
Online Appendix for

Influence and Information in Team Decisions:

Evidence from Medical Residency

David C. Chan

February 2020



A-1 Random Assignment

This appendix presents two sets of randomization tests for quasi-random assignment, complementing

evidence in Table 1. Section I.A presents results regarding the assignment of patients to trainees.

Section I.B presents the assignment of trainees to supervising physicians.

I.A Assignment of Patients to Trainees

First, I test for the joint significance of trainee identities in regressions of this form:

Xa = Tt(a)η+ µs(a)+ ζ
τ<T
j(a) + ζ

τ>T
k(a) + ζ`(a)+ εa, (A-1)

where a is a patient admission and Xa is some patient characteristic or linear combination of patient

characteristics for the patient in admission a, described in Section I.C. t (a) refers to the day of admis-

sion, s (a) is the service of admission, j (a) is the junior trainee, k (a) is the senior trainee, and ` (a) is

the supervising physician. Tt(a) is a set of time categories for the admission day, including the day of

the week and the month-year interaction; µs is a fixed effect that corresponds to the admitting service

s (e.g., “heart failure service” or “oncology service”). ζτ<Ti , ζτ>Tj , and ζk are fixed effects for the

intern i, resident j, and attending k, respectively. I do not impose any relationship between the fixed

effect of a trainee as an intern and the fixed effect of the same trainee as a resident. I then test for the

joint significance of the fixed effects
(
ζτ<Tj ,ζτ>T

k

)
j∈J,k∈K

.

In Column 1 of Table A-1, I show F-statistics and the corresponding p-values for the null hypoth-

esis that
(
ζτ<Tj ,ζτ>T

k

)
j∈J,k∈K

= 0. I perform the regression (A-1) separately each of the following

patient characteristics Xa as a dependent variable: patient age, a dummy for male gender, and a

dummy for white race.1 I also perform (A-1) using as dependent variables the linear prediction of

log admission total spending based on patient age, race, and gender. I fail to find joint statistical

significance for any of these tests.

Second, I test for the significance of trainee characteristics in regressions of this form:

Xa = Tt(a)η+ µs(a)+γ1Z j(a)+γ2Zk(a)+ ζ`(a)+ εa . (A-2)

Equation (A-2) is similar to Equation (A-1), except for the use of a vector of trainee characteristics

Z j(a) and Zk(a) for the junior and senior trainee, respectively, on day of admission to test whether cer-

tain types of residents are more likely to be assigned certain types of patients. Trainee characteristics

include the following: position on the rank list; USMLE Step 1 score; sex; age at the start of training;

and dummies for foreign medical school, rare medical school, AOA honor society membership, PhD

or another graduate degree, and racial minority.

Columns 2 and 3 of Table A-1 show F-statistics and the corresponding p-values for the null

hypothesis that (γ1,γ2) = 0. Column 2 includes all trainee characteristics in Zh; column 3 excludes

1I do not test for balance in patient diagnoses, because these are discovered and coded by physicians potentially endoge-
nous. Including or excluding them in the baseline specification of Equation (3) does not qualitatively affect results.
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position on the rank list, since this information is missing for a sizable proportion of trainees. Patient

characteristics for dependent variables in (A-2) are the same as in (A-1). Again, I fail to find joint

significance for any of these tests.

Third, I compare the distributions of patient age and of predicted total costs across patients ad-

mitted to interns and residents with high or low spending. I consider trainee spending effects that are

fixed within junior or senior role using this regression:

Ya = Xaβ+Tt(a)η+ ζ
τ<T
j(a) + ζ

τ>T
k(a) + ζ`(a)+ εa, (A-3)

where Ya is log total spending for admission a, and other variables are defined similarly as in Equation

(A-1). Figure A-1 shows kernel density plots of the age distributions for patients assigned to interns

and residents, respectively, each of which compare trainees with practice styles above and below

the mean. Figure A-2 plots the distribution of predicted spending for patients assigned to trainees

with above- or below-mean spending practice styles. There is essentially no difference across the

distribution of age or predicted spending for patients assigned to trainees with high or low spending

practice styles. Kolmogorov-Smirnov statistics cannot reject the null that the underlying distributions

are different.

I.B Assignment of Trainees to Other Providers

To test whether certain types of trainees are more likely to be assigned to certain types of other trainees

and attending physicians, I perform the following regression to examine the correlation between two

trainees and between a trainee and the supervising physician assigned to the same patient:

ζ̂rh(a) = γh ζ̂
1−r
−h(a)+γ` ζ̂`(a)+ εa, (A-4)

where r ≡ 1 (τ > T) is an indicator for whether the fixed effect for trainee h was calculated while h

was a junior trainee (r = 0) or a senior trainee (r = 1). As in Equation (A-1), I assume no relationship

between ζ̂τ<T
h

and ζ̂τ>T
h

. Each observation in Equation (A-4) corresponds to an admission a, but

where error terms are clustered at the level of the intern-resident-attending team, since there are

multiple observations for a given team. ζ̂` is the estimated fixed effect for attending k.2 Estimates for

γh and γ` are small, insignificant, and even slightly negative.

Second, I perform a similar exercise as in the previous subsection, in which I plot the distribution

of estimated attending fixed effects working with trainees with above- or below-mean spending prac-

tice styles. In Figure A-3, the practice-style distribution for attendings is similar for those assigned

to high- versus low-spending trainees. As for distributions of patient characteristics in Appendix I.A,

differences in the distributions are not qualitatively significant, and Kolmogorov-Smirnov statistics

2I use two approaches to get around the reflection problem due to the first-stage joint estimation of ζ0
j

, ζ1
k

, and ζ`
(Manski, 1993). First, I perform (A-4) using “jack-knife” estimates of fixed effects, in which I exclude observations with
−h and ` to compute the ζ̂h

restimate that I use with ζ̂1−r
−h

and ζ̂k . Second, I use the approach by Mas and Moretti (2009),
in which I include nuisance parameters in the first stage to absorb team fixed effects for ( j,k,`).
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cannot reject the null that these distributions are different, at least when clustering at the level of the

intern-resident-attending team.

A-2 Random-Effects vs. Fixed-Effects Identification

The fixed-effects estimation approach (e.g., Abowd et al., 1999; Card et al., 2013) relies on a version

of Assumption 1 that is only slightly weaker:

Assumption 2 (Quasi-Random Team Assignment within Connected Sets (Abowd et al., 1999)).
Potential team decisions are independent of team assignments, conditional on clinical service s (i,t),

indicators of time t, and connected sets g (i,t):

{Yit ( j,k)}(j ,k)∈Jit×Kit
⊥⊥

(
Di jt,Dikt

) �� s (i,t),t,g (i,t) .
As discussed in Abowd et al. (2008), a “connected set” g comprises cases (i,t) such that j (i,t) ∈ J g

or k (i,t) ∈ Kg. J g includes any junior trainee who has worked with a senior trainee in Kg, and

Kg includes any senior trainee who has worked with a junior trainee in J g. Any pair of trainees
( j,k) ∈ J g ×Kg, whose observations are in the same connected set, can be “connected” via a chain

of trainees that have worked together.

Assumption 1 implies Assumption 2, and if J g(i,t) ⊇ Jit and Kg(i,t) ⊇ Kit , then Assumption 1 is

equivalent to Assumption 2. Fixed-effects estimation, under Assumption 2, comes with the cost that

the effects of trainees in different connected sets are not comparable: For each g, one junior-trainee

effect and one senior-trainee effect need to be dropped from estimation to satisfy the rank condi-

tion. Stated differently, to identify any trainee effects, the fixed-effects framework requires trainee

“movers,” who work with more than one teammate. While our setting involves and exploits such

movers, this requirement is not strictly necessary in the random-effects approach, under Assumption

1. The sense in which Assumption 2 is weaker than Assumption 1 mostly results from the rank condi-

tion and not a necessarily substantive difference in the quasi-experimental design. In finite samples, if

we observed fewer cases for the same set of trainees, the sets J g(i,t) and Kg(i,t) could contain fewer

elements, even though Jit and Kit would be unchanged.

A-3 Statistical Model of Trainee Effects

III.A Patient Admission Random Effects

We may augment Equation (4) to allow for patient admission random effects, since the same patient

may stay for more than one day and be exposed to different trainees:

Ỹit = ξ
τj ;τk
j(i,t)
+ ξ

τk ;τj
k(i,t)
+ νi + εit, (A-5)

A-3



where νi is a random effect for the patient admission.3 Under Assumption 1, ξτj ;τkj , ξτk ;τj
k

, and νi are

uncorrelated with one another.

Let NI be the number of patient admissions in sample C
(
τj,τk

)
. Then in Equation (5), D is an

N × (NJ +NK +NI ) selection matrix for junior trainees, senior trainees, and patient admissions. u is

an (NJ +NK +NI ) × 1 stacked vector of junior trainee, senior trainee, and patient admission random

effects. We can then restate the variance-covariance matrix of u as

Var u =G =


σ2 (

τj ;τk
)
INJ 0 0

0 σ2 (
τk ;τj

)
INK 0

0 0 σ2
ν INI

 .
The log likelihood function in Equation (6) remains the same, with V = DGD′+σ2

εIN . I maxi-

mize this log likelihood with respect to σ2 (
τj ;τk

)
, σ2 (

τk ;τj
)
, σ2

ν , and σ2
ε . Estimates of σ2 (

τj ;τk
)

and σ2 (
τk ;τj

)
in this augmented model are qualitatively unchanged relative to the baseline imple-

mentation in Section II.D.

