our purposes. See, for example, Powell (1991).

Monotonicity of the test statistic is essential to the tractability of the inversion procedure, as it limits the
procedure to a search for the two points where the test statistic, as a function of the posited null parameter,
crosses the critical value. Note that without monotonicity, we cannot construct the confidence region as an
interval. Error bars are obtained by inverting the test for each individual covariate. As discussed above, these
are well-defined only insofar as the individual tests invert to produce intervals—as opposed to disconnected
regions. Such a guarantee is given in Theorem A.1.

Theorem A.1. If dz = 1, then Tn(Wn, γ0) in (7) is monotonically decreasing in γ0.
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A.2 Additional simulations

For each distribution of errors in the simulation presented in the main paper, we also consider a model that
restricts the support of the error terms so that

τ ∼ Unif([0, 0.4] ∪ [0.6, 1]).

The restricted support model may be thought of as an extreme version of the data generating processes
which SVR is meant for when conceived as a regression extension of SVM classification. In addition, we
investigate the robustness of the homoskedastic SVR regression rankscore test to heteroskedastic errors.

Table 1 presents the rejection probabilities for the full set of simulations. Columns 1–4 present the
simulations in which the errors are homoskedastic. In all the cases of unrestricted support for the errors, the
distributions are centered and scaled to be mean zero with a standard deviation of 15.1 Upon restricting
the support, the errors are normalized to be mean zero, but their standard deviation may change. Columns
1 and 3 indicate that the size properties of the SVR and median regression rankscore tests are about equal
under homoskedasticity. However, columns 2 and 4 suggest that the SVR regression rankscore test has better
power properties than median regression, the former outperforming the latter in 7 of the 10 settings.

Columns 5–8 of Table 1 present the simulations in which the errors are heteroskedastic, their variance
being determined by the covariate X.2 To account for the heteroskedastic errors, we obtain a consistent
estimate of the variance expression in (11) using the methodology of Powell (1991). This requires density
estimation of the errors, for which the tuning parameters are shown in Table 2.3 The test statistic is then
studentized using the variance estimate. We keep ε the same as in the homoskedastic simulations. As
before, columns 5–8 of Table 1 suggest that the size properties of the two tests are roughly equal under
heteroskedasticity, whereas the SVR regression rankscore test exhibits greater power in 9 of the 10 cases.

To gauge the robustness of the SVR regression rankscore test, columns 9–12 present simulations in which
the homoskedastic test statistic is used with heteroskedastic errors. Similar to the earlier results, columns
9 and 11 suggest that both tests have similar size properties. However, columns 10 and 12 reveal that
the SVR regression rankscore test demonstrates greater statistical power, having higher rejection rates in
8 of the 10 simulations. Similar robust behavior in heteroskedastic environments of regression rankscore
tests constructed under homoskedasticity assumptions are documented using real and simulated data in Bai,
Pouliot and Shaikh (2019) and Pouliot (2020).

In each iteration of the simulations in Table 1, we can construct the confidence interval by inverting (10).
The results in Table 1 suggest the SVR regression rankscore test has greater power against the alternatives
considered when inverting the test, as compared to the median regression rankscore test. From the duality
between hypothesis testing and inference, this suggests tighter confidence intervals under the former test
procedure. Indeed, we find this to be the case. Figures 3–5 present the average confidence interval for each
simulation where γ = 0.5. In all three figures, the results closely align with those of Table 1. That is, for
the data generating process where the SVR regression rankscore test has greater power than the median
regression rankscore test, the confidence interval of the former is narrower than that of the latter. The
reduction in the error bars becomes rather substantial when we restrict the support of the error terms. This
is to be expected, as the SVR loss function is able to account for the restricted support of the error term,
whereas the median regression loss function cannot (see Figure 2).

It is rather remarkable that modifications to the quantile regression procedure intended for robustness
deliver greater inference accuracy. This naturally suggests using the SVR regression rankscore test for

1 The mixture consists of evenly weighted Gaussian distributions centered around 10 and −10, with the same scale parameter.
Errors under the Student’s t distribution are drawn from the counterpart with 10 degrees of freedom, and then rescaled. Errors
under the χ2 distribution are drawn from the counterpart with 3 degrees of freedom, and then rescaled and recentered.

