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Online Appendix

Full model and proofs of results

A1. Supply, demand, equilibrium, and welfare

Suppose that the arrival rate of passengers is given by a demand function

(A1) Q = D(p, TB)

that is decreasing in both p, the price paid by buyers, and TB, the average waiting
time buyers need to wait before being matched.

The number of sellers is determined by a decreasing labor supply curve

(A2) N = L(w),

where w are sellers’ average earnings per-unit-time. To find an expression for w, let
p0 be the amount sellers get per transaction, which can be different from p if there
is a per-unit tax or subsidy or if matching occurs through a platform that gets a
commission. Additionally, let c be a marginal cost per transaction. Sellers’ average
earnings are then given by w = (p0�c)Q

N .
As stated in the main text, the number of matches per unit time are given by

the matching function m(B, S). We assume that it is continuous and increasing
in both arguments, and that m(0, B) = m(B, 0) = 0. It may have a Cobb-Douglas
function m(B, S) = MBaSb. Lagos (2003), for instance, microfounds a Cobb-Douglas
matching function for taxis with a = b = 1 based on a spatial search model.

The steady state is defined by equation (1). The following result guarantees exis-
tence and uniqueness of a steady state under certain conditions:

PROPOSITION 1: If tQ < N and limB!• m(B, N � tQ) � Q, then there exists a
unique (B, S) that is consistent with steady state. Otherwise, there is no steady state.

PROOF:
Conside (Q, N) such that tQ < N. S is pinned down by the equation on the

number of drivers, S = N � tQ. B is defined implicitly by Q = m(B, S). If
limB!• m(B, N � tQ) � Q, it has a unique solution by the intermediate value
theroem since m(0, S) = 0, m(B0, S) > Q for some B0, and m(B, S) is increasing
in B.

If tQ > N, there is no nonnegative S that satisfies the identity for drivers N =
S+ tQ. If limB!• m(B, N � tQ) < Q, then there exists no solution to Q = m(B, S) =
m(B, N � tQ) because m(B, S) is increasing in B. Note that tQ = N implies S = 0,
so limB!• m(B, N � tQ) = 0 < Q. ⌅
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This proposition means that when there are too many buyers there are not enough
sellers to serve them. But as long as that is not the case, an equilibrium exists and
is unique.

The steady-state waiting time for buyers is given by T̃B(Q, N). A market equilib-
rium is a solution in Q and N of

(A3) Q = D(p, T̃B(Q, N)) N = L
✓
(p0 � c)Q

N

◆
.

There may be multiple equilibria given p and p0. However, for any (Q, N) there
exists a unique set (p(Q, N), p0(Q, N)) that is consistent with market equilibrium.3
Thus, although Q and N are endogenous, it will be more convenient to work with
quantities instead of prices.4

Welfare is the sum of buyer surplus, seller surplus, and the net payments obtained
by the platform setting prices or the government charging taxes or paying subsidies:

(A4) W = BS + SS + (p � p0)Q,

where we define buyer surplus and seller surplus as

(A5) BS(p, TB) =
Z •

p
D( p̃, TB) dp̃ SS(w) =

Z w

0
L(w̃) dw̃.

We also define buyers’ gross utility and sellers’ labor cost as their surplus without
netting out their payments, i.e.,

(A6) U(p, TB) = BS(p, TB) + pD(p, TB) � C(w) = SS(w)� wL(w).

If we define inverse demand and supply functions p(Q, TB) and w(N) (which we
can do since supply and demand are decreasing in prices and increasing in ex-
pected earnings, respectively), we can define gross utility and supply cost in terms
of quantities in order to write welfare as in equation (2).5

By using a change of variables, we can rewrite gross utility and labor cost as
integrals over quantities:6

(A7) U(Q, TB) =
Z Q

0
p(Q̃, TB) dQ̃ C(N) =

Z N

0
w(Ñ) dÑ

3To see that, define p(Q, N) and p0(Q, N) as the implicit solutions to (A3). Both are well-defined because
demand is decreasing in p and supply is decreasing.

4The only concern is that the market could end up in a wrong equilibrium (Q0, N0) 6= (Q, N). However, a
price-setting platform can ensure the right equilibrium plays out in the long run: if agents expect an equilibrium
(Q0, N0), it can set prices p(Q0, N0) and p0(Q0, N0) until agents’ expectations adjust. It can then revert to the
equilibrium prices for the desired allocation. This follows the idea of an “insulating tariff” from Weyl (2010).