III.B Correlation of Trainee Effects

I augment models in (4) and (A-5) to estimate the correlation between trainee effects in two separate

tenure periods, τ1 and τ2, which I denote by ρ (τ1,τ2). Although I observe each trainee across her

entire training, I only observe a subset of these trainees in each period. The number of trainees

observed in both tenure periods in the pair (τ1,τ2) is even smaller. Because trainees that I do not

observe in both τ1 and τ2 do not contribute to the estimate of ρ (τ1,τ2), I include in the estimation

sample only observations associated with a trainee observed in both tenure periods. I also redefine

tenure periods to be 120 days in order to enlarge the sample of trainees whom I observe in both

periods in a tenure-period pair.

Specifically, in place of Equation (4), I consider

Ỹit = ξτh(i,t)+ ξ−h(i,t)+ εit, (A-6)

where τ ∈ {τ1,τ2} may be one of two tenure periods in a pair.. This specifies that effects of trainees

in the tenure periods of interest (τ1 and τ2) may be drawn from two separate distributions depending

on the tenure period τ1 or τ2 corresponding to observation t; I pool the effects of the teammates into a

single distribution that does not depend on tenure. Because I focus on the correlation between trainee

effects, I am unconcerned about the scale of practice variation and I thus do not specify the tenure of

the teammate. The analog for Equation (A-5) is

Ỹit = ξτh(i,t)+ ξ−h(i,t)+ νi + εit . (A-7)

3This specification requires the use of sparse matrices for estimation. In specifications without the use of sparse matrices,
I nest this effect within interns, i.e., I include νai as an intern-admission effect. While it is easier to estimate a specification
with νai , I will describe this specification for ease of explication. In practice, results are materially unaffected by whether
I use νa or νai , or in fact whether I include an admission-related effect at all.
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I estimate (A-6) or (A-7) in a sample of observations, which I define as follows: C (τ1,τ2) =

{(i,t,h) : h ∈ { j (i,t),k (i,t)} ,τ (h,t) ∈ {τ1,τ2}}. I require that, for every trainee h in C (τ1,τ2), there are

observations in the sample in which she has tenure τ1 and other observations in the sample in which

she has tenure τ2. Otherwise, we cannot use trainee h to estimate the correlation in trainee effects

between these two periods.

As above, I can represent both Equation (A-6) and Equation (A-7) in matrix form, as Equation

(5). Denote the number of trainees h in C (τ1,τ2) as NH . Denote the number of teammates trainees

interacted with their tenure periods as N−H . The selection matrix Z is of size N ×
(
2NH +N−H

)
, since

it now maps observations onto one of two random effects, depending on whether τ = τ1 or τ = τ2, for

each trainee h observed in both τ1 and τ2 tenure periods. The stacked vector of random effects u is

similarly of size
(
2Nτ +N−τ

)
×1. The variance-covariance matrix of u is

Var u =G =

[
GH 0
0 σ2

ξ−IN−H

]
,

where GH is a 2NH ×2NH block-diagonal matrix of the form

GH =



A 0 · · · 0

0 A
...

...
. . . 0

0 · · · 0 A


, (A-8)

with each block being the 2× 2 variance-covariance matrix A of random effects within trainee and

across tenure periods:

Var

[
ξτ1
h

ξτ2
h

]
= A, for all h, where

A ≡

[
σ2 (τ1) ρ (τ1,τ2)σ (τ1)σ (τ2)

ρ (τ1,τ2)σ (τ1)σ (τ2) σ2 (τ2)

]
.

Representing (A-7) as (5) is a similar exercise. The selection matrix Z is of size N×
(
2NH +N−H +NI

)
,

and the vector of random effects u is of size
(
2NH +N−H +NI

)
×1. The variance-covariance matrix of

u is

Var u =G =


GH 0 0
0 σ2

ξ−IN−H 0
0 0 σ2

v INI

 ,
where GH is the same as in Equation (A-8). The log likelihood is the same as in Equation (6), but

using revised definitions of G that allow for covariance between random effects of the same trainees

across tenure periods. The correlation parameter of interest ρ (τ1,τ2) is constrained to be between −1
and 1.
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A-4 Intrinsic Heterogeneity: Trainee Characteristics

The key alternative explanation for persistent variation that I explore in this section is that physicians

may intrinsically differ for reasons unrelated to knowledge and learning, such as preferences or ability

(e.g., Doyle et al., 2010; Fox and Smeets, 2011; Bartel et al., 2014). To assess the possibility of

intrinsic heterogeneity, I first exploit detailed trainee characteristics that should be highly correlated

with preferences and ability. For example, USMLE scores measure medical knowledge as a medical

student; position on the residency rank lists reflects overall desirability; and specialty tracks, mostly

predetermined relative to the beginning of residency, reflect important career decisions and lifestyle

preferences, such as a decision to become a radiologist rather than a primary care physician. To

capture the variety of future career paths across internal medicine trainees, I impute future yearly

incomes after specialty training based on the final specialty choices of trainees. As cited in Section

I.C, trainees with above-median future incomes will earn substantially more than their peers with

below-median future incomes.

I assess the relationship between each of these characteristics and daily spending totals for either

the junior or senior trainee:

Yit = αmCharacteristicmh(i,t)+Xiβ+Ttη+ ζ−h(i,t)+ ζ`(i,t)+ εaijkt, (A-9)

where Characteristicm
h

is an indicator for whether the junior (or senior) trainee h has the characteristic

m, ζ−h is a fixed effect for the other senior (or junior) trainee −h, and ζ` is a fixed effect for attending

`.4 The coefficient of interest, αm, quantifies the predictive effect of a trainee with characteristic m on

patient spending decisions. I also evaluate the combined predictive effect of trainee characteristics in

two steps. First, I regress outcomes on all direct trainee characteristics, with continuous characteristics

like position on rank list entered linearly, along with the other admission and time regressors in

Equation (A-9):

Yit =
∑
m

αmCharacteristicmh(i,t)+Xiβ+Ttη+ ζ−h(i,t)+ ζ`(i,t)+ εit . (A-10)

This yields a predicted score Zh for each trainee h, Zh =
∑

m α̂mCharacteristicm
h

, which I normal-

ize to Z̃h = Zh/
√

Var (Zh) with standard deviation 1. Second, I regress daily total spending on this

normalized score:

Yit = αZ̃h(i,t)+Xiβ+Ttη+ ζ−h(i,t)+ ζ`(i,t)+ εit . (A-11)

In addition, I evaluate the predictive power of trainee characteristics more flexibly by allowing

splines of continuous characteristics and two-way interactions between characteristics, while assum-

ing an “approximately sparse” model and using LASSO to select for significant characteristics (e.g.,

Belloni et al., 2014). This approach guards against overfitting in finite data when the number of po-

4In principle, I could include trainee characteristics as mean shifters in the baseline random effects model in Equa-
tion (3). However, since characteristics are generally insignificant predictors of variation, results of (residual) variation
attributable to trainees are unchanged.
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tential characteristics becomes large. In total, excluding collinear characteristics, I consider 36 and

32 direct characteristics for interns and residents, respectively, and 285 and 308 two-way interactions,

as potential regressors in Equation (A-9).

Table 4 shows results for Equation (A-11) and a subset of results for Equation (A-9). Considering

characteristics individually in Equation (A-9), only two characteristics (gender and high USMLE test

score) are statistically significant at the 5% level, and no characteristic approaches the one-standard

deviation benchmark effect in the trainee effect distribution. Likewise, a standard-deviation change

in the overall predictive score has no economically significant effect on spending for either interns or

residents. LASSO selected no intern characteristic as significant and selected only resident gender

as significant. Although it is possible that there are other unmeasured and orthogonal characteristics

that are more relevant for practice variation, this seems a priori unlikely given that these are the

characteristics on which the residency program bases acceptance decisions,5 and that they are also

highly predictive of future career paths and incomes.

Finally, I investigate the distribution of trainee effects as a function of tenure for trainees in dif-

ferent groups. As shown in Figure 6, the distributions of trainee effects throughout training are not

meaningfully different between groups of trainees separated by their test scores, rank list positions,

or future earnings. This finding implies that trainees who differ significantly along meaningful di-

mensions still practice similarly not only on average, but also in terms of variation over time. That is,

trainees evaluated with higher test scores, more desirable rankings, or higher future earnings do not

exhibit lower variation or higher convergence over training.

A-5 Learning by Osmosis: Predictable Learning

Finally, I assess whether trainee practice styles can be predicted by the sequence of observable learn-

ing experiences. This evaluation tests two concepts. First, practice styles may predictably change

if they reflect acquired skill that may grow with greater experience. Second, trainees may absorb

spending patterns from supervising physicians or from a broader practice environment.6

To explore the potential effect of learning from others in greater detail, I estimate supervising

physician “effects” by shrinking their observed fixed effects, and I similarly calculate best linear un-

biased predictions (BLUPs) of senior trainee effects. The standard deviation of shrunken supervising

physician effects is 7.3%, and the standard deviation of the senior trainee BLUPs is 16.6% in terms of

overall spending. I then form measures of prior exposure to spending due to supervising physicians

by averaging spending effects of supervising physicians who have previously worked with a given

trainee, weighted by patient-days, at a given point in time. This exposure measure may or may not be

5Using the same characteristics to predict whether a trainee was ranked in the upper half on the residency program’s rank
list (excluding rank as a characteristic) yields a predictive score that with one standard deviation changes the probability of
being highly ranked by about 20%.