2The scale parameters of the distributions are set equal to a normalized value of X. For the Gaussian, Laplace, and mixture
distributions, X is normalized to have a standard deviation of 1 and is then recentered so its mean is equal to the scale parameter
required for the error distribution to have a standard deviation of 15. For the Student’s t and χ2 distributions, X is instead
recentered around the degrees of freedom stated in Footnote 1. In the rare event that the normalized X falls below 0, its
absolute value is taken. While the distributions of parameters determining the standard deviation of the errors are centered
around the value that would correspond to a standard deviation of 15, the standard deviations of the actual error terms need
not be 15.

3The bandwidth used in density estimation is κ
(

Φ−1(0.5 + hn−
1
3 )− Φ−1(0.5− hn−

1
3 )

)
, where h and κ are constants, and

Φ is the standard normal CDF.
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Table 2: Tuning Parameters for Heteroskedastic Test Statistic

Unrestricted Restricted

Distribution h κ h κ

Gaussian 1 1.75 2.5 2
Laplace 1 0.75 1.5 1.75
Mixture 2 2 2.75 2.5
Student’s t 1 1 2 2.75
χ2 1.5 1.5 2.75 1.5

Unrestricted

Gaussian

Laplace

Mixture

Student's t

χ2

-0.5 0.0 0.5 1.0 1.5 2.0

ℓ1-SVR QR

Restricted

Gaussian

Laplace

Mixture

Student's t

χ2

-0.5 0.0 0.5 1.0 1.5 2.0

ℓ1-SVR QR

Figure 3: Confidence Intervals Under Homoskedasticity

Unrestricted

Gaussian

Laplace

Mixture

Student's t

χ2

-0.5 0.0 0.5 1.0 1.5 2.0

ℓ1-SVR QR

Restricted

Gaussian

Laplace

Mixture

Student's t

χ2

-0.5 0.0 0.5 1.0 1.5 2.0

ℓ1-SVR QR

Figure 4: Confidence Intervals Under Heteroskedasticity

inference in standard quantile regression analysis, even if the point estimate is obtained using quantile
regression.

A.3 Additional comparisons between `1-SVR regression rankscore confidence
intervals and Wald confidence intervals

Figure 6 compares the coverage probabilities of the 95% confidence intervals constructed from the SVR
regression rankscore test and the Wald test. The comparisons are made for each family of error distributions
considered in the simulation, with the errors being heteroskedastic and having unrestricted support. A range
of bandwidths for estimating the density of the errors is considered. Across all the error distributions, the
SVR regression rankscore confidence intervals have the correct coverage probability and are robust to the
choice of bandwidth. In contrast, the Wald confidence intervals have coverage probabilities that fall well
below the nominal level and are sensitive to the choice of bandwidth.
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Figure 5: Confidence Intervals Under Heteroskedasticity Using Homoskedastic Test Statistic

B Proofs and derivations

Since all results are derived under the null that γ(P ) = γ0, we assume without loss of generality that
γ(P ) = γ0 = 0. We use a . b to denote that there exists l > 0 such that a ≤ lb. We use || to denote the
Euclidean norm.

B.1 Derivation of Equation (3)

Equation (3) can be derived from equation (2) based on the following observation. For any x ∈ R, we can
decompose x = x+−x−, where x+ = max{0, x} and x− = max{0,−x}. It follows that |x| = x+ +x−. From
this, we can write bj = b+j − b−j and rj = r+j − r−j . Additionally, we introduce the following variables,

ui = max{0, Yi −X ′ib− Z ′ir}
vi = max{0,−Yi +X ′ib+ Z ′ir}
σi = max{0, |Yi −X ′ib− Z ′ir| − ε}
si = |Yi −X ′ib− Z ′ir| − ε− σ.

The n × 1 vectors u, v, σ, and s are obtained by stacking ui, vi, σi, and si, respectively, across all n
observations. The first two constraints in (3) ensure that the decomposition of each term in (2) into the
difference of its positive and negative components is consistent with the data.

B.2 Proof of Theorem II.1

Follows immediately from Lemma B.5, Lemma B.6, and Lemma B.7.

B.3 Derivation of Remark A.3

As shown in Lemma B.4,

n1/2(β̂n − β) = 1

2
E[XiX

′
ifY (X ′iβ − ε|Xi, Zi)]

−1n−1/2
∑

1≤i≤n

Xi(I{Yi −X ′iβ > ε} − I{Yi −X ′iβ < −ε}) + oP (1)

under Assumption I.1(a)–(e). Symmetry of F under Assumption I.2 implies that

n−1/2
∑

1≤i≤n

Xi(I{Yi −X ′iβ > ε} − I{Yi −X ′iβ < −ε}) d→ N(0, E[XiX
′
i(I{Yi −X ′iβ > ε} − I{Yi −X ′iβ < −ε})2]).

