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A-1 Random Assignment

This appendix presents two sets of randomization tests for quasi-random assignment, complementing
evidence in Table 1. Section I.A presents results regarding the assignment of patients to trainees.

Section I.B presents the assignment of trainees to supervising physicians.

I.A Assignment of Patients to Trainees
First, I test for the joint significance of trainee identities in regressions of this form:

Xa =Tyl + sty + gy + i + tta) +Eas (A-1)
where a is a patient admission and X, is some patient characteristic or linear combination of patient
characteristics for the patient in admission a, described in Section I.C. 7 (a) refers to the day of admis-
sion, s (a) is the service of admission, j (a) is the junior trainee, k () is the senior trainee, and € (a) is
the supervising physician. T, is a set of time categories for the admission day, including the day of
the week and the month-year interaction; y is a fixed effect that corresponds to the admitting service
s (e.g., “heart failure service” or “oncology service”). §iT<T, {J.T>T, and (; are fixed effects for the
intern i, resident j, and attending k, respectively. I do not impose any relationship between the fixed

effect of a trainee as an intern and the fixed effect of the same trainee as a resident. I then test for the
T>T)

k jeT keK )

In Column 1 of Table A-1, I show F-statistics and the corresponding p-values for the null hypoth-

joint significance of the fixed effects (§].T<T,

esis that ({J.KT,{,: >T)j€j’k€7< = 0. I perform the regression (A-1) separately each of the following
patient characteristics X, as a dependent variable: patient age, a dummy for male gender, and a
dummy for white race.! I also perform (A-1) using as dependent variables the linear prediction of
log admission total spending based on patient age, race, and gender. I fail to find joint statistical
significance for any of these tests.

Second, I test for the significance of trainee characteristics in regressions of this form:

Xa =Tyayn + tsa) * Y1 Zja) + Y2 Zk(a) + {t(a) + Ea- (A-2)

Equation (A-2) is similar to Equation (A-1), except for the use of a vector of trainee characteristics
Zj(a) and Zy () for the junior and senior trainee, respectively, on day of admission to test whether cer-
tain types of residents are more likely to be assigned certain types of patients. Trainee characteristics
include the following: position on the rank list; USMLE Step 1 score; sex; age at the start of training;
and dummies for foreign medical school, rare medical school, AOA honor society membership, PhD
or another graduate degree, and racial minority.

Columns 2 and 3 of Table A-1 show F-statistics and the corresponding p-values for the null

hypothesis that (y,y2) = 0. Column 2 includes all trainee characteristics in Zy; column 3 excludes

11 do not test for balance in patient diagnoses, because these are discovered and coded by physicians potentially endoge-
nous. Including or excluding them in the baseline specification of Equation (3) does not qualitatively affect results.
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position on the rank list, since this information is missing for a sizable proportion of trainees. Patient
characteristics for dependent variables in (A-2) are the same as in (A-1). Again, I fail to find joint
significance for any of these tests.

Third, I compare the distributions of patient age and of predicted total costs across patients ad-
mitted to interns and residents with high or low spending. I consider trainee spending effects that are
fixed within junior or senior role using this regression:

Y, = Xaﬁ + Tl(a)n + ]T(Z{ + é/]:(jg + {f(a) +&as (A'3)

where Y, is log total spending for admission a, and other variables are defined similarly as in Equation
(A-1). Figure A-1 shows kernel density plots of the age distributions for patients assigned to interns
and residents, respectively, each of which compare trainees with practice styles above and below
the mean. Figure A-2 plots the distribution of predicted spending for patients assigned to trainees
with above- or below-mean spending practice styles. There is essentially no difference across the
distribution of age or predicted spending for patients assigned to trainees with high or low spending
practice styles. Kolmogorov-Smirnov statistics cannot reject the null that the underlying distributions

are different.

I.LB Assignment of Trainees to Other Providers

To test whether certain types of trainees are more likely to be assigned to certain types of other trainees
and attending physicians, I perform the following regression to examine the correlation between two

trainees and between a trainee and the supervising physician assigned to the same patient:

Z;:(m =Yh f_lﬁ(rm + W&(a) +&q, (A-4)

where r = 1(7 > T) is an indicator for whether the fixed effect for trainee & was calculated while &
was a junior trainee (» = 0) or a senior trainee (» = 1). As in Equation (A-1), I assume no relationship
Pr<T
between ¢
where error terms are clustered at the level of the intern-resident-attending team, since there are

and f; >T Each observation in Equation (A-4) corresponds to an admission a, but

multiple observations for a given team. ¢ is the estimated fixed effect for attending k.> Estimates for
v, and vy, are small, insignificant, and even slightly negative.

Second, I perform a similar exercise as in the previous subsection, in which I plot the distribution
of estimated attending fixed effects working with trainees with above- or below-mean spending prac-
tice styles. In Figure A-3, the practice-style distribution for attendings is similar for those assigned
to high- versus low-spending trainees. As for distributions of patient characteristics in Appendix L.A,

differences in the distributions are not qualitatively significant, and Kolmogorov-Smirnov statistics

2 use two approaches to get around the reflection problem due to the first-stage joint estimation of g“](.), g“kl, and
(Manski, 1993). First, I perform (A-4) using “jack-knife” estimates of fixed effects, in which I exclude observations with
—h and ¢ to compute the &, estimate that I use with £ _lﬁr and £. Second, I use the approach by Mas and Moretti (2009),
in which I include nuisance parameters in the first stage to absorb team fixed effects for (j,k,¢).
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cannot reject the null that these distributions are different, at least when clustering at the level of the

intern-resident-attending team.

A-2 Random-Effects vs. Fixed-Effects Identification

The fixed-effects estimation approach (e.g., Abowd et al., 1999; Card et al., 2013) relies on a version
of Assumption 1 that is only slightly weaker:

Assumption 2 (Quasi-Random Team Assignment within Connected Sets (Abowd et al., 1999)).
Potential team decisions are independent of team assignments, conditional on clinical service s (i,t),

indicators of time t, and connected sets g (i,t):

{Yit (j’k)}(j,k)ejtxfl(it A (DijteDikt)|s(i’t)9t’g(iat)'

As discussed in Abowd et al. (2008), a “connected set” g comprises cases (i,¢) such that j (i,t) € J8
or k(i,t) € K8. g8 includes any junior trainee who has worked with a senior trainee in K¢, and
K¢ includes any senior trainee who has worked with a junior trainee in J8. Any pair of trainees
(j,k) € I8 x K8, whose observations are in the same connected set, can be “connected” via a chain
of trainees that have worked together.

Assumption 1 implies Assumption 2, and if J8%? > §;; and K& D K;,, then Assumption 1 is
equivalent to Assumption 2. Fixed-effects estimation, under Assumption 2, comes with the cost that
the effects of trainees in different connected sets are not comparable: For each g, one junior-trainee
effect and one senior-trainee effect need to be dropped from estimation to satisfy the rank condi-
tion. Stated differently, to identify any trainee effects, the fixed-effects framework requires trainee
“movers,” who work with more than one teammate. While our setting involves and exploits such
movers, this requirement is not strictly necessary in the random-effects approach, under Assumption
1. The sense in which Assumption 2 is weaker than Assumption 1 mostly results from the rank condi-
tion and not a necessarily substantive difference in the quasi-experimental design. In finite samples, if
we observed fewer cases for the same set of trainees, the sets J8%?) and K3") could contain fewer

elements, even though J;; and K;; would be unchanged.