6The related concept of “schools of thought,” in which physicians may have systematically different training experi-
ences, has been proposed as a mechanism for geographic variation (e.g., Phelps and Mooney, 1993). This hypothesis is not
inconsistent with tacit knowledge and in fact relies partly on it, but it does not by itself explain large variation within the
same training program.
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restricted to patient-days on the same ward service (e.g., cardiology, oncology, or general medicine).

Similarly, the measure may be calculated for all prior patient-days or only for patient-days in the last

three months. I also calculate similar measures of exposure to senior trainees for trainees based on

their previous team matches when they were junior.

For a given prior exposure measure, I define trainees with above-median measures in a given

tenure period as having “high exposure” to spending and trainees with below-median measures as hav-

ing “low exposure” to spending. Compared to other trainees with the same tenure, these trainees have

worked with attending physicians or residents trainees (while they were interns) with higher average

spending effects. Table A-5 shows the difference between high-exposure and low-exposure trainees

for various spending-exposure measures at different trainee tenure periods. Differences between high

and low exposure to supervising-physician spending range from 1.9% to 6.7%. Differences between

high and low exposure to senior-trainee spending range from 17.5% to 23.4%.

I then estimate the effect of high exposure to spending over each tenure period of training with a

regression of the form

Yit =
∑
τ:τ<1

ατ1 (τ ( j (i,t),t) = τ) ·HighSpendingExposuremj(i,t),t + (A-12)∑
τ:τ≥1

ατ1 (τ (k (i,t),t) = τ) ·HighSpendingExposuremk(i,t),t +

Xiβ+Ttη+ ζ`(i,t)+ εit,

where, as in Equation (3), j (i,t) is the junior trainee, k (i,t) is the senior trainee, and τ ( j (i,t),t)

and τ (k (i,t),t) are the relevant tenure periods of the junior and senior trainees at t. The variables

HighSpendingExposuremj ,t and HighSpendingExposuremk ,t are indicators for high exposure to spend-

ing under measure m for the junior and senior trainee, respectively. The effect of this exposure can

vary by τ. Figure A-6 shows results for exposure to spending by supervising physicians, and Figure

A-7 shows similar results for exposure to spending by senior trainees. Results among the wide range

of exposure measures are broadly insignificant.

More broadly, I also consider several measures of prior experience—including days on ward

service, patients seen, and supervising physicians for a given trainee prior to a patient encounter—for

either the junior or senior trainee. For each of these experience measures, I estimate a regression of

the form

Yit = αmExperiencemh(i,t),t +Xiβ+Ttη+ ζ−h(i,t)+ ζ`(i,t)+ εit, (A-13)

where Experiencemh,t is an indicator for whether trainee h at time t has experienced a measure (e.g.,

number of days on service, average supervising physician spending effect) above median for the rele-

vant tenure period, where both the measure and the median are calculated using observations prior to

the relevant tenure period. In my baseline specification, I control for the other trainee and supervising

physician identities, although this does not qualitatively affect results. Results are shown in Table

A-6 and are broadly insignificant. A LASSO implementation that jointly considers a larger number

of summary experience measures in early or more recent months relative to the patient encounter, as
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well as two-way interactions between these measures (112 and 288 variables for interns and residents,

respectively), also fails to select any measure as significant.

In addition to trainees in the main residency program, I observe visiting trainees based in a hos-

pital with 20% lower Medicare spending according to the Dartmouth Atlas. I evaluate the effect of

these trainees on teams, as interns and as residents, using Equation (A-9). This effect includes both

differences in selection (i.e., intrinsic heterogeneity) into the different program and in training expe-

riences across the programs. Table 4 shows that visiting trainees do not have significantly different

spending effects, either as interns or as residents.7

Overall, these results indicate that summary measures of trainee experience are poor predictors

of practice and outcomes, especially relative to the large variation across trainees. The results fail to

support “learning by osmosis” as a major source of practice variation, at least within an organization

with ex ante uniform training experiences but nonetheless large practice variation.

A-6 Model of Information Aggregation and Experiential Learning

VI.A Setup

Each decision d can be summarized perfectly by an unknown parameter θd. If θd were known, then

the optimal action would be ad = θd. Each agent has only partial knowledge about the correct action,

in the form of a Bayesian prior about θd. A team decision is made as follows:

1. Each agent h ∈ { j,k} has prior knowledge bearing on the decision; specifically, a Bayesian

prior distribution, θd,h. θd,h is a normal distribution and can be summarized by mean µd,h and

precision ρd,h. One may describe µd,h as the judgment (due to prior knowledge) that agent h

has about d.

2. There may also be external information about d. Some of this knowledge is held by the at-

tending physician, but other sources derive from hospital nurses, consultants, and protocols.

Each agent may also collect information about the decision, which I assume to be independent

of prior knowledge. I consider external information as a public judgment with mean 0 and

precision P∗
d
.

3. The team takes an action and derives utility u = −(θd − ad)
2. As in the standard team-theoretic

environment, there is no conflict of interest between agents.

Proposition A-1. The optimal (Bayesian) action for decision d assigned to trainees j and k is

a∗d =
ρd, j µd, j + ρd,k µd,k

ρd, j + ρd,k +P∗
d

. (A-14)

7This result of course does not rule out that training programs can matter. Doyle et al. (2010) studies the effect of trainee
teams from two different programs and find that trainees from the higher-prestige program spend less. However, this result
does suggest that even when trainees come from significantly different hospitals, differences in their mean practice styles
can be dwarfed by variation within training program.
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This expression aggregates information as a weighted average of judgments in proportion to the

precisions of the respective judgments (DeGroot, 2005). Supervisory information, measured by pre-

cision P∗
d
, reduces the effect of either trainee’s judgment on a∗

d
.

The weights on judgments in the Bayesian action in Equation (A-14),

g∗d,h;−h ≡
ρd,h

ρd,h + ρd,−h +P∗
d

,

have a natural interpretation as the influence of trainee h on the action a∗
d
. The more precise the signal

from her prior knowledge relative to her teammate and any supervisory information, the greater her

influence will be. In the limit, if either her teammate’s knowledge or external information is perfect

(i.e., ρd,−h =∞ or P∗
d
=∞), a trainee would have no influence. On the other hand, if a trainee has

perfect knowledge, then she would have full influence. At the one-year tenure mark, influence discon-

tinuously increases because the precision of a trainee’s teammate ρd,−h discontinuously decreases.

Influence may deviate from the Bayesian benchmark due to other team concerns. Career con-

cerns or the “prestige” of senior titles may underweight the knowledge of junior trainees (Scharfstein

and Stein, 1990; Prendergast, 1993; Ottaviani and Sorensen, 2001), or trainees may be given more

influence than justified by their knowledge if supervisors wish to encourage experiential learning that

requires a stake in decision-making (Lizzeri and Siniscalchi, 2008; Ludmerer, 2014). In estimation, I

allow for actions that deviate from the Bayesian benchark:

âd =
ρ̃d, j µd, j + ρ̃d,k µd,k

ρ̃d, j + ρ̃d,k +Pd
. (A-15)

ρ̃d,h = ρd,h+δ (τh) as an effective “precision” that equals the true precision of h’s knowledge adjusted

by δ (τh), depending on the tenure of h, τh. The influence of trainees with tenure τh relative to

their peers may receive less influence than the Bayesian benchmark if δ (τh) < 0 or more influence if

δ (τh) > 0. Similarly, for external and supervisory information, Pd is an effective “precision”: Even

though supervising physicians and the broader supervisory structure may have access to information

relevant for d with precision P∗
d
, this information may be underweighted (Pd < P∗

d
) or overweighted

(Pd > P∗
d
) in decision-making.

I consider the precision of knowledge as a function of tenure for given class of decisions, c:

ρd,h = ρc(d) (τh (t (d))). I similarly specify external information as depending on the class of decisions:

Pd = Pc(d).8 Effective influence of a trainee with tenure τh working with teammate with tenure τ−h is

gc (τh;τ−h) =
ρ̃c (τh)

ρ̃c (τh)+ ρ̃c (τ−h)+Pc
. (A-16)

Model-predicted practice variation (i.e., standard deviation of trainee effects) for trainees with

8In Appendix Figure A-5, I support for this assumption by showing that both the trainee-related variation and the
residual variation in spending are relatively constant across July, when old interns transition to residents and new interns
begin training.
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tenure τh, working with teammates with tenure τ−h, is then

σc (τh,τ−h) = gc (τh;τ−h)
√
κc/ρc (τh), (A-17)

where κc ∈ [0,1] reflects the similarity of judgments across different decisions in class c within the

same provider. Systematic practice variation across trainees, requires that κc > 0, or that trainees prac-

tice similarly across different decisions. While levels of knowledge, learning, and practice variation

are scaled by κc, ratios comparing different points in training will be unaffected by κc.

VI.B Identification

As trainees learn, the precision of their knowledge, or ρc (τh), increases with tenure. Greater knowl-

edge increases influence, or gc (τh;τ−h), holding teammates and external information fixed, while it

reduces dispersion in judgments, or
√

1/ρc (τh). Thus practice variation may not always decrease

even as trainees learn. In general, the effect of increasing influence on practice variation will tend

to dominate when a trainee’s influence is relatively low, while when a trainee has relatively high in-

fluence, the effect of reducing dispersion in judgments will tend to dominate. In the extreme, agents

who practice independently (i.e., they have full influence over their decisions) will show convergence

in their decisions as they learn.