5The algrebra, without explicitly writing function arguments, is W = BS+ SS� pQ� p0Q = U � pQ+wN �
C + pQ � p0Q = U + (p0 � c)Q � C � p0Q = U � C � cQ.

6This is most easily seen by plotting the supply and demand curves. Gross utility is the are below the
demand curve and the labor cost is the area below the labor supply curve.
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From these expressions, it is clear that ∂U
∂Q = p and ∂C

∂N = w.

A2. Returns to scale

We start by defining formally what we mean by returns to scale.

DEFINITION 1: The matching technology has

• Constant returns to scale if m(aB, aS) = am(B, S) for all B, S, a.

• Increasing returns to scale if m(aB, aS) > am(B, S) for all B, S and for all a > 1.

• Decreasing returns to scale if m(aB, aS) < am(B, S) for all B, S and for all a > 1.

We now state three equivalent characterizations of increasing returns to scale.

PROPOSITION 2: Each of the following statements holds if and only if the matching
technology has increasing returns to scale:

1) TB(aB, aS) < TB(B, S) for all Q, N and for all a > 1.

2) TS(aB, aS) < TS(B, S) for all Q, N and for all a > 1.

3) T̃B(aQ, aN) < T̃B(Q, N) for all Q, N and for all a > 1.

PROOF:
We prove the three statements one by one.

1) Setup: Take any B and S, and take any a > 1.
If: Suppose that m(aB, aS) > am(B, S). By the definition of TB, TB(aB, aS) =

aB
m(aB,aS) <

aB
am(B,S) =

B
m(B,S) = TB(B, S).

Only if: Suppose that TB(aB, aS) < TB(B, S). By the definition of TB,
m(aB, aS) = aB

TB(aB,aS) >
B

aTB(B,S) =
B

TB(B,S) = m(B, S).

2) The proof is entirely analogous to the previous part, substituting S for B when-
ever necessary.

3) Setup: Let B and S be the equilibrium quantities with (Q, N). Now take another
equilibrium with (aQ, aN) where a > 1. By the balance equation for sellers, the
number of searching sellers is aN � taQ = aS. Let the number of searching
buyers in that other equilibrium be bB. Then T̃B(aQ, aN) = bB

m(bB,aS) =
bB
aQ .

If: Suppose that m(aB, aS) > am(B, S). By the balance equation for buy-
ers, m(bB, aS) = aQ. By the increasing returns to scale, m(aB, aS) > aQ =
m(bB, aS), which implies that a > b since m(B, S) is increasing in B. Finally,
note that T̃B(aQ, aN) = bB

m(bB,aS) =
bB
aQ = b

a
B
Q = b

a T̃B(Q, N) < T̃B(Q, N).

Only if: Suppose that T̃B(aQ, aN) < T̃B(Q, N). This can be rewritten as B
Q >

bB
m(bB,aS) , which implies that a > b. Thus, m(aB, aS) > m(bB, aS) = am(B, S),
where the inequality arises from the fact that m(B, S) is increasing in b. ⌅
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Proposition 2 only states results for increasing returns to scale, but analogous
results also hold for decreasing and constant returns to scale. The proofs follow the
exact same process, flipping inequalities or changing them to equalities. One may
expect that a result resembling part 3 also holds for T̃S, but that is not the case. In
fact, T̃S is always homogeneous of degree zero.7

A3. Welfare maximization

The two equations for welfare maximization (equating (3) and (4) to zero), can
be written as p = c � ∂U

∂TB

∂TB
∂Q and (p0�c)Q

N = ∂U
∂TB

∂TB
∂N . From these two expressions,

p � p0 = t̄ = � ∂U
∂TB

⇣
∂TB
∂Q + N

Q
∂TB
∂N

⌘
= �(eTB

Q + eTB
N )TūT.

This last equation illustrates the relationship between returns to scale and
taxes/subsidies, but it is not amenable for the computation because eTB

Q and eTB
N

are properties of market equilibria and not of primitives of the model. An equiv-

alent expression that we use for our main results is t̄ = � e
TB
S +e

TB
B

1�e
TB
B

TūT, which only

depends on properties of the matching function.8

Computing the matching function for ride-hailing

B1. Matching in ride-hailing

Let A be the density of available drivers. The pickup time is a decreasing, convex
function P(A). As an example, suppse that drivers move at a constant speed in a
homogeneous n-dimensional space. In that case, P(A) µ 1

A
1
n

.

