Arrow Meets Hotelling: Modeling Spatial Innovation - Online Appendix -

Steven Callander, Nicolas Lambert, and Niko Matouschek*

Proof of Proposition 1

The utility of a consumer located at $s \in \mathbb{R}$ who consumes product j with known quality v_{j} and pays price $p_{s j}$ is given by $u_{s j}=v_{j}-t\left|s-l_{j}\right|-p_{s j}$, where $t>0$ are the "transportation costs."

In period 0 , the incumbent's only product is located at $l_{0}=0$. The incumbent offers this product at $v_{0}-t|s|$ to consumers $s \in\left[-v_{0} / t, v_{0} / t\right]$, each of whom accepts the offer. The incumbent's profits in period 0 are therefore given by

$$
\pi_{I}^{0}=\int_{-\frac{v_{0}}{t}}^{\frac{v_{0}}{t}} v_{0}-t|s| \mathrm{d} s=\frac{v_{0}^{2}}{t} .
$$

Suppose the incumbent owns the entrant in period 1 and that the location of product 1 satisfies $l_{1} \leq 2 \frac{v_{0}}{t}$. The incumbent now offers product 0 at $v_{0}-t|s|$ to consumers $s \in\left[-\frac{v_{0}}{t}, \frac{l_{1}}{2}\right]$ and product 1 at $v_{0}-t\left|s-l_{1}\right|$ to consumers $s \in\left[\frac{l_{1}}{2}, l_{1}+\frac{v_{0}}{t}\right]$, where we used the fact that $\mathrm{E}\left[v_{1}\right]=v_{0}$. Each consumer accepts the offer. If $l_{1} \leq 2 \frac{v_{0}}{t}$ the incumbent's profits (gross of development costs) are therefore given by

$$
\pi_{I}^{1}=\int_{-\frac{v_{0}}{t}}^{\frac{1}{2} l_{1}} v_{0}-t|s| \mathrm{d} s+\int_{\frac{1}{2} l_{1}}^{l_{1}+\frac{v_{0}}{t}} v_{0}-t\left|s-l_{1}\right| \mathrm{d} s=\frac{2 v_{0}^{2}}{t}-\frac{\left(v_{0}-\frac{1}{2} t l_{1}\right)^{2}}{t}
$$

It is easy to verify that profits for $l_{1}>2 \frac{v_{0}}{t}$ are the same as those for $l_{1}=2 \frac{v_{0}}{t}$.
At the beginning of period 1 , the incumbent's problem is then given by

$$
\begin{equation*}
\max _{l_{1}} \frac{2 v_{0}^{2}}{t}-\frac{\left(v_{0}-\frac{1}{2} t l_{1}\right)^{2}}{t}-c\left(l_{1}\right) \tag{1}
\end{equation*}
$$

and its unique solution l_{1}^{I} is implicitly defined by the first order condition

$$
\begin{equation*}
v_{0}-\frac{1}{2} t l_{1}=c^{\prime}\left(l_{1}\right) \tag{2}
\end{equation*}
$$

[^0]Suppose now the entrant in period 1 is independent and suppose once again that $l_{1} \leq 2 \frac{v_{0}}{t}$. The incumbent offers product 0 at $v_{0}-t|s|$ to consumers $s \in\left[-\frac{v_{0}}{t}, l_{1}-\frac{v_{0}}{t}\right]$, at $v_{0}-t|s|-\left(v_{0}-t\left|s-l_{1}\right|\right)$ to consumers $s \in\left[l_{1}-\frac{v_{0}}{t}, \frac{l_{1}}{2}\right]$, and at 0 to anyone else. Similarly, the entrant sells product 1 at $v_{0}-t\left|s-l_{1}\right|$ to consumers $s \in\left[\frac{v_{0}}{t}, l_{1}+\frac{v_{0}}{t}\right]$, at $v_{0}-t\left|s-l_{1}\right|-\left(v_{0}-t|s|\right)$ to consumers $\left[\frac{l_{1}}{2}, \frac{v_{0}}{t}\right]$ and at 0 to anyone else. Given these prices, consumers $s \in\left[-\frac{v_{0}}{t}, \frac{l_{1}}{2}\right]$ buy product 0 and consumers $s \in\left[\frac{l_{1}}{2}, l_{1}+\frac{v_{0}}{t}\right]$ buy product 1 . If $l_{1} \leq 2 \frac{v_{0}}{t}$, the entrant's profits are therefore given by

$$
\pi_{E}^{1}=\int_{\frac{1}{2} l_{1}}^{\frac{v_{0}}{t}} v_{0}-t\left|s-l_{1}\right|-\left(v_{0}-t|s|\right) \mathrm{d} s+\int_{\frac{v_{0}}{t}}^{l_{1}+\frac{v_{0}}{t}} v_{0}-t\left|s-l_{1}\right| \mathrm{d} s=\frac{v_{0}^{2}}{t}-\frac{\left(v_{0}-\frac{1}{2} t l_{1}\right)^{2}}{t} .
$$

It is easy to verify that the profits for $l_{1}>2 \frac{v_{0}}{t}$ are the same as those for $l_{1}=2 \frac{v_{0}}{t}$. The entrant's problem is therefore the same as the incumbent's problem (1) so that $l_{1}^{E}=l_{1}^{I}$.