VI.B.1 Analytical Evaluation

Consider practice variation—or the standard deviation of trainee effects—under Bayesian-benchmark

influence:

σ (τh,τ−h) =
g∗ (τh;τ−h)√

ρ (τh)

=

√
ρ (τh)

ρ (τh)+ ρ (τ−h)+P
, (A-18)

where I assume that κ = 1 in (A-17) without loss of generality.

As a first observation, note that the discontinuity in practice variation is greater across the one-

year tenure mark than it is across the two-year tenure mark.

Proposition A-2. Defineσ (1−) ≡ limτ→1− E−h [σ (τh,τ−h)| τh], andσ (1+) ≡ limτ→1+ E−h [σ (τh,τ−h)| τh];

similarly defineσ (2−) ≡ limτ→2− E−h [σ (τh,τ−h)| τh], andσ (T+) ≡ limτ→2+ E−h [σ (τh,τ−h)| τh]. Then

σ (1+)
σ (1−)

>
σ (2+)
σ (2−)

> 1.

Proof. Assume that interns work with second-year residents in λ proportion of the time and work

with third-year residents in the remaining 1−λ proportion of the time. At the first-year discontinuity,

σ (1+)
σ (1−)

=
ρ (1)+λρ (2)+ (1−λ) ρ (3)+P

ρ (1)+ ρ (0)+P
.
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At the second-year discontinuity,

σ (2+)
σ (2−)

=
ρ (2)+ ρ (1)+P
ρ (2)+ ρ (0)+P

.

Since ρ (·) is increasing in τ, ρ (0) ≤ ρ (1) ≤ ρ (2) ≤ ρ (3), which yields our result. �

Because there is a change in the tenure of the other trainees as new interns arrive at the beginning

of each academic year, there is in principle a discontinuous increase in influence (and therefore prac-

tice variation) at the beginning of each year. However, the increase at τh = 1 is always larger than the

increase at τh = 2 for two reasons, both related to the monotonic increase in precision with tenure:

First, trainees at τh = 1 have less precise subjective priors than those at τh = 2, so any decrease in

the relative tenure of their peer trainee increases their influence by more. Second, the decrease in the

relative tenure of the peer is greater at τh = 1 (from τ−h = 2 to τ−h = 0) than at τh = 2 (from τ−h = 1 to

τ−h = 0). I show below in the numerical examples that, within this framework, this difference in the

discontinuous increases at τh = 1 and at τh = 2 can be quite large, and that the discontinuity at τh = 2
can be quite trivial.

Second, I consider whether practice variation is likely to increase or decrease with tenure. Since

trainees and their teammates gain tenure together, I consider τ−h = τh +∆, where ∆ is fixed in a

continuous portion of practice variation (i.e., not at the one- or two-year discontinuities). Applying

the quotient rule to σ (τh,τ−h) = σ (τh,τh +∆),

σ′ (τh) ≡
∂σ (τh,τh +∆)

δτh

=

1
2 ρ (τh)

−1/2 ρ′ (τh) (ρ (τh)+ ρ (τ−h)+P)− ρ (τ)1/2 (ρ′ (τ)+ ρ′ (τ−h))

(ρ (τ)+ ρ (τ−h)+P)2
.

Focusing on the numerator to determine the sign of σ′ (τ), I arrive at the following necessary and

sufficient condition for convergence (i.e., decreasing practice variation with tenure, or σ′ (τh) < 0):

Proposition A-3. Practice variation decreases if and only if

ρ′ (τh)

ρ′ (τh)+ ρ′ (τ−h)
< 2g∗ (τh;τ−h) . (A-19)

Learning (i.e., ρ′ (τh) > 0) does not guarantee convergence. Instead, convergence requires that the

“share of learning,” defined as ρ′ (τh)/(ρ′ (τh)+ ρ′ (τ−h)), is smaller than twice the influence. Since

this “share” is always less than 1, convergence is guaranteed whenever the trainee has full influence,

or g∗ (τh;τ−h) = 1, as is the case in a single decision-maker. The larger the trainee’s influence, the

more likely convergence will occur. Since influence grows with tenure, this also implies that practice

variation generally increases and then decreases. Special cases may involve practice variation only

increasing or only decreasing, but not decreasing and then increasing with tenure.
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VI.B.2 Numerical Examples

Figure A-8 presents a few numerical examples of variation profiles under various learning profiles

described by functions of the piecewise linear form in Equation (A-20). The three parameters of

interest are ρ0, or initial knowledge; ρ1, or the rate of increase in the precision during the first year

as a junior trainee; and ρ2 = ρ3, or the rate of increase during the subsequent two years as a senior

trainee. The precision of judgments at the end of training is ρ (3) = ρ0 + ρ1 + 2ρ2. I also normalize

P = 1, so that whether precisions of beliefs are greater than the precision of the supervisory prior

simply depends on whether they are greater or less than 1. I consider this normalization as only

relevant for the scale of the variation profile, since any scale keeping the same shape over the overall

variation profile σ (τ) can be implemented by multiplying ρ0, ρ1, ρ2, and P by some constant.

I discuss each panel of Figure A-8 in turn:

• Panel A considers equal ρ0 = ρ1 = ρ2 = 0.2, which are relatively small compared to P = 1. The

result is broadly non-convergence, as greater experience primarily results in greater influence

against a relatively strong supervisory practice environment. The discontinuity in variation is

significantly larger at τ = 1 than at τ = 2. Variation increases in intern year and decreases but

only slightly in the next two years as resident.

• Panel B imposes no resident learning (ρ2 = 0) and presents the limiting case in which discon-

tinuous increases in variation at τ = 1 and τ = 2 are the same. Variation is still at least as big

during the two years as resident as during the year as intern, driven by influence. Variation

seems relatively constant over training.

• Panel C generates a similar variation profile as in Panel B with a non-zero ρ2 by increasing

the ratios of ρ0 and ρ1 to ρ2. The scale of variation is smaller than in Panel B, which reflects

that precision in trainee beliefs are now larger. A rescaled version with smaller precisions (and

smaller P) would reveal larger relative increases in variation at the discontinuities.

• Panel D examines increasing ρ1 relative to ρ0, so that more learning occurs in the first year of

training compared with knowledge possessed before starting training. Influence more obviously

increases in the first year, and increases in variation are sharper at the discontinuities, since

intern experience matters more. Note that working with a resident is equivalent to working

with an end-of-year intern, and increases in variation at τ = 1 and τ = 2 are the same (as in

Panel B).

• Panel E asserts that most of the learning occurs during the role as resident. There is much

greater variation across residents than across interns, and the discontinuous increase in variation

is much larger at τ = 1, while the increase is negligible at τ = 2. There is significant convergence

during the two years as resident.

• Panel F is similar to panel E but shows less convergence during role as resident. The ratio

of learning as intern to learning as resident (ρ1/ρ2) is similar, but learning during training is
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reduced relative to knowledge from prior to training (ρ0) and to supervisory information (P).

VI.C Specification and Estimation

I specify the precision of knowledge as a piecewise-linear function of trainee tenure:

ρc (τ) =


ρ0,c + ρ1,cτ, τ ∈ [0,1] ;

ρ0,c + ρ1,c + ρ2,c (τ−1), τ ∈ [1,2] ;

ρ0,c + ρ1,c + ρ2,c + ρ3,c (τ−2), τ ∈ [2,3],

(A-20)

where ρ0,c represents the precision of knowledge before starting residency, and ρ1,c, ρ2,c, and ρ3,c are

the yearly rate of learning in the first, second, and third years of residency, respectively, for decisions

in class c.

Assuming that knowledge is continuous with tenure, I also identify deviations from efficient in-

fluence that come from a step function with respect to years of training. That is, the “effective” trainee

precision relevant for influence is

ρ̃c (τ) = ρc (τ)+ δ1,c1 (τ ≥ 1)+ δ2,c1 (τ ≥ 2) . (A-21)

δ1,c and δ2,c represent deviations in influence from the efficient benchmark that may result from ti-

tles (e.g., “senior trainee”) that discontinuously change at years of training, bτc.9 Finally, I identify

deviations from the Bayesian benchmark from the fact that P∗c ≥ ρc (τ = 3): At a minimum, external

information must be greater than the knowledge held by a senior trainee, since all supervising physi-

cians have completed training, and since supervisory information includes informational inputs from

outside staff (e.g., nursing, consultants), or any information gathered by the trainees themselves.10

Pc < ρc (3) would strongly imply that trainees are granted more influence than warranted by their

knowledge.

I estimate learning and influence parameters as a two-step process. The first step recovers mo-

ments of practice variation, specifically the standard deviation of the distribution of trainee effects, for

trainees of tenure τh working with teammates of tenure τ−h. These empirical moments, σ̂ (τh,τ−h),

are estimated from the random effects model in Equation (3) and were previously discussed in Section

II. The second step takes these moments of practice variation and, from the model in Section IV.C,

recovers underlying primitives of knowledge and influence using minimum distance estimation.

For each class of decisions c, I estimate model primitives θc =
(
ρ0,c, ρ1,c, ρ2,c, ρ3,c,δ1,c,δ2,c,Pc

)
by minimum distance:

θ̂c = arg min
θc ∈Θ
(σ̂c −σ (θc))

′W (σ̂c −σ (θc)),

9Common title conventions may refer to trainees by their year of training: PGY1, PGY2, and PGY3 use the acronym
“PGY” for “post-graduate year”; R1, R2, and R3 simply use “R” for “resident.”

