Adversarial Inference is Efficient

By Tetsuya Kaji, Elena Manresa, and Guillaume A. Pouliot*

Online Appendix

We denote the empirical measure corresponding to X_{i} by \mathbb{P}_{n}, to X_{i}^{θ} by \mathbb{P}_{m}^{θ}, and to Z by $\tilde{\mathbb{P}}_{m}$. Recall $p_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a positive density function over $X_{i} \in \mathbb{R}^{d}$. Let $p=$ $p_{\theta_{0}}$. The population D_{θ}^{*} is then $p /\left(p+p_{\theta}\right)$. The infeasible objective function for θ is $\mathbb{P}_{n} \log \frac{p}{p+p_{\theta}}+\tilde{\mathbb{P}}_{m} \log \frac{p_{\theta}}{p+p_{\theta}} \circ G_{\theta}$, where $G_{\theta}(Z)=G(\theta, Z)$ as defined in the text. Assume p_{θ} and G_{θ} are twice continuously differentiable in both arguments, where θ is a $p \times 1$ column vector and the value of G_{θ} is a $d \times 1$ column vector. We denote $\dot{p}_{\theta}=d p_{\theta} / d \theta$ (a $p \times 1$ column vector), $p_{\theta}^{\prime}=d p_{\theta} / d x$ (a $d \times 1$ column vector), $\dot{p}_{\theta}^{\prime}=d p_{\theta} /(d \theta d x)$ (a $p \times d$ matrix), $\ddot{p}_{\theta}=d p_{\theta} /(d \theta d \theta)($ a $p \times p$ matrix $), p_{\theta}^{\prime \prime}=d p_{\theta} /(d x d x)($ a $d \times d$ matrix $)$, and $\dot{G}_{\theta}=d G_{\theta} / d \theta$ (a $d \times p$ matrix. The first-order derivative with respect to θ is

$$
\mathbb{P}_{n}\left(-\frac{\dot{p}_{\theta}}{p+p_{\theta}}\right)+\tilde{\mathbb{P}}_{m}\left(\left[\frac{\dot{p}_{\theta}}{p_{\theta}}-\frac{\dot{p}_{\theta}}{p+p_{\theta}}\right] \circ G_{\theta}+\frac{p+p_{\theta}}{p_{\theta}} \circ G_{\theta} \cdot \dot{G}_{\theta}^{\top}\left[\frac{p_{\theta}}{p+p_{\theta}}\right]^{\prime} \circ G_{\theta}\right) .
$$

At $\theta=\theta_{0}$ (so $p=p_{\theta}$), this equals

$$
-\mathbb{P}_{n}\left(\frac{\dot{p}}{2 p}\right)+\tilde{\mathbb{P}}_{m}\left(\frac{\dot{p}}{2 p} \circ G\right)=-\frac{1}{2}\left(\mathbb{P}_{n}-\mathbb{P}_{m}\right)\left(\frac{\dot{p}}{p}\right)
$$

Since $\left[\frac{p_{\theta}}{p+p_{\theta}}\right]^{\prime}=0$ at $\theta=\theta_{0}$, the second-order derivative at $\theta=\theta_{0}$ for population can be evaluated as

$$
\begin{aligned}
& \left.P_{0}\left(-\frac{\ddot{p}_{\theta}}{p+p_{\theta}}+\frac{\dot{p}_{\theta} \dot{p}_{\theta}^{\top}}{\left(p+p_{\theta}\right)^{2}}\right)\right|_{\theta_{0}}+\tilde{P}_{0}\left(\left[\frac{\ddot{p}_{\theta}}{p_{\theta}}-\frac{\dot{p}_{\theta} \dot{p}_{\theta}^{\top}}{p_{\theta}^{2}}-\frac{\ddot{p}_{\theta}}{p+p_{\theta}}+\frac{\dot{p}_{\theta} \dot{p}_{\theta}^{\top}}{\left(p+p_{\theta}\right)^{2}}\right] \circ G_{\theta}\right. \\
& \left.+\left(\left[\frac{\dot{p}_{\theta}}{p_{\theta}}-\frac{\dot{p}_{\theta}}{p+p_{\theta}}\right]^{\prime} \circ G_{\theta}\right) \dot{G}_{\theta}+\frac{p+p_{\theta}}{p_{\theta}} \circ G_{\theta} \cdot \dot{G}_{\theta}^{\top}\left[\frac{\dot{p}_{\theta}^{\top}}{p+p_{\theta}}-\frac{p_{\theta} \dot{p}_{\theta}^{\top}}{\left(p+p_{\theta}\right)^{2}}\right]^{\prime} \circ G_{\theta}\right)\left.\right|_{\theta_{0}} .
\end{aligned}
$$

Note that at $\theta=\theta_{0}$,

$$
\begin{aligned}
& \left(\left[\frac{\dot{p}_{\theta}}{p_{\theta}}-\frac{\dot{p}_{\theta}}{p+p_{\theta}}\right]^{\prime} \circ G_{\theta}\right) \dot{G}_{\theta}+\frac{p+p_{\theta}}{p_{\theta}} \circ G_{\theta} \cdot \dot{G}_{\theta}^{\top}\left[\frac{\dot{p}_{\theta}^{\top}}{p+p_{\theta}}-\frac{p_{\theta} \dot{p}_{\theta}^{\top}}{\left(p+p_{\theta}\right)^{2}}\right]^{\prime} \circ G_{\theta} \\
& =\left(\left[\frac{\dot{p}}{2 p}\right]^{\prime} \circ G_{\theta}\right) \dot{G}_{\theta}+\dot{G}_{\theta}^{\top}\left(\left[\frac{\dot{p}}{2 p}\right]^{\prime} \circ G_{\theta}\right)^{\top} .
\end{aligned}
$$

Moreover,

$$
\left.\tilde{P}_{0}\left(\left[\frac{\dot{p}}{p}\right]^{\prime} \circ G_{\theta} \cdot \dot{G}_{\theta}\right)\right|_{\theta_{0}}=\tilde{P}_{0}\left(\left[\frac{\dot{p}}{p} \circ G_{\theta}\right]_{\theta_{0}}^{\cdot}\right)=\left[P_{\theta}\left(\frac{\dot{p}}{p}\right)\right]_{\theta_{0}}^{\cdot}=\left.\int\left(\frac{\dot{p}}{p}\right) \dot{p}_{\theta}^{\top}\right|_{\theta_{0}}=P_{0}\left(\frac{\dot{p} \dot{p}^{\top}}{p^{2}}\right)
$$

and the same applies to the other term.

[^0]Hence, the second derivative is equal to half the information matrix

$$
-\frac{1}{2} P_{0}\left(\frac{\dot{p} \dot{p}^{\top}}{p^{2}}\right)+P_{0}\left(\frac{\dot{p} \dot{p}^{\top}}{p^{2}}\right)=\frac{1}{2} P_{0}\left(\frac{\dot{p} \dot{p}^{\top}}{p^{2}}\right),
$$

which shows efficiency of $\hat{\theta}_{n, m}$. Note that, if $n / m \rightarrow 0$, the first-order derivative is half the score, so twice the objective function yields the unscaled score and information.

[^0]: * Kaji: Booth School of Business, University of Chicago, 5807 South Woodlawn Avenue, Chicago, IL 60637, USA, tkaji@chicagobooth.edu. Manresa: Department of Economics, New York University, 19 West 4th Street, 6 Floor New York, NY, 10012 USA, elena.manresa@nyu.edu. Pouliot: Harris School of Public Policy, University of Chicago, 1155 E 60th St, Chicago, IL 60637, USA, guillaumepouliot@uchicago.edu.

