Online Appendix for "Segregation and the Initial Provision of Water in the United States"

Brian BeachJohn ParmanMartin SaavedraVanderbilt UniversityWilliam & MaryOberlin Collegeand NBERand NBER

January 12, 2022

Derivation of the Interior Solution

The city planner wishes to maximize $U(N_W, N_B, z)$ subject to budget constraint, which for an interior solution is $B = z + c \times m + F$. This implies that:

$$U(N_W, N_B, z) = \alpha N_W + (1 - \alpha) N_B + \beta z$$

= $\alpha \int_0^m (1 - g(x)) dx + (1 - \alpha) \int_0^m g(x) dx + \beta z$
= $\int_0^m [\alpha (1 - g(x)) + (1 - \alpha)g(x)] dx + \beta z$
= $\int_0^m [\alpha + (1 - 2\alpha)g(x)] dx + \beta z$
= $\int_0^m [\alpha + (1 - 2\alpha)g(x)] dx + \beta (B - c \times m - F)$

Then $\frac{\partial U}{\partial m} = \alpha + (1 - 2\alpha)g(m) - \beta c$, which implies that the optimal main is when:

$$(1-2\alpha)g(m^*) = \beta c - \alpha \Rightarrow$$
$$g(m^*) = \frac{\beta c - \alpha}{1-2\alpha} \Rightarrow$$
$$m^* = g^{-1} \left(\frac{\beta c - \alpha}{1-2\alpha}\right)$$
$$= g^{-1} \left(\frac{\alpha - \beta c}{2\alpha - 1}\right)$$

Proof of Propositions

Proposition 1 For an interior solution, the size of the system decreases in the cost of mains and the preference for non-water public goods.

Proof Since g is an increasing function, it follows that g^{-1} is an increasing function. Let $\lambda = \frac{\alpha - \beta c}{2\alpha - 1}$. Then $\frac{\partial \lambda}{\partial c} = \frac{-\beta}{2\alpha - 1} < 0$. Thus, an increase in the cost of a water main decreases optimal main mileage. Similarly, $\frac{\partial \lambda}{\partial \beta} = \frac{-c}{2\alpha - 1} < 0$ and an increase in the preferences for non-water public goods decreases optimal main mileage.

Proposition 2 The size of the system m^* increases as γ increases.

Proof This result follows immediately from the fact that

$$m^* = g^{-1} \left(\frac{\alpha - \beta c}{2\alpha - 1} \right)$$
$$= \gamma - \frac{1}{k} \ln \left(\frac{2\alpha - 1}{\alpha - \beta c} - 1 \right) . \blacksquare$$

Proposition 3 If the optimal main stops in a neighborhood that is less than one-half Black (i.e., $m^* < \gamma$) then a marginal increase in either segregation (k) or the preference for Whites (α) increases the size of the optimal water system. Conversely, if $m^* > \gamma$, then a marginal increase in either k or α decreases the size of the optimal water system.

Proof Note that $\frac{\partial m^*}{\partial k} = \frac{1}{k^2} \ln \left(\frac{2\alpha - 1}{\alpha - \beta c} - 1 \right)$, which implies that $\frac{\partial m^*}{\partial k} > 0$ if and only if $\frac{2\alpha - 1}{\alpha - \beta c} - 1 > 1 \Leftrightarrow$ $\frac{2\alpha - 1}{\alpha - \beta c} > 2 \Leftrightarrow$ $2\alpha - 1 > 2\alpha - 2\beta c \Leftrightarrow$ $\beta c > \frac{1}{2}$.

Now suppose that the optimal main stops in a majority White neighborhood. This

implies that

$$m^* < \gamma \Leftrightarrow$$

$$g^{-1}\left(\frac{\alpha - \beta c}{2\alpha - 1}\right) < \gamma \Leftrightarrow$$

$$\gamma - \frac{1}{k}\ln\left(\frac{2\alpha - 1}{\alpha - \beta c} - 1\right) < \gamma \Leftrightarrow$$

$$0 < \frac{1}{k}\ln\left(\frac{2\alpha - 1}{\alpha - \beta c} - 1\right) \Leftrightarrow$$

$$1 < \frac{2\alpha - 1}{\alpha - \beta c} - 1 \Leftrightarrow$$

$$\frac{1}{2} < \beta c,$$

which implies that $\frac{\partial m^*}{\partial k} > 0$. A symmetric argument will show that if the optimal main stops in a majority Black neighborhood, then $\beta c < \frac{1}{2}$ and $\frac{\partial m^*}{\partial k} < 0$.

As for the preferences for Whites (α), continue to let $\lambda = \frac{\alpha - \beta c}{2\alpha - 1}$. Then $\frac{\partial \lambda}{\partial \alpha} = \frac{(2\beta c - 1)}{(1 - 2\alpha)^2}$. This derivative is positive if $2\beta c - 1 > 0 \Rightarrow \frac{1}{2} < \beta c$ (when the optimal main stops in a majority White neighborhood) and negative when $\beta c < \frac{1}{2}$ (when the optimal main stops in a majority Black neighborhood). ■

Appendix Figures

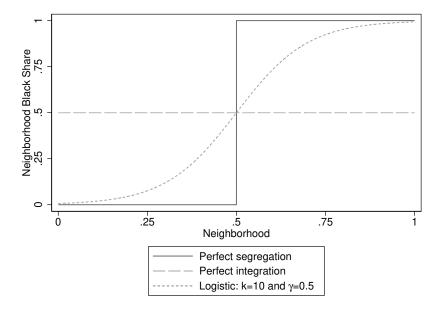


Figure A.1: Examples of g(.)

Notes: The lines corresponds to hypothetical cities with the same Black share (50% in this case), but differ in their level of segregation. Neighborhoods are ordered based on their Black share with 0 being the neighborhood with the smallest Black share and 1 being the neighborhood with the largest Black share. All neighborhoods are assumed to be of the same size.