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I. Online appendix

A. True correlation equals risk-neutral correlation under lognormality

If Mt+1 = e−rf,t−
1
2
σ2
1,t−σ1,tZ1,t+1 and Rd,t+1 = eμd,t−

1
2
σ2
2,t+σ2,tZ2,t+1 and Rt+1 = eμt− 1

2
σ2
3,t+σ3,tZ3,t+1

then we must have μd,t−rf,t = ρ12,tσ1,tσ2,t and μt−rf,t = ρ13,tσ1,tσ3,t so that EMR = 1 holds;

we write ρij,t for corrt(Zi,t+1, Zj,t+1). Standard calculations show that Covt(Rd,t+1, Rt+1) =

eμd,t+μt(eρ23,tσ2,tσ3,t −1) and Cov∗
t (Rd,t+1, Rt+1) = e2rf,t(eρ23,tσ2,tσ3,t −1); similarly, VartRd,t+1 =

e2μd,t(eσ2
2,t − 1) and VartRt+1 = e2μt(eσ2

3,t − 1), while risk-neutral variances are Var∗t Rd,t+1 =

e2rf,t(eσ2
2,t − 1) and Var∗t Rt+1 = e2rf,t(eσ2

3,t − 1). It follows that the true and risk-neutral

correlations are equal:

corrt (Rd,t+1, Rt+1) = corr∗t (Rd,t+1, Rt+1) =
eρ23,tσ2,tσ3,t − 1

√(
eσ2

2,t − 1
)(

eσ2
3,t − 1

) .

B. Conditions under which Covt(Mt:t+τR
M
t:t+τ , R

τ
t:t+τ ) ≤ 0

Suppose that

1. The SDF takes the form

Mt:t+τ = β
VW (Wt+τ , z1,t+τ , . . . , zN,t+τ )

VW (Wt, z1,t, . . . , zN,T )
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where z1, . . . , zN are state variables (and we allow for the possibility that there are no

state variables).

2. Wealth is invested in the market and in some other asset or portfolio of assets with

return R̃t:t+τ :

Wt+τ = αt(Wt − Ct)R
M
t:t+τ︸ ︷︷ ︸

market wealth, W M
t+τ

+ (1 − αt)(Wt − Ct)R̃t:t+τ︸ ︷︷ ︸
non-market wealth

, where 0 ≤ αt ≤ 1.

3. Risk aversion is sufficiently high:

−
WVWW

VW

≥
Wt+τ

WM
t+τ

.

4. The market return, non-market return, dividend return, and the state variables are

associated random variables (when the signs of the state variables are chosen so that

VWzn ≤ 0 for n = 1, . . . , N , so that the marginal value of wealth is decreasing in each

state variable, just as it is decreasing in wealth).

Then we have

Covt(Mt:t+τR
M
t:t+τ , R

τ
t:t+τ ) ≤ 0 .

Assumption 3 says that if, say, at least a third of wealth is in the market, then the

condition holds so long as risk aversion is at least three. We have made Assumption 4

as general as possible by using the concept of associated random variables (Esary et al.,

1967), which generalizes (weak) positive correlation to collections of more than two random

variables. If, say, the random variables are Normal random variables—or increasing functions

of Normal random variables—then they are associated if and only if the pairwise correlations

between the Normal random variables are nonnegative (Pitt, 1982).

Proof. We follow a similar strategy to the proof given for Example 3b in Martin (2017).

We must show that

Covt(−RM
t:t+τVW (Wt+τ , z1,t+τ , . . . , zN,t+τ ), R

τ
t:t+τ ) ≥ 0.