A-3 Statistical Model of Trainee Effects

III.A Patient Admission Random Effects

We may augment Equation (4) to allow for patient admission random effects, since the same patient

may stay for more than one day and be exposed to different trainees:

7T

Vi = &7 +E07) Hviten (A-5)



where v; is a random effect for the patient admission.? Under Assumption 1, f;j ’Tk, fl:k o ,and v; are

uncorrelated with one another.

Let N; be the number of patient admissions in sample %’ (Tj,Tk). Then in Equation (5), D is an
N X (Nj+ Nk + Ny) selection matrix for junior trainees, senior trainees, and patient admissions. u is
an (N + Nk + Ny) x 1 stacked vector of junior trainee, senior trainee, and patient admission random

effects. We can then restate the variance-covariance matrix of u as

o2 (Tj;Tk)INJ 0 0
Varu=G = 0 o2 (i 77) Inge 0
0 0 o2y,

The log likelihood function in Equation (6) remains the same, with V = DGD’ + crglN. I maxi-
mize this log likelihood with respect to 2 (7;7%), 02 (k3 7j), 02, and o2. Estimates of o2 (1;;7¢)
and o2 (k;7;) in this augmented model are qualitatively unchanged relative to the baseline imple-

mentation in Section II.D.

III.B Correlation of Trainee Effects

I augment models in (4) and (A-5) to estimate the correlation between trainee effects in two separate
tenure periods, 71 and 1, which I denote by p(11,72). Although I observe each trainee across her
entire training, I only observe a subset of these trainees in each period. The number of trainees
observed in both tenure periods in the pair (71,72) is even smaller. Because trainees that I do not
observe in both 71 and 7, do not contribute to the estimate of p(71,72), I include in the estimation
sample only observations associated with a trainee observed in both tenure periods. I also redefine
tenure periods to be 120 days in order to enlarge the sample of trainees whom I observe in both
periods in a tenure-period pair.

Specifically, in place of Equation (4), I consider
Yil‘ = f;l-(i,t) + f—h(i,t) + Eir, (A_6)

where T € {7],72} may be one of two tenure periods in a pair.. This specifies that effects of trainees
in the tenure periods of interest (7; and 1,) may be drawn from two separate distributions depending
on the tenure period 7, or 7, corresponding to observation ¢; I pool the effects of the teammates into a
single distribution that does not depend on tenure. Because I focus on the correlation between trainee
effects, I am unconcerned about the scale of practice variation and I thus do not specify the tenure of
the teammate. The analog for Equation (A-5) is

Y = 'f;:(i,,) +&n(in tVitEir (A-T)

3This specification requires the use of sparse matrices for estimation. In specifications without the use of sparse matrices,
I nest this effect within interns, i.e., [ include v,; as an intern-admission effect. While it is easier to estimate a specification
with v;, I will describe this specification for ease of explication. In practice, results are materially unaffected by whether
I use v, or vg;, or in fact whether I include an admission-related effect at all.
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I estimate (A-6) or (A-7) in a sample of observations, which I define as follows: % (71,72) =
{G,t,h): he {j(i,t),k@i,t)},7(ht) € {T1,72}}. I require that, for every trainee 4 in € (11,72), there are
observations in the sample in which she has tenure 7| and other observations in the sample in which
she has tenure 7. Otherwise, we cannot use trainee & to estimate the correlation in trainee effects
between these two periods.

As above, I can represent both Equation (A-6) and Equation (A-7) in matrix form, as Equation
(5). Denote the number of trainees & in % (71,7) as Ng. Denote the number of teammates trainees
interacted with their tenure periods as Ng. The selection matrix Z is of size N X (2NH + NI;), since
it now maps observations onto one of two random effects, depending on whether 7 = 71 or T = 1, for
each trainee & observed in both 7; and 1, tenure periods. The stacked vector of random effects u is

similarly of size (2N, + Ny ) x 1. The variance-covariance matrix of u is

Varu=G =

Gy 0
0 O';,IN;I ’

where Gy is a 2Ny X 2Ny block-diagonal matrix of the form

A 0 0
0 A :
Gun=| , (A-8)
. t. O
0 0 A

with each block being the 2 X 2 variance-covariance matrix A of random effects within trainee and

across tenure periods:

Var g’T‘I ] = A, for all h, where
&’
_ o (11) p(t,n)o ()0 (12)
p(r1,12) o (1)) 0o (12) (1))

Representing (A-7) as (5) is a similar exercise. The selection matrix Z is of size N X (2N H+Ng+N, 1),

and the vector of random effects u is of size (2N H+Ng+N, 1) X 1. The variance-covariance matrix of

uis
Gy 0 0
Varu=G=| 0 o-é_INI—i 0 ,
0 0 o2ly,

where G is the same as in Equation (A-8). The log likelihood is the same as in Equation (6), but
using revised definitions of G that allow for covariance between random effects of the same trainees
across tenure periods. The correlation parameter of interest p(71,72) is constrained to be between —1
and 1.
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A-4 Intrinsic Heterogeneity: Trainee Characteristics

The key alternative explanation for persistent variation that I explore in this section is that physicians
may intrinsically differ for reasons unrelated to knowledge and learning, such as preferences or ability
(e.g., Doyle et al., 2010; Fox and Smeets, 2011; Bartel et al., 2014). To assess the possibility of
intrinsic heterogeneity, I first exploit detailed trainee characteristics that should be highly correlated
with preferences and ability. For example, USMLE scores measure medical knowledge as a medical
student; position on the residency rank lists reflects overall desirability; and specialty tracks, mostly
predetermined relative to the beginning of residency, reflect important career decisions and lifestyle
preferences, such as a decision to become a radiologist rather than a primary care physician. To
capture the variety of future career paths across internal medicine trainees, I impute future yearly
incomes after specialty training based on the final specialty choices of trainees. As cited in Section
I.C, trainees with above-median future incomes will earn substantially more than their peers with
below-median future incomes.

I assess the relationship between each of these characteristics and daily spending totals for either

the junior or senior trainee:
Y, = amCharacteristic,’:“(i’t) +XiB+Tn+nin) + Lot + Eaijkes (A-9)

where Characteristic;" is an indicator for whether the junior (or senior) trainee / has the characteristic
m, {_j, 1s a fixed effect for the other senior (or junior) trainee —h, and ¢ is a fixed effect for attending
£.* The coefficient of interest, a,,, quantifies the predictive effect of a trainee with characteristic 7 on
patient spending decisions. I also evaluate the combined predictive effect of trainee characteristics in
two steps. First, I regress outcomes on all direct trainee characteristics, with continuous characteristics
like position on rank list entered linearly, along with the other admission and time regressors in
Equation (A-9):

Y = Z amCharacteristic%’t) +X;B+Tin+niin+ e+ &ir- (A-10)
m

This yields a predicted score Zj, for each trainee h, Z = Zm&mCharacteristichm, which I normal-
ize to Zj, = Z;,/+/Var(Z;,) with standard deviation 1. Second, I regress daily total spending on this
normalized score:

Yir = @Zygry + XiB+Tem+ Longiny + Leir) + S (A-11)

In addition, I evaluate the predictive power of trainee characteristics more flexibly by allowing
splines of continuous characteristics and two-way interactions between characteristics, while assum-
ing an “approximately sparse” model and using LASSO to select for significant characteristics (e.g.,

Belloni et al., 2014). This approach guards against overfitting in finite data when the number of po-

4In principle, I could include trainee characteristics as mean shifters in the baseline random effects model in Equa-
tion (3). However, since characteristics are generally insignificant predictors of variation, results of (residual) variation
attributable to trainees are unchanged.
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tential characteristics becomes large. In total, excluding collinear characteristics, I consider 36 and
32 direct characteristics for interns and residents, respectively, and 285 and 308 two-way interactions,
as potential regressors in Equation (A-9).