Assuming riders are matched immediately to their nearest driver, they only need
to wait while they are picked up, so that TB = P(A). The driver first needs to wait
for a period of time A

m while they are matched, and then they need to pick up the
passenger, so that the total pickup time is equal to TS = A

m + P(A). The waiting
times of riders and drivers give a system of two equations on two unknowns (m and
A):

(B1) TR = P(A) TD =
A
m

+ P(A).

7Let B and S be the equilibrium quantities with (Q, N). Now take another equilibrium with (aQ, aN). The
number of waiting sellers is aN � taQ = aS. So T̃S(aQ, aN) = aS

aQ = S
Q = T̃S(Q, N).

8To derive this expression, note first that, since TB = B
Q , we can write d log TB = eB

N · d log N + (eB
Q � 1) ·

d log Q, which implies that eTB
Q + eTB

N = eB
Q + eB

N � 1. And from Q = m(B, N � tQ) (which combines both

steady-state conditions), we get d log Q = em
B · d log B + em

S · ( N
S · d log N � tQ

S · d log Q). Isolating d log B yields

d log B = 1
em

B

h
�em

B
N
S d log N + (1 + em

S
tQ
S )d log Q

i
. From that we can derive eB

N + eB
Q = 1

em
B

h
1 + em

S

⇣
tQ
S � N

S

⌘i
,

and if we note that tQ � N = �S, that last expression is eB
N + eB

Q =
1�em

S
em

S
.

Combining both expressions we have derived for elasticities, we obtain eTB
Q + eTB

N =
e

TB
S +e

TB
B

1�e
TB
B

.
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Solving for m and substituting TB = B
m and TS = S

m gives us the matching function:

(B2) m(B, S) =
B

P(S � B)
.

This function exhibits increasing returns to scale because P(A) is a decreasing
function: m(aB, aS) = aB

P(aS�aB) >
aB

P(S�B) = am(B, S).

As a simple example, suppose that P(A) µ 1
A�g . That is the case, for instance,

in the homogeneous n-dimensional space discussed above, with g = 1
n . In that

case, m(B, S) is homogeneous of degree 1 + g > 1, and, hence, matching has IRS. If
space is homogeneous and two-dimensional, and drivers move at a constant speed,
g = 0.5. However, drivers do not drive at constant speed. As shown by Castillo et
al. (2022), they drive slower on short trips due to the structure of roads. The pickup
times of short trips thus tend to be somewhat higher than if P(A) µ 1

A�g . In other
words, the pickup times tend to be somewhat higher if A is high, as would be the
case if g < 0.5. This theoretically justifies a matching function that is homogeneous
of degree ⇠ 1.35.

We now highlight two important features about the matching function (B2). First,
this function is only defined for S > B. Equation (B1) means that drivers always
need to wait longer than drivers. As such, the number of waiting drivers is always
higher than the number of waiting riders. Note also that the matching function
is not necessarily increasing in B. That is the case whenever the market is under
a matching failure that Castillo et al. (2022) call a “wild-goose chase.” Many of
our results cease to hold when that is the case. However, those are pathological
conditions that we do not consider in this paper.

B2. Simulation

Suppose a rider requests a trip at a time t from coordinates x. Drivers are uni-
formly distributed around her with a probability density A.

Consider one draw from that density of drivers. It is characterized by (a) a set J
of available drivers and (b) the coordinates yj of each driver j 2 J . Matches take
place as follows. First, the platform computes a pickup time wj for every rider j. It
is drawn from a distribution G(·|x, yj, t) that depends on the coordinates of both the
rider and the driver and on the time of the week when the trip was requested.

The platform first offers the trip to the driver in Jt with the lowest pickup time,
who accepts it with probability f. If he does not accept it, the trip is offered to the
next closest driver, who also accepts it with probability f. This process goes on until
one driver j⇤ accepts the trip. The realized pickup time for the rider is wj⇤.

Based on this process, we can compute P(A, x, t), the pickup time function from
the perspective of a rider requesting a trip from x at time t. We simply simulate the
above process given (A, x, t), and we average the realized pickup times.
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B3. Estimation

We need to estimate two elements to be able to compute P(A, x, t): the density of
pickup times G(·|x, yj, t) and drivers’ acceptance probability f. We estimate them
using data from all Uber trips as well as all trip offers to drivers in Houston between
March 16 and April 8, 2017. We observe timestamps and coordinates of the rider
and driver at three points in time for every trip: when the trip was requested, when
the rider was picked up, and when the rider was dropped off. We also observe data
on all trip offers to drivers and whether they were accepted.