So we must prove that the covariance of two functions of RM
t:t+τ , Rτ

t:t+τ , R̃t:t+τ , z1,t+τ , . . .,

zN,t+τ is positive. The two functions are

f(RM
t:t+τ , R

τ
t:t+τ , R̃t:t+τ , z1,t+τ , . . . , zN,t+τ ) = −RM

t:t+τVW

(
αt(Wt − Ct)R

M
t:t+τ + (1 − αt)(Wt − Ct)R̃t:t+τ , z1,t+τ , . . . , zN,t+τ

)

and

g(RM
t:t+τ , R

τ
t:t+τ , R̃t:t+τ , z1,t+τ , . . . , zN,t+τ ) = Rτ

t:t+τ .
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(As the covariance is conditional on time t information, we can treat αt and Wt − Ct as

known constants.) As the random variables are associated, the result follows if f and g are

each weakly increasing functions of their arguments. But this follows from the assumptions

above. For example, differentiating f with respect to RM
t:t+τ , we need

−VW (Wt+τ , z1,t+τ , . . . , zN,t+τ ) − αt(Wt − Ct)R
M
t:t+τVWW (Wt+τ , z1,t+τ , . . . , zN,t+τ ) ≥ 0 .

Rearranging, this reduces to the constraint on risk aversion provided in assumption 3 above.

The other necessary conditions on f and on g are trivially satisfied.

C. Implied volatility in equilibrium models

Although we have focussed on dividend volatility, consumption-based models also have

difficulty matching the time series behavior of price volatility. Martin (2017, Table IV)

reports time series of various statistics (mean, median, standard deviation, min, max, skew-

ness, kurtosis, and autocorrelation) of sample paths of the VIX and SVIX indices generated

in the model economies of Campbell and Cochrane (1999), Bansal and Yaron (2004), Bansal

et al. (2012), Bollerslev et al. (2009), Drechsler and Yaron (2011), and Wachter (2013). None

of these is able to generate sample paths that resemble those observed empirically. All the

models apart from Drechsler and Yaron (2011) generate volatility series that are more persis-

tent than the data. The empirically observed mean gap between VIX and SVIX—a measure

of the average importance of extreme left-tail events—is outside the support of the million

sample paths in every model: Wachter (2013) overstates the importance of such events, and

all other models understate it. All the models apart from Wachter (2013) fail, on 99% of

sample paths, to generate the maximum levels of VIX that have been observed in reality.

All models apart from Drechsler and Yaron (2011) fail, on 99% of sample paths, to match

the kurtosis of VIX and SVIX.

We also refer to Dew-Becker et al. (2017) for the a set of related challenges of models

to match the term structure of variance swaps and variance risk premia. Dew-Becker et al.

show that the monthly risk premium on short-term variance (≤ 3 months) is negative and

large whereas the risk premium on longer-term variance (> 3 months) is essentially zero.

The fact that very-short run variance is priced but longer-term variance is not implies the

existence of a transitory element in realized volatility that investors are highly averse towards.

The results also imply that investors are not averse towards changes in long-term expected

volatility – something that is hard to reconcile with long-run risk models (Drechsler and

Yaron, 2011) and disaster models with Epstein-Zin preferences (Wachter, 2013) as investors

in such models are averse towards increases in expected volatility, which is modeled to be

persistent, meaning that claims on longer-term variance should be priced.
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D. Campbell and Cochrane (1999)

In this subsection, we use the notation from Campbell and Cochrane (1999) without

further comment. The price of a claim to the first dividend is

Et (Mt+1Dt+1) = Dt Et

(

Mt+1
Dt+1

Dt

)

= δDt Et (exp {−γg − γ {(φ − 1)(st − s) + [1 + λ(st)]vt+1} + g + wt+1})

= δDt exp

{

g(1 − γ) + γ(1 − φ)(st − s) +
γ2σ2

2S
2 (1 − 2(st − s)) +

1
2
σ2

w −
γρσσw

S

√
1 − 2(st − s)

}

.

So the return on this dividend strip is

Rd,t+1 =
Dt+1

Et (Mt+1Dt+1)
=

Dt+1

Dt
δ−1 exp

{

g(γ − 1) − γ(1 − φ)(st − s) −
γ2σ2

2S
2 (1 − 2(st − s)) −

1
2
σ2

w +
γρσσw

S

√
1 − 2(st − s)

}

.