By the law of iterated expectations, the variance term may be expressed as

E[XiX
′
i(I{Yi −X ′iβ > ε} − I{Yi −X ′iβ < −ε})2] = E[XiX

′
i E[(I{Yi −X ′iβ > ε} − I{Yi −X ′iβ < −ε})2 | Xi, Zi]].
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Figure 6: `1-SVR Regression Rankscore 95% Confidence Intervals versus 95% Wald Confidence Intervals

Note that

E[(I{Yi −X ′iβ > ε} − I{Yi −X ′iβ < −ε})2|Xi, Zi]

= E[I{Yi ≥ X ′iβ + ε}+ I{Yi ≤ X ′iβ − ε}|Xi, Zi]

= 2E[FY (X ′iβ − ε|Xi, Zi)] ,

where the last equality follows from Assumption I.1(c). Substituting this into the expression for the asymp-
totic variance completes the derivation.

B.4 Proof of Corollary II.2

Follows immediately from Theorem II.1 and the duality between hypotheses tests and confidence regions.
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B.5 Proof of Lemma A.1

By complementary slackness,

|Yi − Z ′iγ0 −X ′iβ̂n| < ε⇔ si > 0⇒ â−i = 0

|Yi − Z ′iγ0 −X ′iβ̂n| > ε⇔ σi > 0⇒ â−i = −1

Yi − Z ′iγ0 −X ′iβ̂n > 0⇔ ui > 0⇒ â+i + â−i = 0

Yi − Z ′iγ0 −X ′iβ̂n < 0⇔ vi > 0⇒ â−i − â+i = 0 ,

and the result follows.

B.6 Proof of Theorem A.1

First note that the denominator of Tn(Wn, γ0) is monotonically increasing in γ0 because p̂n in (9) is so.
Next, we show the numerator is monotonically decreasing in γ0. Denote by â+(r) the solution to (6) with
γ0 = r. Given r1 > r2, by definition of the optimization problem,

(Yn − r1Zn)′â+(r1)− (Yn − r1Zn)′â+(r2) > 0 ,

while
(Yn − r2Zn)′â+(r1)− (Yn − r2Zn)′â+(r2) < 0 .

The two observations indicate that

r1Z
′
n(â+(r2)− â+(r1)) > 0 > r2Z

′
n(â+(r2)− â+(r1)) ,

so that
(r1 − r2)Z′n(â+(r2)− â+(r1)) > 0 ,

and the result follows since r1 > r2.

B.7 Auxiliary Lemmas

Lemma B.1. Suppose Ui, 1 ≤ i ≤ n are i.i.d. random variables where E|Ui|r <∞. Then

n−1/r max
1≤i≤n

|Ui| P→ 0 .

Proof of Lemma B.1. Note that for all η > 0,

P

{
n−1/r max

1≤i≤n
|Ui| > η

}
≤ P

{
max
1≤i≤n

|Ui|r > nηr
}

≤ nP{|Ui|r > nηr} ≤ n

nηr
E[|Ui|rI{|Ui|r > nηr}] =

1

ηr
E[|Ui|rI{|Ui|r > nηr}]→ 0 ,

where the convergence follows from the dominated convergence theorem and E|Ui|r → 0.

Lemma B.2. Suppose P satisfies Assumption I.1(b)–(d). Then

S(b) = E[max{|Y −X ′b− ε|, 0}]

is uniquely minimized at b = β.

Proof of Lemma B.2. Follows immediately upon noting that Theorem 9.8 of Steinwart and Christmann
(2008) holds under Assumption I.1(b)–(d).

Lemma B.3. Suppose P satisfies Assumption I.1(b)–(d) and λn satisfies Assumption I.3. Then,

β̂n
P→ β .

8



Proof of Lemma B.3. Define

Sn(b) = n−1
∑

1≤i≤n

max{0, |Yi −X ′ib| − ε}+ λn‖b‖1 .

To begin with, note that Sn(b) is convex in b. Without any loss of generality suppose β = 0. For any δ > 0,
let Bδ denote the closed δ-ball around 0. By definition,

Sn(β̂n) ≤ Sn(0) . (13)

For all b ∈ Rdx\Bδ, we have by convexity that

Sn(bδ) ≤
δ

|b|Sn(b) +
|b| − δ
|b| Sn(0) ,

where

bδ =
δ

|b|b .