Table 4 shows results for Equation (A-11) and a subset of results for Equation (A-9). Considering
characteristics individually in Equation (A-9), only two characteristics (gender and high USMLE test
score) are statistically significant at the 5% level, and no characteristic approaches the one-standard
deviation benchmark effect in the trainee effect distribution. Likewise, a standard-deviation change
in the overall predictive score has no economically significant effect on spending for either interns or
residents. LASSO selected no intern characteristic as significant and selected only resident gender
as significant. Although it is possible that there are other unmeasured and orthogonal characteristics
that are more relevant for practice variation, this seems a priori unlikely given that these are the
characteristics on which the residency program bases acceptance decisions,” and that they are also
highly predictive of future career paths and incomes.

Finally, I investigate the distribution of trainee effects as a function of tenure for trainees in dif-
ferent groups. As shown in Figure 6, the distributions of trainee effects throughout training are not
meaningfully different between groups of trainees separated by their test scores, rank list positions,
or future earnings. This finding implies that trainees who differ significantly along meaningful di-
mensions still practice similarly not only on average, but also in terms of variation over time. That is,
trainees evaluated with higher test scores, more desirable rankings, or higher future earnings do not

exhibit lower variation or higher convergence over training.

A-5 Learning by Osmosis: Predictable Learning

Finally, I assess whether trainee practice styles can be predicted by the sequence of observable learn-
ing experiences. This evaluation tests two concepts. First, practice styles may predictably change
if they reflect acquired skill that may grow with greater experience. Second, trainees may absorb
spending patterns from supervising physicians or from a broader practice environment.®

To explore the potential effect of learning from others in greater detail, I estimate supervising
physician “effects” by shrinking their observed fixed effects, and I similarly calculate best linear un-
biased predictions (BLUPs) of senior trainee effects. The standard deviation of shrunken supervising
physician effects is 7.3%, and the standard deviation of the senior trainee BLUPSs is 16.6% in terms of
overall spending. I then form measures of prior exposure to spending due to supervising physicians
by averaging spending effects of supervising physicians who have previously worked with a given

trainee, weighted by patient-days, at a given point in time. This exposure measure may or may not be

SUsing the same characteristics to predict whether a trainee was ranked in the upper half on the residency program’s rank
list (excluding rank as a characteristic) yields a predictive score that with one standard deviation changes the probability of
being highly ranked by about 20%.

5The related concept of “schools of thought.” in which physicians may have systematically different training experi-
ences, has been proposed as a mechanism for geographic variation (e.g., Phelps and Mooney, 1993). This hypothesis is not
inconsistent with tacit knowledge and in fact relies partly on it, but it does not by itself explain large variation within the
same training program.
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restricted to patient-days on the same ward service (e.g., cardiology, oncology, or general medicine).
Similarly, the measure may be calculated for all prior patient-days or only for patient-days in the last
three months. I also calculate similar measures of exposure to senior trainees for trainees based on
their previous team matches when they were junior.

For a given prior exposure measure, I define trainees with above-median measures in a given
tenure period as having “high exposure” to spending and trainees with below-median measures as hav-
ing “low exposure” to spending. Compared to other trainees with the same tenure, these trainees have
worked with attending physicians or residents trainees (while they were interns) with higher average
spending effects. Table A-5 shows the difference between high-exposure and low-exposure trainees
for various spending-exposure measures at different trainee tenure periods. Differences between high
and low exposure to supervising-physician spending range from 1.9% to 6.7%. Differences between
high and low exposure to senior-trainee spending range from 17.5% to 23.4%.

I then estimate the effect of high exposure to spending over each tenure period of training with a

regression of the form

Y, = Z a:1(t(j(i,0),t)=71)" HighSpendingExposure;'(‘i nat (A-12)
Tr<]
Z ar1(t(k(i,t),t)=1)" HighSpendingExposurekm(l. e T
T2l

XiB+ T+ e + €irs

where, as in Equation (3), j(i,¢) is the junior trainee, k(i,¢) is the senior trainee, and 7 (j (i,?),t)
and 7 (k(i,t),t) are the relevant tenure periods of the junior and senior trainees at r. The variables
HighSpendingExposure}ff and HighSpendingExposurekm, , are indicators for high exposure to spend-
ing under measure m for the junior and senior trainee, respectively. The effect of this exposure can
vary by 7. Figure A-6 shows results for exposure to spending by supervising physicians, and Figure
A-7 shows similar results for exposure to spending by senior trainees. Results among the wide range
of exposure measures are broadly insignificant.

More broadly, I also consider several measures of prior experience—including days on ward
service, patients seen, and supervising physicians for a given trainee prior to a patient encounter—for
either the junior or senior trainee. For each of these experience measures, I estimate a regression of
the form

Y, = amExperienceZ’(i’t)’t +XiB+ T+ piin + e + Eirs (A-13)

where Experiencer . 18 an indicator for whether trainee & at time ¢ has experienced a measure (e.g.,
number of days on service, average supervising physician spending effect) above median for the rele-
vant tenure period, where both the measure and the median are calculated using observations prior to
the relevant tenure period. In my baseline specification, I control for the other trainee and supervising
physician identities, although this does not qualitatively affect results. Results are shown in Table
A-6 and are broadly insignificant. A LASSO implementation that jointly considers a larger number

of summary experience measures in early or more recent months relative to the patient encounter, as
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well as two-way interactions between these measures (112 and 288 variables for interns and residents,
respectively), also fails to select any measure as significant.

In addition to trainees in the main residency program, I observe visiting trainees based in a hos-
pital with 20% lower Medicare spending according to the Dartmouth Atlas. I evaluate the effect of
these trainees on teams, as interns and as residents, using Equation (A-9). This effect includes both
differences in selection (i.e., intrinsic heterogeneity) into the different program and in training expe-
riences across the programs. Table 4 shows that visiting trainees do not have significantly different
spending effects, either as interns or as residents.’

Overall, these results indicate that summary measures of trainee experience are poor predictors
of practice and outcomes, especially relative to the large variation across trainees. The results fail to
support “learning by osmosis” as a major source of practice variation, at least within an organization

with ex ante uniform training experiences but nonetheless large practice variation.

A-6 Model of Information Aggregation and Experiential Learning

VILA Setup

Each decision d can be summarized perfectly by an unknown parameter 6. If 6; were known, then
the optimal action would be a4 = 6. Each agent has only partial knowledge about the correct action,

in the form of a Bayesian prior about 8. A team decision is made as follows:

1. Each agent i € {j,k} has prior knowledge bearing on the decision; specifically, a Bayesian
prior distribution, 84 . 64 5, is a normal distribution and can be summarized by mean y  , and
precision pg . One may describe g, as the judgment (due to prior knowledge) that agent &
has about d.