Hence the expected return is

Et Rd,t+1 = δ−1 exp

{

gγ − γ(1 − φ)(st − s) −
γ2σ2

2S
2 (1 − 2(st − s)) +

γρσσw

S

√
1 − 2(st − s)

}

= Rf exp

{
γρσσw

S

√
1 − 2(st − s)

}

,

and

Vart log Rd,t+1 = σ2
w .

As Mt+1 and Rd,t+1 are conditionally lognormal, Covt(Mt+1Rd,t+1, Rd,t+1) ≤ 0 if and only

if
logEt Rd,t+1 − log Rf

σt(log Rd,t+1)
≥ σt(log Rd,t+1) .

The quantity on the left-hand side of the inequality is, essentially, the Sharpe ratio of the

dividend strip. The preceding results therefore imply that Cov t(Mt+1Rd,t+1, Rd,t+1) ≤ 0 if

and only if
γρσ

S

√
1 − 2(st − s) ≥ σw.

Figure ?? shows that the condition holds in sufficiently bad states of the world, but not

in good states of the world and not at the steady state level of habit, S.

E. Bansal and Yaron (2004)

In this subsection, we use the notation from Bansal and Yaron (2004) without further

comment. We focus on the Case II calibration that features stochastic volatility.
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Figure A.1. The Sharpe ratio, and the covariance term, for the one-period dividend strip
in Campbell and Cochrane (1999). The dotted line in the left panel indicates the volatility
of the dividend strip return, σw. The solid vertical line indicates the steady state level of
habit. The dashed vertical line indicates the maximum attainable level of habit.

Single-period calculations. A claim to the first dividend earns zero risk premium be-

cause dividend growth is conditionally uncorrelated with the log stochastic discount factor,

Covt(gd,t+1,mt+1) = 0. (We are following Bansal and Yaron by treating the model as condi-

tionally lognormal, relying on loglinearizations.) Hence Et Rd,t+1 = Rf,t+1. Again exploiting

lognormality, the risk-neutral variance takes the form above,

Var∗t Rd,t+1 = R2
f,t+1

(
eVart log gd,t+1 − 1

)
= R2

f,t+1

(
eϕ2

dσ2
t − 1

)
,

and

Covt (Mt+1Rd,t+1, Rd,t+1) =
1

Rf,t+1

Var∗t Rd,t+1 − (Et Rd,t+1 − Rf,t+1) = Rf,t+1

(
eϕ2

dσ2
t − 1

)
.

Hence the conditional covariance is positive in Bansal and Yaron (2004).

Bansal et al. (2012) make dividends and consumption growth correlated in the short run.

As a result, Covt(gd,t+1,mt+1) = −γπσ2
t , and hence Et Rd,t+1 = Rf,t+1e

γπσ2
t , where π is a new

parameter introduced in equation (3) of Bansal et al. (2012). Risk-neutral variance changes

slightly:

Var∗t Rd,t+1 = R2
f,t+1

(
e(π2+ϕ2)σ2

t − 1
)

and

Covt (Mt+1Rd,t+1, Rd,t+1) = Rf,t+1

(
e(π2+ϕ2)σ2

t − eγπσ2
t

)
.

This is positive in their calibration, in which π2 + ϕ2 = 42.3 > γπ = 26.

Multi-period calculations. Bansal and Yaron (2004) calibrate the model to a monthly

frequency, while we use 1- to 3-year dividend claims. We therefore compute the risk-neutral
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variance and the covariance for longer horizons for completeness. The model implies that

Pt(τ) = Dt exp(Aτ + Bτxt + Cτσ
2
t ),

where the coefficients follow from

Pt(τ) = Dt Et

(
Mt+1 exp

{
gd,t+1 + Aτ−1 + Bτ−1xt+1 + Cτ−1σ

2
t+1

})

= Dt exp
{
μd + φxt + Aτ−1 + Bτ−1ρxt + Cτ−1σ

2(1 − ν1) + Cτ−1ν1σ
2
t

}
×

R−1
ft exp

{
1

2

(
ϕ2

d + B2
τ−1ϕ

2
e

)
σ2

t +
1

2
C2

τ−1σ
2
w − λm,eBτ−1ϕeσ

2
t − λm,wCτ−1σ

2
w

}

where Rft = exp{s0 + s1xt + s2σ
2
t } and thus

Aτ = −s0 + μd + Aτ−1 + Cτ−1σ
2(1 − ν1) +

1

2
C2

τ−1σ
2
w − λm,wCτ−1σ

2
w,

Bτ = −s1 + φ + Bτ−1ρ,

Cτ = −s2 + Cτ−1ν1 +
1

2

(
ϕ2

d + B2
τ−1ϕ

2
e

)
− λm,eBτ−1ϕe.