Therefore

Sn(b) ≥ |b|
δ
Sn(bδ)−

|b| − δ
δ

Sn(0) . (14)

Since {b : |b| = 1} is compact and S(b) is continuous in b, we have by Lemma B.2 that there exists η > 0
such that

min
b:|b|=1

S(b) ≥ S(0) + η . (15)

By Lemma 2.6.18 of Van Der Vaart and Wellner (1996), {b→ |y − x′b| − ε+ λn‖b‖1 : |b| = 1} is a VC class,
thus Donsker, and thus Glivenko-Cantelli, i.e.,

sup
b:|b|=1

|Sn(b)− S(b)| = oP (1) . (16)

Combining (14), (15), and (16), and that Sn(0)
P→ S(0), we have that

{|β̂n − β| > δ} ⇒ {Sn(β̂n) ≥ Sn(0) + η + oP (1)} ,

which has probability approaching zero because of (13).

Lemma B.4. Suppose P satisfies Assumption I.1(a)–(e). Then,

n1/2(β̂n − β) = 1

2
E[XiX

′
ifY (X ′iβ − ε|Xi, Zi)]

−1n−1/2
∑

1≤i≤n

Xi(I{Yi −X ′iβ > ε} − I{Yi −X ′iβ < −ε}) + oP (1) .

Proof of Lemma B.4. Define

L̂n = n−1/2
∑

1≤i≤n

Xi(I{Yi −X ′iβ̂n > ε} − I{Yi −X ′iβ̂n < −ε}) (17)

Ln = n−1/2
∑

1≤i≤n

Xi(I{Yi −X ′iβ > ε} − I{Yi −X ′iβ < −ε}) . (18)

To begin with, note that∣∣∣∣∣∣n−1/2
∑

1≤i≤n

Xiâ
+
i − L̂n

∣∣∣∣∣∣ . n−1/2 max
1≤i≤n

|Xi|
∑

1≤i≤n

(I{Yi = X ′iβ̂n}+ I{Yi −X ′iβ̂n = ε}) = oP (1) , (19)

because of by Lemma A.1, Lemma B.1, Assumption I.1(a), and that the number of support vectors are
bounded. By similar arguments,∣∣∣∣∣∣n−1/2

∑
1≤i≤n

Xiâ
+
i

∣∣∣∣∣∣ ≤
∣∣∣n−1/2λn1dx ∣∣∣+ oP (1) = oP (1) , (20)

9



where the second equality follows from (6) and the last follows from Lemma B.1. Next, we write

L̂n − Ln = n−1/2
∑

1≤i≤n

Xi(I{Yi ≤ X ′iβ + ε} − I{Yi ≤ X ′iβ̂n + ε})

+ n−1/2
∑

1≤i≤n

Xi(I{Yi ≤ X ′iβ − ε} − I{Yi ≤ X ′iβ̂n − ε}) (21)

= R1,n +R2,n +R−1,n +R−2,n ,

where

R1,n = n−1/2
∑

1≤i≤n

XiI{Yi ≤ X ′iβ + ε} − E[XiI{Yi ≤ X ′iβ + ε}]

− (XiI{Yi ≤ X ′iβ̂n +X ′it+ ε} − E[XiI{Yi ≤ X ′iβ +X ′it+ ε}])|t=β̂n−β

R2,n = n1/2E[Xi(I{Yi ≤ X ′iβ + ε} − I{Yi ≤ X ′iβ + n−1/2X ′it+ ε})]|t=n1/2(β̂n−β) ,

and similarly for R−1,n and R−2,n.

Since β̂n − β = oP (1) by Lemma B.3, R1,n
P→ 0 by the similar arguments as those used in the last part

of the proof of Lemma A.1 of Bai, Pouliot and Shaikh (2019). For R2,n, note that

R2,n = n1/2E[Xi(FY (X ′iβ + ε|Xi, Zi)− FY (X ′iβ + n−1/2X ′it+ ε|Xi, Zi))]|t=n1/2(β̂n−β)

= −n1/2E[Xin
−1/2X ′itfY (X ′iβ + ε+ sin

−1/2X ′it|Xi, Zi)]|t=n1/2(β̂n−β)

= −n1/2(β̂n − β)E[XiX
′
ifY (X ′iβ + ε+ sin

−1/2X ′it|Xi, Zi)]|t=n1/2(β̂n−β) (22)

where si ∈ [0, 1] is a random variable. The first equality above holds by the law of iterated expectation and
the second holds by the mean-value theorem. A similar decomposition holds for R−1,n and R−2,n.

We then argue that Ln = OP (1). Indeed, by Assumption I.1(c), the conditional distributions are sym-
metric so that the individual terms of Ln are i.i.d. mean zero and therefore Ln = OP (1) by the central limit
theorem.