2. There may also be external information about d. Some of this knowledge is held by the at-
tending physician, but other sources derive from hospital nurses, consultants, and protocols.
Each agent may also collect information about the decision, which I assume to be independent
of prior knowledge. I consider external information as a public judgment with mean O and

.. .
precision P,.

3. The team takes an action and derives utility u = — (64 — ad)Z. As in the standard team-theoretic

environment, there is no conflict of interest between agents.

Proposition A-1. The optimal (Bayesian) action for decision d assigned to trainees j and k is

4 = Pd.jHd,j + Pd.kHd.k
Pd.j+Pdk+ P

"This result of course does not rule out that training programs can matter. Doyle et al. (2010) studies the effect of trainee
teams from two different programs and find that trainees from the higher-prestige program spend less. However, this result
does suggest that even when trainees come from significantly different hospitals, differences in their mean practice styles
can be dwarfed by variation within training program.

(A-14)
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This expression aggregates information as a weighted average of judgments in proportion to the
precisions of the respective judgments (DeGroot, 2005). Supervisory information, measured by pre-
cision P, reduces the effect of either trainee’s judgment on a;.

The weights on judgments in the Bayesian action in Equation (A-14),
Pd.h
Pd.n+Pd,-h+ P

* =
8d.hi-n =

have a natural interpretation as the influence of trainee h on the action a;,. The more precise the signal
from her prior knowledge relative to her teammate and any supervisory information, the greater her
influence will be. In the limit, if either her teammate’s knowledge or external information is perfect
(i.e., pg,-n = o0 or P}, = c0), a trainee would have no influence. On the other hand, if a trainee has
perfect knowledge, then she would have full influence. At the one-year tenure mark, influence discon-
tinuously increases because the precision of a trainee’s teammate p, —;, discontinuously decreases.

Influence may deviate from the Bayesian benchmark due to other team concerns. Career con-
cerns or the “prestige” of senior titles may underweight the knowledge of junior trainees (Scharfstein
and Stein, 1990; Prendergast, 1993; Ottaviani and Sorensen, 2001), or trainees may be given more
influence than justified by their knowledge if supervisors wish to encourage experiential learning that
requires a stake in decision-making (Lizzeri and Siniscalchi, 2008; Ludmerer, 2014). In estimation, I
allow for actions that deviate from the Bayesian benchark:

_ Pd,jHd,j+ Pd.kHd K

g = — — . (A-15)
Pd.j+Pdx+Pa

Pad.h = pa.n+0 (1) as an effective “precision” that equals the true precision of /s knowledge adjusted
by 6 (11,), depending on the tenure of &, 7,. The influence of trainees with tenure 7, relative to
their peers may receive less influence than the Bayesian benchmark if ¢ (75,) < 0 or more influence if
6 (1) > 0. Similarly, for external and supervisory information, P, is an effective “precision”: Even
though supervising physicians and the broader supervisory structure may have access to information
relevant for d with precision P}, this information may be underweighted (P4 < P})) or overweighted
(P4 > P}) in decision-making.

I consider the precision of knowledge as a function of tenure for given class of decisions, c:
Pd.h = Pec(a) (tr (t(d))). I similarly specify external information as depending on the class of decisions:

P, = Pc(d).g Effective influence of a trainee with tenure 7, working with teammate with tenure 7_j, is

Pe(th)
Pe (Th) + Pe (T-p) + Pe '

8c (tnytop) = (A-16)

Model-predicted practice variation (i.e., standard deviation of trainee effects) for trainees with

8In Appendix Figure A-5, I support for this assumption by showing that both the trainee-related variation and the
residual variation in spending are relatively constant across July, when old interns transition to residents and new interns
begin training.
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tenure 75, working with teammates with tenure 7_j,, is then

e (thT-n) = &c (T T_n) ke [ pe (Th), (A-17)

where k. € [0,1] reflects the similarity of judgments across different decisions in class ¢ within the
same provider. Systematic practice variation across trainees, requires that «. > 0, or that trainees prac-
tice similarly across different decisions. While levels of knowledge, learning, and practice variation

are scaled by «., ratios comparing different points in training will be unaffected by «..

VI.B Identification

As trainees learn, the precision of their knowledge, or p. (11,), increases with tenure. Greater knowl-
edge increases influence, or g. (17,;7-1), holding teammates and external information fixed, while it
reduces dispersion in judgments, or \/m Thus practice variation may not always decrease
even as trainees learn. In general, the effect of increasing influence on practice variation will tend
to dominate when a trainee’s influence is relatively low, while when a trainee has relatively high in-
fluence, the effect of reducing dispersion in judgments will tend to dominate. In the extreme, agents
who practice independently (i.e., they have full influence over their decisions) will show convergence

in their decisions as they learn.

VL.B.1 Analytical Evaluation

Consider practice variation—or the standard deviation of trainee effects—under Bayesian-benchmark

influence:

8" (th;1-n)

Ve (tn)
Ve ()

= PP (A-18)

o (Th, T-p)

where I assume that k = 1 in (A-17) without loss of generality.
As a first observation, note that the discontinuity in practice variation is greater across the one-

year tenure mark than it is across the two-year tenure mark.

Proposition A-2. Define o-(17) =lim;—1- E_p [0 (th,7—p)| 0], and oo (17) =lime 1+ E_p [ o (th, 7—p) | Th];
similarly define oo (27) =lim;_o- E_j, [0 (4, 7p)| tn), and o (T*) =lim; o+ E_p, [ 0 (1, 7—1)| T1]. Then

o(1™) o2%)
o) o)

Proof. Assume that interns work with second-year residents in A proportion of the time and work

with third-year residents in the remaining 1 — A proportion of the time. At the first-year discontinuity,

o) _pM+p@)+1-HpB)+P
o(17) p(D)+p(0)+P
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At the second-year discontinuity,

o) _p@+pMH)+P
oc27) p@+p0)+P

Since p(+) is increasing in 7, p(0) < p(1) < p(2) < p(3), which yields our result. O

Because there is a change in the tenure of the other trainees as new interns arrive at the beginning
of each academic year, there is in principle a discontinuous increase in influence (and therefore prac-
tice variation) at the beginning of each year. However, the increase at 7, = 1 is always larger than the
increase at 1;, = 2 for two reasons, both related to the monotonic increase in precision with tenure:
First, trainees at 7, = 1 have less precise subjective priors than those at 7, = 2, so any decrease in
the relative tenure of their peer trainee increases their influence by more. Second, the decrease in the
relative tenure of the peer is greater at 7, = 1 (from 75, =2 to 7, =0) than at 7, =2 (from 75, = 1 to
7_ = 0). I show below in the numerical examples that, within this framework, this difference in the
discontinuous increases at 7, = 1 and at 7, = 2 can be quite large, and that the discontinuity at 7, = 2
can be quite trivial.