Returns are given by

Rd,t+1(τ) = exp
{
gd,t+1 + Aτ−1 − Aτ + Bτ−1xt+1 − Bτxt + Cτ−1σ

2
t+1 − Cτσ

2
t

}

= ft(τ, xt, σ
2
t ) exp {ϕdσtut+1 + Bτ−1ϕeσtet+1 + Cτ−1σwwt+1} ,

where

ft(τ, xt, σ
2
t ) = exp

{
μd + φxt + Aτ−1 − Aτ + (Bτ−1ρ − Bτ ) xt + Cτ−1σ

2(1 − ν1) + (Cτ−1ν1 − Cτ ) σ2
t

}

= Rft exp

{

−
1

2
C2

τ−1σ
2
w −

1

2

(
ϕ2

d + B2
τ−1ϕ

2
e

)
σ2

t + λm,wCτ−1σ
2
w + λm,eBτ−1ϕeσ

2
t

}

.

Exploiting lognormality,

Var∗t Rd,t+1 = R2
ft (exp {Vart log Rd,t+1(τ)} − 1) = R2

ft

(
exp

{(
ϕ2

d + B2
τ−1ϕ

2
e

)
σ2

t + C2
τ−1σ

2
w

}
− 1
)
.

For the risk premium, we have

Et (Rd,t+1(τ)) − Rft = Rft

(
exp{λm,wCτ−1σ

2
w + λm,eBτ−1ϕeσ

2
t } − 1

)
.
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This implies for the covariance

Covt (Mt+1Rd,t+1(τ), Rd,t+1(τ)) = Rft(exp{
(
ϕ2

d + B2
τ−1ϕ

2
e

)
σ2

t + C2
τ−1σ

2
w}

− exp{λm,wCτ−1σ
2
w + λm,eBτ−1ϕeσ

2
t }),

which we linearize (and approximating Rft = 1 as it does not affect the sign and is the

relevant empirical case)

Covt (Mt+1Rd,t+1(τ), Rd,t+1(τ)) ' ϕ2
dσ

2
t + Bτ−1ϕe (Bτ−1ϕe − λm,e) σ2

t + Cτ−1 (Cτ−1 − λm,w) σ2
w.

Note that Bτ , B
′
τ > 0, Cτ , C

′
τ < 0, for τ > 0, and λm,e > 0 and λm,w < 0. At longer

horizons, the NCC will be satisfied, but the coefficients (Bτ , Cτ ) change only slowly with

maturity due to the persistence of the processes. We therefore conclude that the NCC

condition is likely not satisfied in Bansal and Yaron (2004) when calibrated to our sample

period.
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II. Additional figures

We summarize the broad patterns in the data as opposed to high-frequency event studies. 1

We therefore sample the data at three moments in time: the pre-pandemic peak of the

market, the bottom of the market, and at the end of our sample. For both Europe and the

US, we determine the peak of the index level before the start of the pandemic and compute

the average prices and volatilities of each asset during the three week period before the

peak. Similarly, we determine the bottom of the market indexes and average the prices and

implied volatilities in the three weeks surrounding the bottom. We also average the prices

during the last three weeks of our sample. To succinctly present the results, we present the

returns averaged for the 2021, 2022, and 2023 dividend futures prices. The dividend prices

are indicated by “ST” in the legend of the figure.
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Figure A.2. The dynamics of asset prices during the COVID-19 crisis.

1Gormsen and Koijen (2020) analyze the dynamics of the index and dividend futures around some of the
key events during the crisis for the European, Japanese, and US market.
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