10While I consider the distribution of this “supervisory” information as having mean 0 in the simple model, this as-
sumption is inconsequential, as it is by definition orthogonal to trainee knowledge. The “judgment” of the supervisory
information can be viewed as captured by all terms other than the trainee effects in the regression Equation (3), including
the error term.
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where σ̂c is the vector of empirical estimates of practice variation corresponding to decisions in class

c from the first step, with elements corresponding to (τh,τ−h) ∈ T ; σ (θc) is the corresponding vector

of model-implied practice variation from Equation (A-17) given θc; and W is a weighting matrix.

Primitives may also be estimated on overall practice variation moments, in which case I omit labels

of c.

Consistent with previous reduced-form estimation, I fit the model on ‖T ‖ = 18 moments of

practice variation: I divide observations with residents in the second year of training into resident

tenure blocks of 60 days, resulting in 6 resident moments and 6 intern moments of practice vari-

ation; I also divide observations with residents in the third year of training into resident tenure

blocks of 120 days, resulting in 3 resident moments and 3 intern moments of practice variation.

If
√

n (σ̂c −σ (θc))
d
→ N (0,Ωc), then the asymtotic variance of θ̂c is given by

Asy. Var θ̂c =
1
n

(
Γ

(
θ0,c

) ′WΓ (
θ0,c

) )−1 (
Γ

(
θ0,c

) ′WΩcWΓ
(
θ0,c

) ) (
Γ

(
θ0,c

) ′WΓ (
θ0,c

) )−1
,

where θ0,c is the true parameter vector, and Γ
(
θ0,c

)
= plim ∂σ

(
θ̂c

)
/∂θ̂c is an 18 × 7 matrix of

analytical derivatives of Equation (A-17) with respect to θc, evaluated at θ̂c. The optimal weighting

matrix is W = Ω̂−1
c , which I obtain from the first-step estimation of practice variation. This yields for

inference

V̂ar θ̂c =
1
n

(
Γ

(
θ̂c

) ′
Ω̂
−1
c Γ

(
θ̂c

))−1
.

I also calculate likelihood ratio tests for the joint-significance of learning and influence parameters

against a restricted model with no learning but potentially inefficient senior influence via “status”

(i.e., only ρ0,c, δ1,c, and Pc are non-zero).

VI.D Results

In Table A-7, Column 1, I show baseline parameter estimates based on practice variation in overall

spending. In Figure A-9, I show the implied path of practice variation according to the model and

estimated parameters, overlaid on reduced-form estimates from Section II. Structural estimates imply

very little knowledge at the beginning of residency (ρ0 = 0.04) compared to learning in the first year

(ρ1 = 0.20). Learning in the second year occurs at a rate 30 times faster than in the first year (ρ2 =

7.5), but appears to cease by the third year (ρ3 = 0). Between junior and senior trainees, influence

approximates the Bayesian benchmark.11 However, I find that the contribution of external information

(P = 3.7) is much lower than the knowledge of a graduating trainee (P ≡ ρ (3) ≈ 7.74). Since external

information includes knowledge of supervising physicians who have completed training, this suggests

that trainees are given much more influence than under the Bayesian benchmark.

11I estimate that δ1 = 0.23. Although this deviation from the Bayesian benchmark for senior trainees is large relative
to knowledge at the end of the first year (ρ0 + ρ1 = 0.24), it is relatively small compared to learning that occurs in the
second year (δ1/ρ2 · 365 days = 11 days worth of second-year learning). I also estimate that δ2 = −1.4, which implies that
third-year trainees have less influence than under the Bayesian benchmark, although this parameter is imprecisely estimated
and small relative to ρ2.
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I also estimate model parameters based on practice variation in spending specific to classes of de-

cisions (Table A-7) and by types of patient-days (Table A-8). Learning is often greatest in the second

year of training, regardless of the set of decisions. Decisions broken into components of diagnostic

testing, prescriptions, blood transfusions, and nursing orders show somewhat less pronounced learn-

ing in the second year, which suggests potential interactions between components that are important

for learning.

Based on likelihood ratio tests comparing the baseline model and more restrictive models, I can

reject a model with no learning (i.e., ρ1 = ρ2 = ρ3 = 0) and only senior prestige (i.e., δ1 > 0) for

overall spending decisions (Column 1 of Table A-7) and for the majority of other outcomes or subsets

of the data (Tables A-7 and A-8). On the other hand, if I allow for learning but impose the Bayesian

benchmark influence between trainees (i.e., δ1 = δ2 = 0), the restricted model (Panel B of Figure A-

10) fits the data quite well and cannot be rejected by the likelihood ratio test. Finally, I can strongly

reject a model with strictly Bayesian influence between trainees and supervisors (i.e., δ1 = δ2 = 0, P ≥

ρ0+ ρ1+ ρ2+ ρ3); the graphical fit of this model (Panel C of Figure A-10) is obviously problematic.

VI.E Counterfactual Analyses

VI.E.1 Model of Learning

In my baseline results, I find that learning is low as a junior trainee in the first year, high as a senior

trainee in the second year, and null in the third year. I interpret the first switch in the rate of learn-

ing—from low learning in the first year to high in the second—as due to the effect of influence on

learning. τ = 1 serves as an intuitive kink point for this switch.

I interpret the second switch in learning—from high learning in the second year to none in the

third—as an indication that trainees have reached “full knowledge,” after which learning stops, due

to the relative benefits and costs of learning. It is not obvious why this kink in the rate of learning

should occur at τ = 2. Thus, the first step in my approach for counterfactual analyses is to specify a

more flexible model of trainee learning, in which this kink point occurs at any τ = τc ∈ (1,3) during

the two years of the senior trainee role. In this model, trainee knowledge takes this form:

ρ (τ) =


ρ0+ ρ1τ, τ ∈ [0,1] ;

ρ0+ ρ1+ ρ2 (τ−1), τ ∈ [1,τc] ;

ρ0+ ρ1+ ρ2 (τc −1)+ ρ3 (τ− τc), τ ∈ [τc,3] .

(A-22)

Estimation of this more flexible model yields similar results to those from the baseline model: ρ̂0 =

0.04, ρ̂1 = 0.20, ρ̂2 = 8.01, ρ̂3 = 0, τ̂c = 1.87, δ̂1 = 0.21, δ̂2 = −1.42, and P̂ = 3.65.

In counterfactual scenarios of learning, I assume that the rate of learning depends on influence, but

that learning continues until full knowledge has been reached. Parameters in Equation (A-22) imply

that full knowledge is ρ = ρ̂0 + ρ̂1 + ρ̂2 (τ̂c −1) ≈ 7.17, which I consider as fixed in counterfactual

scenarios. For the key relationship that drives learning from influence, I assume that the rates of
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learning during training, ρ1 and ρ2, are piecewise linear functions of the average influence of the

trainee during the respective tenure intervals, T1 ≡ [0,1] and T2 ≡ [1,τc].
In notation, first define average influence over tenures uniformly distributed in interval T as

g (T ;θ) ≡ Eτh [g (τh;τ−h)| θ], (A-23)

where influence g (τh;τ−h) is given in Equation (A-16) and depends on θ = (ρ0, ρ1, ρ2, ρ3,δ1,δ2,P).

Consider a counterfactual scenario as defined by key parameters of supervisory information or influ-

ence, and denote the corresponding set of counterfactual parameters as θ∆. Then a counterfactual rate

of learning takes the following form: For t ∈ {1,2},

ρ∆t =


ρ̂1g

(
Tt ;θ∆

)
, g

(
Tt ;θ∆

)
≤ g

(
T1; θ̂

)
,

ρ̂1+
ρ̂2−ρ̂1

g(T2;θ̂)−g(T1;θ̂)

(
g
(
Tt ;θ∆

)
−g

(
T1; θ̂

))
, g

(
Tt ;θ∆

)
> g

(
T1; θ̂

)
.

(A-24)

Under estimated parameters θ̂, the implied rates of learning are similar for g
(
Tt ;θ∆

)
above and below

g
(
T1; θ̂

)
: ρ̂1/g

(
T1; θ̂

)
≈ 13.2, and (ρ̂2− ρ̂1)/

(
g
(
T2; θ̂

)
−g

(
T1; θ̂

))
≈ 14.6.

VI.E.2 Counterfactual Scenarios and Outcomes

I consider counterfactual scenarios defined by counterfactual supervisory information (P∆) or influ-

ence between trainees (δ∆1 and δ∆2 ). A counterfactual scenario implies varying levels of influence

along the entire course of training, as given by Equations (A-16) and (A-21). Influence also depends

on knowledge, as given by Equation (A-22), which in turn depends on learning via influence, as given

by (A-24).

Thus, I must find an internally consistent set of parameters θ∆ that contains P∆. In all counter-

factual scenarios, I hold fixed ρ∆0 = ρ̂0 and ρ∆3 = ρ̂3 = 0. In counterfactual scenarios involving P∆, I

also hold fixed δ̃∆1 ≡ δ
∆
1 /

(
ρ∆0 + ρ

∆
1
)
= δ1/(ρ0+ ρ1), since it is not possible to have δ∆1 −

(
ρ∆1 + ρ

∆
0
)
< 0;

I similarly hold fixed δ̃∆2 ≡ δ
∆
2 /min

(
ρ,ρ∆0 + ρ

∆
1 + ρ

∆
2
)
= δ2/min (ρ,ρ0+ ρ1+ ρ2). Conversely, for coun-

terfactual scenarios involving influence between trainees, I vary δ̃∆1 or δ̃∆2 while holding fixed P∆ = P.