Second, I consider whether practice variation is likely to increase or decrease with tenure. Since
trainees and their teammates gain tenure together, I consider 7_; = 7, + A, where A is fixed in a
continuous portion of practice variation (i.e., not at the one- or two-year discontinuities). Applying

the quotient rule to o (14, 7—5) = 0 (T, Th + A),

0o (th, T+ A)
oty
Loy

o’ ()

O (@) (p (1) + p(t-p) + P) = p(0) 2 (0 (1) + p (-1))
(p(0)+p(t-p)+P) '

Focusing on the numerator to determine the sign of o’ (1), I arrive at the following necessary and

sufficient condition for convergence (i.e., decreasing practice variation with tenure, or o’ (13,) < 0):
Proposition A-3. Practice variation decreases if and only if

o' (th)

— < 28" (th:7-n). A-19
oy 8 T (A-19)

Learning (i.e., p’ (1,) > 0) does not guarantee convergence. Instead, convergence requires that the
“share of learning,” defined as p’ (73,) /(o' (t1,) + p’ (1—1)), is smaller than twice the influence. Since
this “share” is always less than 1, convergence is guaranteed whenever the trainee has full influence,
or g*(tp;7-p) = 1, as is the case in a single decision-maker. The larger the trainee’s influence, the
more likely convergence will occur. Since influence grows with tenure, this also implies that practice
variation generally increases and then decreases. Special cases may involve practice variation only

increasing or only decreasing, but not decreasing and then increasing with tenure.

A-12



VL.B.2 Numerical Examples

Figure A-8 presents a few numerical examples of variation profiles under various learning profiles
described by functions of the piecewise linear form in Equation (A-20). The three parameters of
interest are pog, or initial knowledge; pj, or the rate of increase in the precision during the first year
as a junior trainee; and p, = p3, or the rate of increase during the subsequent two years as a senior
trainee. The precision of judgments at the end of training is p(3) = pg + p1 +2p2. 1 also normalize
P =1, so that whether precisions of beliefs are greater than the precision of the supervisory prior
simply depends on whether they are greater or less than 1. I consider this normalization as only
relevant for the scale of the variation profile, since any scale keeping the same shape over the overall
variation profile o (7) can be implemented by multiplying pg, o1, 02, and P by some constant.

I discuss each panel of Figure A-8 in turn:

e Panel A considers equal pg = p1 = p2 = 0.2, which are relatively small compared to P = 1. The
result is broadly non-convergence, as greater experience primarily results in greater influence
against a relatively strong supervisory practice environment. The discontinuity in variation is
significantly larger at 7 = 1 than at 7 = 2. Variation increases in intern year and decreases but

only slightly in the next two years as resident.

e Panel B imposes no resident learning (p, = 0) and presents the limiting case in which discon-
tinuous increases in variation at T = 1 and 7 = 2 are the same. Variation is still at least as big
during the two years as resident as during the year as intern, driven by influence. Variation

seems relatively constant over training.

e Panel C generates a similar variation profile as in Panel B with a non-zero p; by increasing
the ratios of py and p; to pp. The scale of variation is smaller than in Panel B, which reflects
that precision in trainee beliefs are now larger. A rescaled version with smaller precisions (and

smaller P) would reveal larger relative increases in variation at the discontinuities.

e Panel D examines increasing p; relative to pg, so that more learning occurs in the first year of
training compared with knowledge possessed before starting training. Influence more obviously
increases in the first year, and increases in variation are sharper at the discontinuities, since
intern experience matters more. Note that working with a resident is equivalent to working
with an end-of-year intern, and increases in variation at 7 = 1 and 7 = 2 are the same (as in
Panel B).

e Panel E asserts that most of the learning occurs during the role as resident. There is much
greater variation across residents than across interns, and the discontinuous increase in variation
is much larger at T = 1, while the increase is negligible at 7 = 2. There is significant convergence

during the two years as resident.

e Panel F is similar to panel E but shows less convergence during role as resident. The ratio

of learning as intern to learning as resident (p;/p5) is similar, but learning during training is
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reduced relative to knowledge from prior to training (pg) and to supervisory information (P).

VI.C Specification and Estimation

I specify the precision of knowledge as a piecewise-linear function of trainee tenure:

POo,c +P1,cT,s TE [0’1]9
Pe(T) =\ po.c+pic+pre(T-1), Te[1,2]; (A-20)
PO, +Ple+pret+p3e(T=2), T€[23],

where pg . represents the precision of knowledge before starting residency, and p; ., p2.¢, and p3 . are
the yearly rate of learning in the first, second, and third years of residency, respectively, for decisions
in class c.

Assuming that knowledge is continuous with tenure, I also identify deviations from efficient in-
fluence that come from a step function with respect to years of training. That is, the “effective” trainee

precision relevant for influence is
Pc () = pe(m)+61. (T = 1)+01(7>2). (A-21)

01,c and 07 . represent deviations in influence from the efficient benchmark that may result from ti-
tles (e.g., “senior trainee”) that discontinuously change at years of training, [7].° Finally, I identify
deviations from the Bayesian benchmark from the fact that P} > p. (7 = 3): At a minimum, external
information must be greater than the knowledge held by a senior trainee, since all supervising physi-
cians have completed training, and since supervisory information includes informational inputs from
outside staff (e.g., nursing, consultants), or any information gathered by the trainees themselves.!?
P. < p.(3) would strongly imply that trainees are granted more influence than warranted by their
knowledge.

I estimate learning and influence parameters as a two-step process. The first step recovers mo-
ments of practice variation, specifically the standard deviation of the distribution of trainee effects, for
trainees of tenure 75, working with teammates of tenure 7. These empirical moments, & (17, 7—p),
are estimated from the random effects model in Equation (3) and were previously discussed in Section
II. The second step takes these moments of practice variation and, from the model in Section IV.C,
recovers underlying primitives of knowledge and influence using minimum distance estimation.

For each class of decisions c, I estimate model primitives 6, = (po,c,pl,c,pg,c,pg’c,dl,c,dz,c,Pc)
by minimum distance:

b =arg min (& =0 (6:)W(6c -0 (6c)),

9Common title conventions may refer to trainees by their year of training: PGY1, PGY2, and PGY3 use the acronym
“PGY” for “post-graduate year”; R1, R2, and R3 simply use “R” for “resident.”

10While I consider the distribution of this “supervisory” information as having mean 0 in the simple model, this as-
sumption is inconsequential, as it is by definition orthogonal to trainee knowledge. The “judgment” of the supervisory
information can be viewed as captured by all terms other than the trainee effects in the regression Equation (3), including
the error term.
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where & is the vector of empirical estimates of practice variation corresponding to decisions in class
¢ from the first step, with elements corresponding to (7j,,7-5) € 7; 0 (0.) is the corresponding vector
of model-implied practice variation from Equation (A-17) given 6.; and W is a weighting matrix.
Primitives may also be estimated on overall practice variation moments, in which case I omit labels
of c.

Consistent with previous reduced-form estimation, I fit the model on ||77|| = 18 moments of
practice variation: I divide observations with residents in the second year of training into resident
tenure blocks of 60 days, resulting in 6 resident moments and 6 intern moments of practice vari-
ation; I also divide observations with residents in the third year of training into resident tenure
blocks of 120 days, resulting in 3 resident moments and 3 intern moments of practice variation.
If Vn(d. — o (6,)) 4, N(0,Q.), then the asymtotic variance of @, is given by

Asy. Var @, = % (T (B0.c) W (60.c)) " (T (Bo.c) WOQWT (80.c)) (T (Bo.c) W (80.c)) "

where 6y . is the true parameter vector, and I’ (HO,C) = plim dor (éc) /89C is an 18 X 7 matrix of
analytical derivatives of Equation (A-17) with respect to 6., evaluated at §.. The optimal weighting
matrix is W = Q;l, which I obtain from the first-step estimation of practice variation. This yields for
inference | ) .,

Vard. = —(r(8.) a.'r(8))
I also calculate likelihood ratio tests for the joint-significance of learning and influence parameters
against a restricted model with no learning but potentially inefficient senior influence via “status”

(i.e., only pg.c, 01,¢, and P, are non-zero).