To estimate pickup times, we first fit a random forest to obtain a prediction
T̂(x, yj, h) of pickup times as a function of rider and driver coordinates and the
hour of the week. We also fit a linear model of the standard deviation of the resid-
ual of this model as a function of the prediction T̂. Let ˆsd(T̂) be the prediction from
this model. To generate draws from G(·|x, yj, t), we take draws from a lognormal
distribution with mean T̂(x, yj, h) and standard deviation ˆsd(T̂(x, yj, h)).

We take f to be the average trip acceptance probability in the data, 0.847.

B4. Results

We focus on 36 markets, defined as combinations of six different locations and six
hours of the week, which we believe roughly represent different types of neighbor-
hoods in Houston. The six locations are Downtown Houston, Brays Oak, a middle-
income largely residential neighborhood, the Third Ward, which contains the largest
African-American population of Houston, University of Houston, the largest uni-
versity in the city, Greater Heights, a dense neighborhood with a significant young
professional population, and the Memorial area, a large commercial neighborhood
surrounded by high-income residential neighborhoods. For each location, we take
the latitude and longitude of one particular point. For Downtown Houston at 5 pm,
for instance, we choose the point with coordinates (29.757629,-95.368672). We also
focus on six times of the week: Tuesdays at 3 am, 8 am, 12 pm, and 5 pm, as well as
Saturdays at 1 am and 3 pm.

Figure B1 shows a map with the predicted pickup times generated from the ran-
dom forest for Downtown Houston on Tuesdays at 5 pm. As expected, the pickup
duration is higher the further the driver is. And for a given distance, the pickup
duration tends to be lower near highways, where drivers can drive quickly towards
the rider.

Figure B2 plots the expected pickup time that we generate for different locations
and times of the week. The pickup time is a decreasing function that is highest for
congested markets such as during rush hour and Downtown. It is also high around
the University of Houston, where many roads are closed to cars, making it harder
for drivers to reach passengers.

In Figure B3 we plot the matching function for Downtown at Tuesday, 17 pm. The
function is only defined for the upper left corner where the market is not under the
matching failure that Castillo et al. (2022) call ”wild-goose chases.”

For our results about elasticities and externalities, we need to compute the distri-
bution of waiting riders and drivers for every market. For Downtown Houston at
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Figure B1. : Predicted Pickup Times

Note: This figure plots the predicted pickup times generated from the random forest for the downtown
Houston area on Tuesdays at 5 pm. The points represent the locations where we observe available drivers in

the data. For each driver location, we predict the pickup time to a passenger who requests a trip at the origin.
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Figure B2. : P(A) - Pickup Times and Density of Drivers

Note: These figures plot the pickup time as a function of the driver density for the Downtown area at various
times (subfigure a) and for different locations at Tuesday, 12 pm (subfigure b). The pickup times are computed
using the pickup times generated from the random forest for different driver densities. The grey curve depicts

the distribution of the driver densities that we observe in the data.

5 pm, for instance, we focus on everything that happens in a 4 km by 4 km square
centered around the point with coordinates (29.757629,-95.368672) and between 4
pm and 6 pm on weekdays. We take the number of available drivers in the data
and the number of drivers waiting to be picked up, both of which we aggregate
into one hour periods. Each one of these periods constitutes one observation for the
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Figure B3. : Matching Function for Downtown at Tuesday, 5 pm

Note: This figure plots the matching function that we compute for Downtown Houston at 5 pm on Tuesdays.
For each combination of the density of waiting riders and drivers, the function represents how many matches

would occur per unit of time.

distribution of the density of riders and drivers.
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Figure B4. : P(A) - Pickup Times and Density of Drivers

Note: These figures plot the externalities riders and drivers, respectively, for different locations and hours of the
week. For every market, the externalities that we show represent the average externality over the distribution of

waiting riders and drivers that we observe in that market in the data.

Figure B4 plots the externalities caused by riders and drivers in dollars per trip
and dollars per hour of work, respectively, for various locations and times. There
is a much wider dispersion than we observe in the sum of both externalities, as we
show in figure 2. The reason for this is that when the market is congested—when
demand is high and there are relatively few drivers, such as during rush hour—the
externalities caused by riders and drivers both become large in absolute terms. The
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difference between them also becomes larger, but by not nearly as much as each
individual externality.

*
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