Given these constraints, I identify an internally consistent θ∆ by solving for ρ∆1 and ρ∆2 in the non-

linear system of two equations implied by Equations (A-16), (A-21), (A-22), (A-23), and (A-24), for

t ∈ {1,2}.
For each of the counterfactual scenarios, I consider the following outcomes of learning and

decision-making information:

1. Time for trainees to acquire full knowledge:

τ∆ = 1+
ρ−

(
ρ0+ ρ

∆
1
)

ρ∆2
.

This calculated time summarizes the counterfactual rates of learning, ρ∆1 and ρ∆2 . Since learning

is always incomplete in the first year of training under all counterfactual scenarios (i.e., ρ∆1 < ρ),
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this time is always greater than one year.

2. Average information from trainee knowledge: A trainee can contribute no more information

than her knowledge, but she can contribute less if decision-making departs from the Bayesian

benchmark. In other words, when working with peers of tenure τ−h, trainees of tenure τh

contribute precision equal to

ρ∆ (τh;τ−h) =min
(
1,

g (τh;τ−h)
g∗ (τh;τ−h)

)
ρ∆ (τh) .

Counterfactual knowledge, ρ∆ (τh), is given by Equation (A-22) using the counterfactual pa-

rameters ρ∆1 and ρ∆2 ; ρ̃∆ (τ), as given by Equation (A-21), may differ from ρ∆ (τ) if δ∆1 , 0 or

δ∆2 , 0. For patients uniformly distributed over the course of an academic year, the average

information from trainee teams is then

Q∆ =
∫ 1

0

(
λ
(
ρ∆ (τ;τ+1)+ ρ∆ (τ+1;τ)

)
+ (1−λ)

(
ρ∆ (τ;τ+2)+ ρ∆ (τ+2;τ)

))
dτ,

where λ = 0.7 is the approximate fraction of patients seen by teams with second-year trainees,

and 1− λ is the remaining fraction of patients seen by teams with third-year trainees. The

three terms inside the integral represent levels of information contributed by first-, second-, and

third-year trainees, respectively.

3. Average total information in decision-making: P∆+Q∆, or the sum of supervisory information

and average information from trainee knowledge.

VI.E.3 Discussion of Results

In Figure A-11, I show outcomes under counterfactual scenarios varying P∆ and δ̃∆1 . As expected,

increasing P∆ slows the rate of learning and increases the time for trainees to acquire full knowledge.

There are direct effects of P∆ in decreasing trainee influence as well as indirect effects, as trainees with

less influence acquire less knowledge to contribute to decision-making. Thus, increasing supervisory

information decreases the information from trainee knowledge used in decision-making. The gain in

total decision-making information is reduced by about 40% by this mechanism of diminishing trainee

knowledge. In contrast, there is only limited impact of varying δ̃∆1 on learning and trainee knowledge

over the course of residency, at least in the range of δ̃∆1 ∈ [−1,1]. By decreasing δ̃∆1 , trainees gain more

knowledge when they are junior but less when they are senior. The effect of influence on learning

is slightly steeper for senior trainees, which explains why there are some slight returns to increasing

δ̃∆1 in terms of decreasing years to acquire full knowledge and increasing information from trainee

knowledge in the average team decision.

In Figure A-12, I show outcomes under counterfactual scenarios varying δ̃∆2 . The effects of in-

creasing δ̃∆2 on learning and decision-making information are similar to those of increasing δ̃∆1 : In-

creasing senior influence speeds up training and increases overall trainee knowledge. The effect
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range of counterfactual values of δ∆2 is larger, since the denominator in δ̃∆2 (i.e., ρ∆ (2)) is larger. In-

terestingly, around δ̃∆2 = 0, decreasing δ̃∆2 has a larger effect on Q∆ than does increasing δ̃∆2 , due to the

following intuition: Near baseline parameters, much of the third year involves no learning. Therefore,

increasing the influence of third-year trainees does not aid learning for those trainees, and learning

among junior trainees will suffer. However, learning indirectly increases for second-year trainees who

then work with less knowledgeable junior trainees. Nonetheless, the effects on learning are generally

small relative to those for varying P∆.

A-19



Figure A-1: Patients Age by Housestaff Spending Effect
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A: Distribution by Intern Spending Effect
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B: Distribution by Resident Spending Effect

Note: This figure shows the distribution of the age of patients assigned to interns with above- or below-average
spending effects (Panel A) and residents with above- or below-average spending effects (Panel B). Trainee
spending effects, not conditioning by tenure, are estimated by Equation (A-3) as fixed effects by a regression of
log spending on patient characteristics and physician (intern, resident, and attending) identities. Kolmogorov-
Smirnov statistics testing for the difference in distributions yield p-values of 0.496 and 0.875 for interns (Panel
A) and residents (Panel B), respectively.
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Figure A-2: Demographics-predicted Spending by Trainee Spending Effect
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A: Distribution by Intern Spending Effect
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B: Distribution by Resident Spending Effect

Note: This figure shows the distribution of predicted log costs (based on patient age, race, and gender) for
patients assigned interns with above- or below-average spending effects (Panel A) and residents with above- or
below-average spending effects (Panel B). Trainee spending effects, not conditioning by tenure, are estimated
by Equation (A-3) as fixed effects by a regression of log spending on patient characteristics and physician
(intern, resident, and attending) identities. Kolmogorov-Smirnov statistics testing for the difference in distribu-
tions yield p-values of 0.683 and 0.745 for interns (Panel A) and residents (Panel B), respectively.
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Figure A-3: Attendings Spending Effects by Trainee Spending Effect
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A: Distribution by Intern Spending Effect
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B: Distribution by Resident Spending Effect

Note: This figure shows the distribution of spending fixed effects for attendings assigned to interns with above-
or below-average spending effects (Panel A) and residents with above- or below-average spending effects (Panel
B). Trainee and attending spending effects, not conditioning by tenure, are estimated by Equation (A-3) as fixed
effects by a regression of log spending on patient characteristics and physician (intern, resident, and attending)
identities. Kolmogorov-Smirnov statistics testing for the difference in distributions yield p-values of 0.059 and
0080 for interns (Panel A) and residents (Panel B), respectively.
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Figure A-4: Serial Correlation of Trainee Random Effects
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Note: This figure shows the serial correlation between random effects within trainee between two tenure peri-
ods. Details of the estimation routine are given in Appendix III.B. The random effect model of log daily total
costs is given in Equation (3). The model controls are as stated for Figure 1. Trainees prior to one year in
tenure are junior trainees and become senior trainees after one year in tenure. Numerical values and confidence
intervals are given in Table A-4.
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Figure A-5: Trainee-associated and Residual Variation by Day of Year
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Note: This figure shows the standard deviation of random effects due to junior and senior trainee teams (solid
dots) and the standard deviation of the residual (hollow dots) in 30-day periods by day of the year. Residual
variation can be interpreted as variation due to independent observation. The two vertical gray lines indicate
when new junior trainees begin residency on July 19 and when senior trainees advance a year on July 28 (i.e.,
becoming a new second-year senior trainee, becoming a third-year trainee, or completing residency). The
model is similar to Equation (3), except that a single random effect is modeled for the junior and senior trainee
combination, instead of two additively separable random effects for the respective trainees. Controls are given
in the note for Figure 1.
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Figure A-6: Effect of High Prior Exposure to Spending
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Note: This figure shows the effect of high prior exposure to supervising-physician spending. This exposure
measure is discussed in Section and in Table A-5 and reflects the average spending effects of supervising
physicians that a given trainee was matched to in the past. The tenure-specific effect of having high prior
exposure to spending is estimated as in Equation (A-12). Panel A uses an exposure measure that includes
all prior matches, regardless of service (corresponding to Column 1, Panel A of Table A-5). Panels B and
D use an exposure measure that includes matches within the last three months with supervising physicians
(corresponding to Columns 2 and 4, Panel A of Table A-5). Panels C and D use an exposure measure that is
restricted to prior matches on the same service (corresponding to Columns 3 and 4, Panel A of Table A-5).
The vertical line indicates the one-year mark of training; trainees are junior prior to this and senior after this.
The model controls are as stated for Figure 1. The effect of high prior exposure to senior-trainee spending is
shown in Figure A-7. Point estimates are shown as connected dots; 95% confidence intervals are shown as
dashed lines. Trainees prior to one year in tenure are junior trainees and become senior trainees after one year
in tenure; a vertical line denotes the one-year tenure mark.
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Figure A-7: Effect of High Exposure to Senior-trainee Spending
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Note: This figure shows the effect of high prior exposure to senior-trainee spending. This exposure measure
is discussed in further detail in Appendix A-5 and in Table A-5 and reflects the average spending effects of
senior trainees that a given trainee was matched to in the past as a junior trainee. The tenure-specific effect of
having high prior exposure to spending is estimated as in Equation (A-12). Panel A uses an exposure measure
that includes all prior matches with senior trainees, regardless of the ward service (corresponding to Column 1,
Panel B of Table A-5); Panel B uses an exposure measure that is restricted to prior matches on the same service
(corresponding to Column 3, Panel B of Table A-5). For tenure periods after the one-year mark (shown as the
vertical line), the trainee of interest is senior, and matches with senior trainees all date back to the trainee’s
first year of training as a junior trainee. The model controls are as stated for Figure 1. The effect of high prior
exposure to supervising-physician spending is shown in Figure A-6.
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Figure A-8: Numerical Examples of Variation Profiles
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F: k0 = .1, k1 = .2, k2 = 1