VI.D Results

In Table A-7, Column 1, I show baseline parameter estimates based on practice variation in overall
spending. In Figure A-9, I show the implied path of practice variation according to the model and
estimated parameters, overlaid on reduced-form estimates from Section II. Structural estimates imply
very little knowledge at the beginning of residency (pg = 0.04) compared to learning in the first year
(p1 = 0.20). Learning in the second year occurs at a rate 30 times faster than in the first year (o, =
7.5), but appears to cease by the third year (p3 = 0). Between junior and senior trainees, influence
approximates the Bayesian benchmark.!! However, I find that the contribution of external information
(P =3.7) is much lower than the knowledge of a graduating trainee (P = p(3) = 7.74). Since external
information includes knowledge of supervising physicians who have completed training, this suggests

that trainees are given much more influence than under the Bayesian benchmark.

U1 estimate that §; = 0.23. Although this deviation from the Bayesian benchmark for senior trainees is large relative
to knowledge at the end of the first year (o9 + p; = 0.24), it is relatively small compared to learning that occurs in the
second year (61 /p - 365 days = 11 days worth of second-year learning). I also estimate that 6 = —1.4, which implies that
third-year trainees have less influence than under the Bayesian benchmark, although this parameter is imprecisely estimated
and small relative to p;.
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I also estimate model parameters based on practice variation in spending specific to classes of de-
cisions (Table A-7) and by types of patient-days (Table A-8). Learning is often greatest in the second
year of training, regardless of the set of decisions. Decisions broken into components of diagnostic
testing, prescriptions, blood transfusions, and nursing orders show somewhat less pronounced learn-
ing in the second year, which suggests potential interactions between components that are important
for learning.

Based on likelihood ratio tests comparing the baseline model and more restrictive models, I can
reject a model with no learning (i.e., p; = p» = p3 = 0) and only senior prestige (i.e., §; > 0) for
overall spending decisions (Column 1 of Table A-7) and for the majority of other outcomes or subsets
of the data (Tables A-7 and A-8). On the other hand, if I allow for learning but impose the Bayesian
benchmark influence between trainees (i.e., 6; = d, = 0), the restricted model (Panel B of Figure A-
10) fits the data quite well and cannot be rejected by the likelihood ratio test. Finally, I can strongly
reject a model with strictly Bayesian influence between trainees and supervisors (i.e., 1 =02 =0, P >

Po+ p1+ p2+ p3); the graphical fit of this model (Panel C of Figure A-10) is obviously problematic.

VLLE Counterfactual Analyses
VI.LE.1 Model of Learning

In my baseline results, I find that learning is low as a junior trainee in the first year, high as a senior
trainee in the second year, and null in the third year. I interpret the first switch in the rate of learn-
ing—from low learning in the first year to high in the second—as due to the effect of influence on
learning. T =1 serves as an intuitive kink point for this switch.

I interpret the second switch in learning—from high learning in the second year to none in the
third—as an indication that trainees have reached “full knowledge,” after which learning stops, due
to the relative benefits and costs of learning. It is not obvious why this kink in the rate of learning
should occur at 7 = 2. Thus, the first step in my approach for counterfactual analyses is to specify a
more flexible model of trainee learning, in which this kink point occurs at any 7 = 7. € (1,3) during

the two years of the senior trainee role. In this model, trainee knowledge takes this form:

Po+ P17, 7€[0,1];
p(T)=9po+pi+p2(t—1), [1,7.]; (A-22)

T€
pot+pr+pa(te—1)+p3(r—7c), 7€[7,3].

Estimation of this more flexible model yields similar results to those from the baseline model: g =
0.04, p; =0.20, p, =8.01, p3=0, 7. = 1.87, §; =0.21, 6, = —1.42, and P = 3.65.

In counterfactual scenarios of learning, I assume that the rate of learning depends on influence, but
that learning continues until full knowledge has been reached. Parameters in Equation (A-22) imply
that full knowledge is p = go + p1 + P2 (f- — 1) = 7.17, which I consider as fixed in counterfactual

scenarios. For the key relationship that drives learning from influence, I assume that the rates of
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learning during training, p; and p,, are piecewise linear functions of the average influence of the
trainee during the respective tenure intervals, 71 = [0,1] and 75 = [1,7.].

In notation, first define average influence over tenures uniformly distributed in interval 7" as
8(T:0) = Eq,, [g (th:7-1)| 6], (A-23)

where influence g (1j,;7_;) is given in Equation (A-16) and depends on 8 = (oo, 01,02,03,01,02,P).
Consider a counterfactual scenario as defined by key parameters of supervisory information or influ-
ence, and denote the corresponding set of counterfactual parameters as *. Then a counterfactual rate

of learning takes the following form: For ¢ € {1,2},

P13 (T,:6), 7 (7:0%) <g(7:0),

P+ Wpl(ﬂe)( (Tt’ ) §(T1;é)), g(Tz;HA)>§(TI;g)‘ (A-24)

Pr =

Under estimated parameters 6, the implied rates of learning are similar for g (T,;HA) above and below
(T1> ) 01/8 (Tl, ) ~13.2, and (P2 _,01)/( (Tz, ) E(Tl;é)) ~ 14.6.

VI.LE.2 Counterfactual Scenarios and Outcomes

I consider counterfactual scenarios defined by counterfactual supervisory information (P*) or influ-
ence between trainees (61A and 62A). A counterfactual scenario implies varying levels of influence
along the entire course of training, as given by Equations (A-16) and (A-21). Influence also depends
on knowledge, as given by Equation (A-22), which in turn depends on learning via influence, as given
by (A-24).

Thus, I must find an internally consistent set of parameters #” that contains P*. In all counter-
factual scenarios, I hold fixed poA = po and p? = p3 = 0. In counterfactual scenarios involving P*, 1
also hold fixed 6% = 64'/(p5 + pT) = 61/(po + p1), since it is not possible to have 65 — (o + pf}) < 0;
I similarly hold fixed 6A = 6A /min (p, 05 Py + p1 + pz) 6> /min (p, po + p1 + p2). Conversely, for coun-
terfactual scenarios involving influence between trainees, I vary 6% or 6 while holding fixed P* = P.
Given these constraints, I identify an internally consistent 82 by solving for p? and pé in the non-
linear system of two equations implied by Equations (A-16), (A-21), (A-22), (A-23), and (A-24), for
t€{1,2}.

For each of the counterfactual scenarios, I consider the following outcomes of learning and

decision-making information:

1. Time for trainees to acquire full knowledge:

AP (POA )
P

This calculated time summarizes the counterfactual rates of learning, p? and pg. Since learning

is always incomplete in the first year of training under all counterfactual scenarios (i.e., plA <p),
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this time is always greater than one year.