Proof of Proposition 2

In period 1 , the utility of a consumer who buys product 1 but consumed product 0 in period 0 is $u_{s 1}-\gamma$, where $\gamma \in\left[0, v_{0}\right]$ are the switching costs. Switching costs are immaterial if the entrant is owned by the incumbent. In this case, the location of product 1 is still given by l_{1}^{I}.

Suppose that the entrant is independent and that $l_{1} \leq 2 \frac{v_{0}}{t}-\frac{\gamma}{t}$. The incumbent offers product 0 at $v_{0}-t|s|$ to consumers $s \in\left[-\frac{v_{0}}{t}, l_{1}-\frac{1}{t}\left(v_{0}-\gamma\right)\right]$, at $v_{0}-t|s|-\left(v_{0}-\gamma-t\left|s-l_{1}\right|\right)$ to consumers $s \in\left[l_{1}-\frac{1}{t}\left(v_{0}-\gamma\right), \frac{1}{2} l_{1}+\frac{1}{2 t} \gamma\right]$, and at 0 to anyone else. Similarly, the entrant offers product 1 at $v_{0}-t\left|s-l_{1}\right|$ to consumers $s \in\left[\frac{v_{0}}{t}, l_{1}+\frac{v_{0}}{t}\right]$, at $v_{0}-\gamma-t\left|s-l_{1}\right|-\left(v_{0}-t|s|\right)$ to consumers $\left[\frac{1}{2} l_{1}+\frac{1}{2 t} \gamma, \frac{v_{0}}{t}\right]$ and at 0 to anyone else. Given these prices, consumers $s \in\left[-\frac{v_{0}}{t}, \frac{1}{2} l_{1}+\frac{1}{2 t} \gamma\right]$ buy product 0 and consumers $s \in\left[\frac{1}{2} l_{1}+\frac{1}{2 t} \gamma, l_{1}+\frac{v_{0}}{t}\right]$ buy product 1 . If $l_{1} \leq 2 \frac{v_{0}}{t}-\frac{\gamma}{t}$, the entrant's profits are therefore given by

$$
\begin{aligned}
\pi_{E}^{1}(\gamma) & =\int_{\frac{1}{2} l_{1}+\frac{1}{2 t} \gamma}^{\frac{v_{0}}{t}} v_{0}-\gamma-t\left|s-l_{1}\right|-\left(v_{0}-t|s|\right) \mathrm{d} s+\int_{\frac{v_{0}}{t}}^{l_{1}+\frac{v_{0}}{t}} v_{0}-t\left|s-l_{1}\right| \mathrm{d} s \\
& =\frac{v_{0}^{2}}{t}-\frac{\left(v_{0}-\frac{1}{2} t l_{1}\right)^{2}}{t}-\frac{1}{4 t} \gamma\left(-\gamma+4 v_{0}-2 t l_{1}\right)
\end{aligned}
$$

Similar reasoning shows that if $2 \frac{v_{0}}{t}-\frac{\gamma}{t} \leq l_{1} \leq 2 \frac{v_{0}}{t}$, profits are given by

$$
\pi_{E}^{1}(\gamma)=\int_{\frac{v_{0}}{t}}^{l_{1}}\left(v_{0}-t\left(l_{1}-s\right)\right) \mathrm{d} s+\int_{l_{1}}^{l_{1}+\frac{v_{0}}{t}}\left(v_{0}-t\left(s-l_{1}\right)\right) \mathrm{d} s=\frac{v_{0}^{2}}{t}-\frac{2\left(v_{0}-\frac{1}{2} t l_{1}\right)^{2}}{t} .
$$

and that profits for $l_{1}>2 \frac{v_{0}}{t}$ are the same as those for $l_{1}=2 \frac{v_{0}}{t}$.

At the beginning of period 1, the entrant's problem is given by

$$
\max _{l_{1}} \pi_{E}^{1}(\gamma)-c\left(l_{1}\right)
$$

The unique solution $l_{E}^{1}(\gamma)$ to this problem is implicitly defined by the first order conditions.

$$
\begin{aligned}
v_{0}-\frac{1}{2} t l_{1}+\frac{1}{2} \gamma & =c^{\prime}\left(l_{1}\right) \text { if } \gamma \leq c^{\prime}\left(2 \frac{v_{0}}{t}-\frac{\gamma}{t}\right) \\
2 v_{0}-t l_{1} & =c^{\prime}\left(l_{1}\right) \text { if } \gamma \geq c^{\prime}\left(2 \frac{v_{0}}{t}-\frac{\gamma}{t}\right) .
\end{aligned}
$$

Comparing these conditions to the first order condition for l_{1}^{E} in (2) shows that $l_{E}^{1}(0)=l_{E}^{1}$ and $l_{E}^{1}(\gamma)>l_{E}^{1}$ if $\gamma>0$.

[^0]: *Callander: Stanford GSB, Knight Management Center, Stanford CA 94305, sjc@stanford.edu. Lambert: Department of Economics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, nicolas.lambert@mit.edu. Matouschek: Kellogg School of Management, Northwestern University, 2211 Campus Drive, Evanston, IL 60208, nmatouschek@kellogg.northwestern.edu.