Note: This figure shows variation profiles of the expected standard deviation of trainee effects over tenure,
σ (τ), differing by the underlying profile of learning over tenure. Learning is parameterized as a piecewise
linear function g (τ) that describes how the precision of subjective priors increases over tenure. In particular,
this figure considers piecewise linear functions of the form (A-20), parameterized by ρ0, ρ1, and ρ2 = ρ3. Each
panel considers a different set of parameters of ρ (τ). Given ρ (τ), I calculate the expected standard deviation
of trainee effects over tenure using Equation (A-18). I assume that interns are equally likely to work with
second-year residents and third-year residents. These profiles are discussed further in Appendix VI.B.
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Figure A-9: Model Fit to Practice Variation Profile
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Note: This figure shows practice variation, defined as the standard deviation of random trainee effects specified
in Equation (3), in log daily total costs at each non-overlapping tenure period. Trainee prior to one year in tenure
are junior trainees and become senior trainees after one year in tenure. Reduced-form estimates of practice
variation are shown in dots and are the same as shown in Figure 1. Practice variation implied by the model of
learning and influence, specifically Equation (A-17), is shown as a dashed line. Estimation of parameters of
this model is described in Section IV.C. The Sargan-Hansen over-identification J-test statistic of the model is
J = 8.60, which is less than the 95th percentile value of 19.7 the χ2

18−7 distribution (the p-value corresponding
to J = 8.60 is 0.67)
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Figure A-10: Model Restrictions
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Note: This figure shows the fit of restricted models of learning and influence, with parameters described in
Table A-7. Each panel shows the same reduced-form moments of practice variation for each tenure period,
which are also the same as those shown in Figure A-9, reproduced in Panel D. Panel A restricts the model
to no learning (i.e., ρ1 = ρ2 = ρ3 = 0). Panel B restricts the model to the Bayesian benchmark of influence
between trainees (i.e., δ1 = δ2 = 0). Panel C additionally restricts the model so that supervisors receive as much
influence as warranted by the lower bound of their knowledge (i.e., δ1 = δ2 = 0, P ≥ ρ0 + ρ1 + ρ2 + ρ3). The
likelihood ratio test comparing a no-learning model (Panel A) with the baseline model (Panel D) rejects the
restricted model with a p-value less than 0.01. Likelihood ratio tests for other outcomes or for subsets of the
data are also given in Tables A-7 and A-8. Sargan-Hansen over-identification J-test statistics are 15.66 (p-value
= 0.405 under χ2

18−3 distribution) for Panel A, 13.42 (p-value = 0.416 under χ2
18−5 distribution) for Panel B,

and 65.97 (p-value < 0.01 under χ2
18−4 distribution).
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Figure A-11: Counterfactual Training Time and Team Information
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Note: This figure shows counterfactual results on time for trainees to acquire “full knowledge” and on informa-
tion used in decision-making. I consider two types of counterfactual scenarios: In subpanels in Panel A, I alter
on the x-axes the amount of supervisory information used in decision-making, or P in the model, while holding
fixed the relative influence between junior and senior trainees. In subpanels in Panel B, I alter on the x-axes the
relative influence between junior and senior trainees, or δ1 in the model, while holding fixed the amount of su-
pervisory information. Appendix Figure A-12 shows results for varying δ2 in the model. The time for trainees
to acquire full knowledge (or “years to train”) is measured on the y-axes of the left subpanels, and the informa-
tion used in decision-making is measured on the y-axes of the right subpanels. The right subpanels show both
information from trainee knowledge (dashed lines) and total information (solid lines) used in decision-making.
On each line, I plot a solid dot indicating actual results and a hollow dot indicating counterfactual results under
Bayesian-benchmark influence; supervisory influence in Panel A is a lower bound for the Bayesian benchmark
that equals full trainee knowledge, or P = ρ0 + ρ1 + ρ2 (τc −1). Lines in Panel A are plotted for counterfactual
P∆ ∈

[
0,2P

]
; lines in Panel B are plotted for counterfactual δ∆1 /

(
ρ∆0 + ρ

∆
1
)
∈ [−1,1]. Further details are given in

Appendix VI.E.
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Figure A-12: Counterfactual Results, Varying δ2
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Note: This figure shows results for counterfactual scenarios in which I vary the additional deviation in effective
precision for third-year trainees, or δ2 in the model and shown in the x-axes of both panels. The y-axis of Panel
A plots the time for trainees to acquire “full knowledge” (or “years to train”). The y-axis of Panel B plots
information from trainee knowledge (dashed lines) and total information (solid lines) used in decision-making.
On each line, I plot a solid dot indicating actual results and a hollow dot indicating counterfactual results under
the Bayesian benchmark. Lines are plotted for counterfactual δ∆2 /ρ

∆ (2) ∈ [−1,1]. Further details are given in
Appendix VI.E.
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Table A-5: Differences in Prior Exposure to Spending

Differences Between High and Low Exposure
(1) (2) (3) (4)

All services Within service
Tenure period
(days)

All prior
Prior 3
months

All prior
Prior 3
months

Panel A: Exposure to Spending by Supervising Physicians
0-60 5.31% 5.65% 4.62% 4.84%
61-120 5.16% 5.52% 4.81% 5.03%
121-180 4.64% 5.41% 4.39% 4.87%
181-240 4.47% 5.43% 3.85% 4.41%
241-300 4.06% 5.21% 3.85% 4.41%
301-365 3.81% 4.92% 3.31% 4.28%
366-425 3.54% 5.80% 3.87% 5.41%
426-485 3.70% 6.06% 4.05% 6.04%
486-545 3.30% 5.71% 3.31% 4.83%
546-605 3.15% 5.27% 3.67% 5.47%
606-665 3.34% 6.01% 4.05% 6.26%
666-730 3.39% 5.91% 3.44% 5.24%
731-850 3.53% 4.97% 2.22% 3.78%
851-970 3.52% 5.82% 2.56% 4.05%
971-1095 3.03% 3.91% 1.80% 3.02%

Panel B: Exposure to Spending by Senior Trainees
0-60 19.08% 19.50% 20.82% 20.92%
61-120 19.88% 20.32% 22.89% 23.02%
121-180 19.54% 21.03% 21.51% 23.23%
181-240 19.52% 20.54% 22.12% 23.53%
241-300 19.04% 20.12% 21.95% 23.61%
301-365 17.76% 17.99% 19.88% 20.28%

Note: This table presents differences in average spending effects of supervising physicians (Panel A) and of
senior trainees (Panel B) who worked with trainees in the past at each tenure period for the trainees. Columns 1
and 2 include prior team pairings in all services, while Columns 3 and 4 only include prior team pairings within
the same service. For example, for an observation in the cardiology service, Columns 3 and 4 only include
prior team pairings for a trainee while working in the cardiology service. Columns 2 and 4 further restrict prior
team pairings to those within the last three months. The spending effect of the relevant supervising physician or
senior trainee is the empirical Bayes posterior mean from a random-effects model of log daily overall spending.
Of the set of eligible prior team pairings, the exposure to spending measure is a weighted average (by patient-
day) of the spending effects of the relevant matched physician (i.e., either the supervising physician or the
senior trainee). Trainees in a given tenure period are categorized as having “high exposure” to spending if this
measure is above the median measure for trainees in the same tenure period. The difference in exposure to
spending between high and low exposure is simply the average measure for high-exposure trainees subtracted
by the average measure for low-exposure trainees in a given tenure period.
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Table A-6: Effect of Trainee Experience on Spending

Log daily total costs
(1) (2) (3) (4) (5)

Number of
days

Number of
patients

Number of
attendings

Attending
spending

Attending
spending

Panel A: Interns
Effect of trainee with
measure above median

0.001
(0.004)

0.003
(0.004)

-0.001
(0.004)

-0.010
(0.005)

-0.001
(0.005)

Observations 182,500 182,500 182,500 156,545 131,654
Adjusted R2 0.088 0.088 0.088 0.089 0.089

Panel B: Residents
Effect of trainee with
measure above median

0.005
(0.007)

-0.005
(0.008)

-0.001
(0.007)

0.010
(0.005)

0.013
(0.005)

Observations 200,266 200,266 200,266 182,982 176,086
Adjusted R2 0.089 0.089 0.089 0.086 0.086

Measure and median
within service

Y Y Y N Y

Note: This table reports results for some regressions of the effect of indicators of trainee experience. Panel A
shows results for interns; Panel B shows results for residents. Regressions are of the form in Equation (A-9),
where the coefficient of interest is on an indicator for a group of trainees identified whether their measure (e.g.,
number of days) is above the median within a 60-day tenure interval (across all trainees). The relevant tenure
interval is the tenure interval before the one related to the day of the index admission. All columns except
for (4) represent measures and medians that are calculated within service (e.g., number of days is calculated
separately for a trainee within cardiology, oncology, and general medicine and compared to medians similarly
calculated within service). Columns 4 and 5 feature a measure of attending spending, which is the average
cumulative effect of attending physicians who worked with the trainee of interest up to the last prior tenure
interval. Attending “effects” are calculated by a random effects method that adjusts for finite-sample bias;
since patients are not as good as randomly assigned to attending physicians, these effects do not have a strict
causal interpretation at the level of the attending physician. Other specifications (e.g., calculating all measures
across services, or not conditioning on trainee identity) were similarly estimated as insignificant and omitted
from this table for brevity. All models control for patient and admission characteristics, time dummies, and
fixed effects for attending and the other trainees on the team (e.g., the resident is controlled for if the group is
specific to the intern). Standard errors are clustered by admission.