2. Average information from trainee knowledge: A trainee can contribute no more information
than her knowledge, but she can contribute less if decision-making departs from the Bayesian
benchmark. In other words, when working with peers of tenure 7_j, trainees of tenure 7,

contribute precision equal to

g (Tny7-n)
g* (tn;7-n)

QA(Th;T—h)=min(1, )PA(Th)-

Counterfactual knowledge, p®(13,), is given by Equation (A-22) using the counterfactual pa-
rameters p® and p2; p* (7), as given by Equation (A-21), may differ from p* (7) if 6% # 0 or
52A # 0. For patients uniformly distributed over the course of an academic year, the average

information from trainee teams is then

0 = /1 (/1 (,DA(T;T+ D+ o (r+ 1;T))+(1—/1) (PA(T§T+2)+pA(T+2;T)))dT’
0 , P P p

where A = 0.7 is the approximate fraction of patients seen by teams with second-year trainees,
and 1 — A is the remaining fraction of patients seen by teams with third-year trainees. The
three terms inside the integral represent levels of information contributed by first-, second-, and

third-year trainees, respectively.

3. Average total information in decision-making: P* + Q%, or the sum of supervisory information

and average information from trainee knowledge.

VI.LE.3 Discussion of Results

In Figure A-11, I show outcomes under counterfactual scenarios varying P* and SIA. As expected,
increasing P* slows the rate of learning and increases the time for trainees to acquire full knowledge.
There are direct effects of P* in decreasing trainee influence as well as indirect effects, as trainees with
less influence acquire less knowledge to contribute to decision-making. Thus, increasing supervisory
information decreases the information from trainee knowledge used in decision-making. The gain in
total decision-making information is reduced by about 40% by this mechanism of diminishing trainee
knowledge. In contrast, there is only limited impact of varying 51A on learning and trainee knowledge
over the course of residency, at least in the range of SIA € [-1,1]. By decreasing SIA, trainees gain more
knowledge when they are junior but less when they are senior. The effect of influence on learning
is slightly steeper for senior trainees, which explains why there are some slight returns to increasing
51A in terms of decreasing years to acquire full knowledge and increasing information from trainee
knowledge in the average team decision.

In Figure A-12, I show outcomes under counterfactual scenarios varying 5@. The effects of in-
creasing SZA on learning and decision-making information are similar to those of increasing SIA: In-

creasing senior influence speeds up training and increases overall trainee knowledge. The effect
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range of counterfactual values of 62A is larger, since the denominator in SZA (.e., p*(2)) is larger. In-
terestingly, around 52A =0, decreasing 52A has a larger effect on Q than does increasing 52, due to the
following intuition: Near baseline parameters, much of the third year involves no learning. Therefore,
increasing the influence of third-year trainees does not aid learning for those trainees, and learning
among junior trainees will suffer. However, learning indirectly increases for second-year trainees who
then work with less knowledgeable junior trainees. Nonetheless, the effects on learning are generally

small relative to those for varying P*.
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Figure A-1: Patients Age by Housestaff Spending Effect

A: Distribution by Intern Spending Effect

.025
1

.02

Density
.015
1

.01
1

.005
1

0

20 40 60 80 100
Patient age

— — — — Above mean Below mean

B: Distribution by Resident Spending Effect

Density
.01 015 .02 .025
1 1 1 1

.005
1

0

20 40 60 80 100
Patient age

— — — — Above mean Below mean

Note: This figure shows the distribution of the age of patients assigned to interns with above- or below-average
spending effects (Panel A) and residents with above- or below-average spending effects (Panel B). Trainee
spending effects, not conditioning by tenure, are estimated by Equation (A-3) as fixed effects by a regression of
log spending on patient characteristics and physician (intern, resident, and attending) identities. Kolmogorov-
Smirnov statistics testing for the difference in distributions yield p-values of 0.496 and 0.875 for interns (Panel
A) and residents (Panel B), respectively.
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Figure A-2: Demographics-predicted Spending by Trainee Spending Effect

A: Distribution by Intern Spending Effect
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Note: This figure shows the distribution of predicted log costs (based on patient age, race, and gender) for
patients assigned interns with above- or below-average spending effects (Panel A) and residents with above- or
below-average spending effects (Panel B). Trainee spending effects, not conditioning by tenure, are estimated
by Equation (A-3) as fixed effects by a regression of log spending on patient characteristics and physician
(intern, resident, and attending) identities. Kolmogorov-Smirnov statistics testing for the difference in distribu-
tions yield p-values of 0.683 and 0.745 for interns (Panel A) and residents (Panel B), respectively.



Figure A-3: Attendings Spending Effects by Trainee Spending Effect

A: Distribution by Intern Spending Effect
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B: Distribution by Resident Spending Effect
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Note: This figure shows the distribution of spending fixed effects for attendings assigned to interns with above-
or below-average spending effects (Panel A) and residents with above- or below-average spending effects (Panel
B). Trainee and attending spending effects, not conditioning by tenure, are estimated by Equation (A-3) as fixed
effects by a regression of log spending on patient characteristics and physician (intern, resident, and attending)
identities. Kolmogorov-Smirnov statistics testing for the difference in distributions yield p-values of 0.059 and
0080 for interns (Panel A) and residents (Panel B), respectively.
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Figure A-4: Serial Correlation of Trainee Random Effects
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Note: This figure shows the serial correlation between random effects within trainee between two tenure peri-
ods. Details of the estimation routine are given in Appendix III.B. The random effect model of log daily total
costs is given in Equation (3). The model controls are as stated for Figure 1. Trainees prior to one year in
tenure are junior trainees and become senior trainees after one year in tenure. Numerical values and confidence
intervals are given in Table A-4.
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Figure A-5: Trainee-associated and Residual Variation by Day of Year
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Note: This figure shows the standard deviation of random effects due to junior and senior trainee teams (solid
dots) and the standard deviation of the residual (hollow dots) in 30-day periods by day of the year. Residual
variation can be interpreted as variation due to independent observation. The two vertical gray lines indicate
when new junior trainees begin residency on July 19 and when senior trainees advance a year on July 28 (i.e.,
becoming a new second-year senior trainee, becoming a third-year trainee, or completing residency). The
model is similar to Equation (3), except that a single random effect is modeled for the junior and senior trainee
combination, instead of two additively separable random effects for the respective trainees. Controls are given
in the note for Figure 1.
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Figure A-6: Effect of High Prior Exposure to Spending
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C: All Prior in Service D: Prior 3 Months in Service

2
1
2
1

A
1

High-exposure effect

0

AW

)8

A\

4!

7

\o\

12l

(ol

\o)

1l

11
ngh—exp%sure effect

\

A
1

DTS o e N
- = \/\/\/—__

~3

-1
-1

-2
-2

-3
-3

0 360 720 1080 0 360 720 1080
Days tenure Days tenure

Note: This figure shows the effect of high prior exposure to supervising-physician spending. This exposure
measure is discussed in Section and in Table A-5 and reflects the average spending effects of supervising
physicians that a given trainee was matched to in the past. The tenure-specific effect of having high prior
exposure to spending is estimated as in Equation (A-12). Panel A uses an exposure measure that includes
all prior matches, regardless of service (corresponding to Column 1, Panel A of Table A-5). Panels B and
D use an exposure measure that includes matches within the last three months with supervising physicians
(corresponding to Columns 2 and 4, Panel A of Table A-5). Panels C and D use an exposure measure that is
restricted to prior matches on the same service (corresponding to Columns 3 and 4, Panel A of Table A-5).
The vertical line indicates the one-year mark of training; trainees are junior prior to this and senior after this.
The model controls are as stated for Figure 1. The effect of high prior exposure to senior-trainee spending is
shown in Figure A-7. Point estimates are shown as connected dots; 95% confidence intervals are shown as
dashed lines. Trainees prior to one year in tenure are junior trainees and become senior trainees after one year
in tenure; a vertical line denotes the one-year tenure mark.
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Figure A-7: Effect of High Exposure to Senior-trainee Spending