By applying similar arguments as those used to establish Lemma A.2 of Bai, Pouliot and Shaikh (2019),
where assumptions are satisfied under Assumption I.1(a)–(e), and noting that Ln = Op(1), it follows from
(17), (18), (19), (20), and (22) that

n1/2(β̂n − β) = Op(1) . (23)

and

n1/2(β̂n − β)(E[XiX
′
i

(
fY (X ′iβ + ε|Xi, Zi) + fY (X ′iβ − ε|Xi, Zi)

)
] + oP (1)) = −Ln + oP (1) . (24)

The proof is finished by plugging (23) in (24), and noting that

fY (X ′iβ + ε|Xi, Zi) = fY (X ′iβ − ε|Xi, Zi)

by Assumption I.1(c).

Lemma B.5. Suppose P satisfies Assumption I.1(a)–(d) and ε and λn satisfies Assumption I.3. Then,

n−1/2Z′nâ
+ d→ N(0, 2E[Z̃iZ̃

′
iFY (X ′iβ − ε|Xi, Zi)]) ,

where
Z̃i = Zi − E[ZiX

′
ifY (X ′iβ − ε|Xi, Zi)]E[XiX

′
ifY (X ′iβ − ε|Xi, Zi)]

−1Xi

Proof of Lemma B.5. It follows from Lemma B.3, Lemma B.4, and similar arguments used to establish
Lemma A.1 of Bai, Pouliot and Shaikh (2019) that

n−1/2Z′nâ
+ = n−1/2

∑
1≤i≤n

Z̃i(I{Yi −X ′iβ > ε} − I{Yi −X ′iβ < −ε}) + oP (1) .
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Note that

E[(I{Yi −X ′iβ > ε} − I{Yi −X ′iβ < −ε})2|Xi, Zi]

= E[I{Yi ≥ X ′iβ + ε}+ I{Yi ≤ X ′iβ − ε}|Xi, Zi]

= 2E[FY (X ′iβ − ε|Xi, Zi)] ,

where the last equality follows from Assumption I.1(c). The lemma now follows from the Central Limit
Theorem and Assumption I.1(a).

Lemma B.6. Suppose P satisfies Assumption I.1(a) and Assumption I.2(a). Then,

n−1Z′nMnZn
P→ E[ZiZ

′
i]− E[ZiX

′
i]E[XiX

′
i]
−1E[XiZ

′
i] .

Proof of Lemma B.6. Follows from Assumption I.1(a), Assumption I.2(a), and an application of the weak
law of large numbers.

Lemma B.7. Suppose P satisfies Assumptions I.1(a)–(d) and I.2, and λn satisfies Assumption I.3. Then,

p̂n
P→ 2pε .

Proof of Lemma B.7. We consider

1

n

∑
1≤i≤n

I{Yi ≤ X ′iβ + Z ′iγ0 − ε+X ′i(β̂n − β)} ,

and the other half follows similarly. By Lemma B.3, since Assumptions I.1(a)–(d) and I.3 hold, β̂n
P→ β. Fix

η > 0. For any δ > 0, consider the empirical process indexed by the class of functions

{t→ I{y ≤ x′β + z′γ0 − ε+ x′t} : ‖t‖ ∈ [0, δ]} .

It is easy to see the class of functions is VC by Lemma 9.12 of Kosorok (2008), so that is Donsker hence
Glivenko-Cantelli by Theorem 2.6.7 of Van Der Vaart and Wellner (1996), i.e.,

sup
t∈[0,δ]

∣∣∣∣∣∣ 1n
∑

1≤i≤n

I{Yi ≤ X ′iβ + Z ′iγ0 − ε+X ′it} − P{Yi ≤ X ′iβ + Z ′iγ0 − ε+X ′it}

∣∣∣∣∣∣ P→ 0 .

Next,
P{Yi ≤ X ′iβ + Z ′iγ0 − ε+X ′it}

is continuous at t = 0. Since β̂n − β = oP (1), with probability approaching 1, ‖β̂n − β‖ ≤ δ, and therefore∣∣∣∣∣∣ 1n
∑

1≤i≤n

I{Yi ≤ X ′iβ + Z ′iγ0 − ε+X ′it} − P{Yi ≤ X ′iβ + Z ′iγ0 − ε}

∣∣∣∣∣∣ ≤ η + ηδ ,

where ηδ → 0 as δ → 0. Let δ → 0 to finish the proof.
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