A-37



Ta
bl

e
A

-7
:M

od
el

Pa
ra

m
et

er
E

st
im

at
es

fo
rO

ve
ra

ll
Sp

en
di

ng
an

d
by

Sp
en

di
ng

C
at

eg
or

y

Sp
en

di
ng

C
at

eg
or

y
(1

)
(2

)
(3

)
(4

)
(5

)
O

ve
ra

ll
D

ia
gn

os
tic

Tr
an

sf
us

io
n

M
ed

ic
at

io
n

N
ur

si
ng

K
no

w
le

dg
e

pa
ra

m
et

er
s

Pr
io

rt
o

tr
ai

ni
ng

(ρ
0)

0.
03

9
(0

.0
32

)
0.

93
6

(0
.2

35
)

0.
22

5
(0

.3
41

)
1.

00
5

(0
.0

43
)

0.
00

0
(0

.0
00

)

Fi
rs

ty
ea

r(
ρ

1)
0.

20
4

(0
.1

38
)

0.
29

6
(0

.3
32

)
0.

36
1

(0
.3

39
)

4.
17

2
(0

.6
54

)

Se
co

nd
ye

ar
(ρ

2)
7.

54
2

(2
.3

07
)

0.
26

3
(0

.1
40

)
0.

24
5

(0
.3

43
)

15
.3

57
(2

.5
56

)

T
hi

rd
ye

ar
(ρ

3)
0.

00
0

(0
.0

00
)

0.
00

0
(0

.0
00

)
4.

50
1

(4
.3

44
)

In
flu

en
ce

pa
ra

m
et

er
s

D
ev

ia
tio

n
af

te
rfi

rs
ty

ea
r(
δ 1

)
0.

23
1

(0
.2

23
)

4.
38

8
(0

.4
33

)
0.

34
9

(0
.4

39
)

0.
72

5
(0

.0
53

)
−

2.
78

4
(0

.5
33

)

D
ev

ia
tio

n
af

te
rs

ec
on

d
ye

ar
(δ

2)
−

1.
36

6
(0

.8
00

)
−

0.
68

2
(0

.5
63

)
−

10
.2

84
(2

.1
75

)

Su
pe

rv
is

or
y

in
fo

rm
at

io
n

(P
)

3.
67

8
(0

.5
03

)
0.

00
0

(0
.0

00
)

0.
94

1
(0

.1
50

)
3.

75
5

(0
.1

81
)

4.
32

6
(0

.4
27

)
L

ik
el

ih
oo

d
ra

tio
te

st
p-

va
lu

e
0.

00
3

0.
00

9
0.

00
1

N
/A

0.
02

2

N
ot

e:
T

hi
s

ta
bl

e
sh

ow
s

pa
ra

m
et

er
es

tim
at

es
of

th
e

m
od

el
of

le
ar

ni
ng

an
d

in
flu

en
ce

de
sc

ri
be

d
in

Se
ct

io
n

IV
.C

an
d

sp
ec

ifi
ed

in
Se

ct
io

n
IV

.C
.

Pa
ra

m
et

er
s

ar
e

es
tim

at
ed

fr
om

re
du

ce
d-

fo
rm

pr
ac

tic
e

va
ri

at
io

n
m

om
en

ts
,

as
sh

ow
n

in
Fi

gu
re

1
ov

er
al

l
(C

ol
um

n
1)

an
d

Fi
gu

re
3

fo
r

ea
ch

sp
en

di
ng

ca
te

go
ry

(t
he

re
m

ai
ni

ng
co

lu
m

ns
).

K
no

w
le

dg
e

pa
ra

m
et

er
s

re
pr

es
en

tu
ni

ts
of

pr
ec

is
io

n
as

fu
nc

tio
n

of
te

nu
re

,a
s

in
E

qu
at

io
n

(A
-2

0)
:
ρ

0
is

pr
ec

is
io

n
of

kn
ow

le
dg

e
pr

io
r

to
tr

ai
ni

ng
;
ρ

1,
ρ

2,
an

d
ρ

3
ar

e
in

cr
ea

se
s

in
pr

ec
is

io
n

(l
ea

rn
in

g)
in

th
e

fir
st

,
se

co
nd

,
an

d
th

ir
d

ye
ar

s,
re

sp
ec

tiv
el

y.
In

flu
en

ce
pa

ra
m

et
er

s
δ 1

an
d
δ 2

ar
e

de
vi

at
io

ns
fr

om
th

e
B

ay
es

ia
n

be
nc

hm
ar

k
be

nc
hm

ar
k

in
te

rm
s

of
ef

fe
ct

iv
e

pr
ec

is
io

n
as

a
fu

nc
tio

n
of

co
m

pl
et

ed
ye

ar
s

of
tr

ai
ni

ng
,a

s
gi

ve
n

in
E

qu
at

io
n

(A
-2

1)
.

Sp
ec

ifi
ca

lly
,a

tr
ai

ne
e

w
ho

ha
s

co
m

pl
et

ed
on

e
ye

ar
of

tr
ai

ni
ng

re
ce

iv
es

in
flu

en
ce

th
at

is
δ 1

m
or

e
(i

f
po

si
tiv

e)
or

le
ss

(i
f

ne
ga

tiv
e)

un
its

of
ef

fe
ct

iv
e

pr
ec

is
io

n
th

an
th

e
ef

fic
ie

nt
be

nc
hm

ar
k

w
ou

ld
im

pl
y.

Si
m

ila
rl

y,
a

tr
ai

ne
e

w
ho

ha
s

co
m

pl
et

ed
tw

o
ye

ar
s

of
tr

ai
ni

ng
re

ce
iv

es
an

ad
di

tio
na

ld
ev

ia
tio

n
of
δ 2

re
la

tiv
e

to
th

e
ef

fic
ie

nt
be

nc
hm

ar
k.

P
is

th
e

ef
fe

ct
iv

e
pr

ec
is

io
n

of
su

pe
rv

is
or

y
in

fo
rm

at
io

n,
in

cl
ud

in
g

kn
ow

le
dg

e
fr

om
su

pe
rv

is
or

s,
co

ns
ul

ta
nt

s,
ru

le
s,

or
in

fo
rm

at
io

n
pr

od
uc

ed
by

th
e

tr
ai

ne
es

.C
el

ls
w

ith
m

is
si

ng
va

lu
es

in
di

ca
te

th
at

th
e

m
od

el
w

as
es

tim
at

ed
w

ith
th

es
e

va
lu

es
co

ns
tr

ai
ne

d
to

0,
as

le
ss

-c
on

st
ra

in
ed

m
od

el
s

di
d

no
tc

on
ve

rg
e.

T
he

lik
el

ih
oo

d
ra

tio
te

st
p-

va
lu

e
co

m
pa

re
s

th
e

es
tim

at
ed

m
od

el
ag

ai
ns

ta
re

st
ri

ct
ed

m
od

el
of

no
le

ar
ni

ng
(i

.e
.,

on
ly
ρ

0,
δ 1

,a
nd

P
ar

e
no

n-
ze

ro
).

N
ot

e
th

at
th

is
te

st
is

no
tr

el
ev

an
tf

or
th

e
m

ed
ic

at
io

n
m

od
el

,a
s

th
e

es
tim

at
ed

m
od

el
is

in
fa

ct
a

no
-l

ea
rn

in
g

m
od

el
.S

ta
nd

ar
d

er
ro

rs
ar

e
di

sp
la

ye
d

in
pa

re
nt

he
se

s.

A-38



Table A-8: Model Parameter Estimates by Day of Stay and Patient Severity

Day of Stay Patient Severity
(1) (2) (3) (4)

Early Late
High

Severity
Low

Severity

Knowledge parameters

Prior to training (ρ0)
0.076

(0.056)
0.006

(0.000)
0.091

(0.078)
0.060

(0.059)

First year (ρ1)
0.346

(0.223)
0.294

(0.087)
0.371

(0.299)
0.207

(0.253)

Second year (ρ2)
6.681

(2.528)
6.655

(1.414)
6.242

(2.719)
7.644

(3.572)

Third year (ρ3)
0.000

(0.000)
0.845

(0.007)
0.000

(0.000)
0.000

(2.000)
Influence parameters

Deviation after first year (δ1)
0.271

(0.288)
0.192

(0.198)
0.294

(0.315)
0.204

(0.300)

Deviation after second year (δ2)
−0.912
(0.719)

−1.554
(0.082)

−1.347
(0.780)

−0.367
(1.597)

Supervisory information (P)
3.850

(0.545)
3.495

(0.419)
3.725

(0.608)
3.759

(0.622)
Likelihood ratio test p-value 0.151 0.000 0.020 0.182

Note: This table shows parameter estimates of the model of learning and influence described in Section IV.C.
Columns correspond to models estimated on observations by patient-day: Columns 1 and 2 are for days re-
spectively before or after the middle of each patient’s stay; Columns 3 and 4 are for patients with above- or
below-median expected 30-day mortality, respectively. Parameters are as described in the note for Table A-7
and are estimated from reduced-form practice variation moments, as shown in Figure 4 for type of patient-day.
The likelihood ratio test p-value compares the estimated model against a restricted model of no learning (i.e.,
only ρ0, δ1, and P are non-zero). Standard errors are displayed in parentheses.
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