A: All Services

.2
1

A
1

-1

Std. dev. (log dollar costs)
0

-2

-3

0 360 720 1080
Days tenure

B: Within Service

.2
1

A
1

e~ e~ —

-9 7F

-1

Std. dev. (log dollar costs)
0
\
(

-2

-3

0 360 720 1080
Days tenure

Note: This figure shows the effect of high prior exposure to senior-trainee spending. This exposure measure
is discussed in further detail in Appendix A-5 and in Table A-5 and reflects the average spending effects of
senior trainees that a given trainee was matched to in the past as a junior trainee. The tenure-specific effect of
having high prior exposure to spending is estimated as in Equation (A-12). Panel A uses an exposure measure
that includes all prior matches with senior trainees, regardless of the ward service (corresponding to Column 1,
Panel B of Table A-5); Panel B uses an exposure measure that is restricted to prior matches on the same service
(corresponding to Column 3, Panel B of Table A-5). For tenure periods after the one-year mark (shown as the
vertical line), the trainee of interest is senior, and matches with senior trainees all date back to the trainee’s
first year of training as a junior trainee. The model controls are as stated for Figure 1. The effect of high prior
exposure to supervising-physician spending is shown in Figure A-6.
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Figure A-8: Numerical Examples of Variation Profiles
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Note: This figure shows variation profiles of the expected standard deviation of trainee effects over tenure,
o (1), differing by the underlying profile of learning over tenure. Learning is parameterized as a piecewise
linear function g (7) that describes how the precision of subjective priors increases over tenure. In particular,
this figure considers piecewise linear functions of the form (A-20), parameterized by po, p1, and p, = p3. Each
panel considers a different set of parameters of p(7). Given p(7), I calculate the expected standard deviation
of trainee effects over tenure using Equation (A-18). I assume that interns are equally likely to work with
second-year residents and third-year residents. These profiles are discussed further in Appendix VI.B.

A-27



Figure A-9: Model Fit to Practice Variation Profile
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Note: This figure shows practice variation, defined as the standard deviation of random trainee effects specified
in Equation (3), in log daily total costs at each non-overlapping tenure period. Trainee prior to one year in tenure
are junior trainees and become senior trainees after one year in tenure. Reduced-form estimates of practice
variation are shown in dots and are the same as shown in Figure 1. Practice variation implied by the model of
learning and influence, specifically Equation (A-17), is shown as a dashed line. Estimation of parameters of
this model is described in Section IV.C. The Sargan-Hansen over-identification J-test statistic of the model is
J =8.60, which is less than the 95th percentile value of 19.7 the ,\/128_7 distribution (the p-value corresponding
to J =8.60is 0.67)
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Figure A-10: Model Restrictions
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Note: This figure shows the fit of restricted models of learning and influence, with parameters described in
Table A-7. Each panel shows the same reduced-form moments of practice variation for each tenure period,
which are also the same as those shown in Figure A-9, reproduced in Panel D. Panel A restricts the model
to no learning (i.e., p; = p» = p3 = 0). Panel B restricts the model to the Bayesian benchmark of influence
between trainees (i.e., 01 = 9 = 0). Panel C additionally restricts the model so that supervisors receive as much
influence as warranted by the lower bound of their knowledge (i.e., 61 =02 =0, P > po + p1 + p2 + p3). The
likelihood ratio test comparing a no-learning model (Panel A) with the baseline model (Panel D) rejects the
restricted model with a p-value less than 0.01. Likelihood ratio tests for other outcomes or for subsets of the
data are also given in Tables A-7 and A-8. Sargan-Hansen over-identification J-test statistics are 15.66 (p-value
= 0.405 under X128_3 distribution) for Panel A, 13.42 (p-value = 0.416 under )(]2875 distribution) for Panel B,
and 65.97 (p-value < 0.01 under )(128_ 4 distribution).
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Figure A-11: Counterfactual Training Time and Team Information
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Note: This figure shows counterfactual results on time for trainees to acquire “full knowledge” and on informa-
tion used in decision-making. I consider two types of counterfactual scenarios: In subpanels in Panel A, I alter
on the x-axes the amount of supervisory information used in decision-making, or P in the model, while holding
fixed the relative influence between junior and senior trainees. In subpanels in Panel B, T alter on the x-axes the
relative influence between junior and senior trainees, or d; in the model, while holding fixed the amount of su-
pervisory information. Appendix Figure A-12 shows results for varying ¢, in the model. The time for trainees
to acquire full knowledge (or “years to train”) is measured on the y-axes of the left subpanels, and the informa-
tion used in decision-making is measured on the y-axes of the right subpanels. The right subpanels show both
information from trainee knowledge (dashed lines) and total information (solid lines) used in decision-making.
On each line, I plot a solid dot indicating actual results and a hollow dot indicating counterfactual results under
Bayesian-benchmark influence; supervisory influence in Panel A is a lower bound for the Bayesian benchmark
that equals full trainee knowledge, or P = pg + p1 + p2 (1. — 1). Lines in Panel A are plotted for counterfactual
P2 € 0,2P]; lines in Panel B are plotted for counterfactual 64/ (p5 + p') € [~1,1]. Further details are given in
Appendix VLE.
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Figure A-12: Counterfactual Results, Varying 6,
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Note: This figure shows results for counterfactual scenarios in which I vary the additional deviation in effective
precision for third-year trainees, or §, in the model and shown in the x-axes of both panels. The y-axis of Panel
A plots the time for trainees to acquire “full knowledge” (or “years to train”). The y-axis of Panel B plots
information from trainee knowledge (dashed lines) and total information (solid lines) used in decision-making.
On each line, I plot a solid dot indicating actual results and a hollow dot indicating counterfactual results under
the Bayesian benchmark. Lines are plotted for counterfactual 62A /p™(2) € [~1,1]. Further details are given in
Appendix VLE.
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Table A-5: Differences in Prior Exposure to Spending

Differences Between High and Low Exposure

(1) (2) 3) 4)
All services Within service
Tenure period . Prior 3 . Prior 3
(days) P All prior months All prior months
Panel A: Exposure to Spending by Supervising Physicians
0-60 5.31% 5.65% 4.62% 4.84%
61-120 5.16% 5.52% 4.81% 5.03%
121-180 4.64% 5.41% 4.39% 4.87%
181-240 4.47% 5.43% 3.85% 4.41%
241-300 4.06% 5.21% 3.85% 4.41%
301-365 3.81% 4.92% 3.31% 4.28%
366-425 3.54% 5.80% 3.87% 5.41%
426-485 3.70% 6.06% 4.05% 6.04%
486-545 3.30% 5.71% 3.31% 4.83%
546-605 3.15% 5.27% 3.67% 5.47%
606-665 3.34% 6.01% 4.05% 6.26%
666-730 3.39% 5.91% 3.44% 5.24%
731-850 3.53% 4.97% 2.22% 3.78%
851-970 3.52% 5.82% 2.56% 4.05%
971-1095 3.03% 3.91% 1.80% 3.02%

Panel B: Exposure to Spending by Senior Trainees

0-60 19.08% 19.50% 20.82% 20.92%
61-120 19.88% 20.32% 22.89% 23.02%
121-180 19.54% 21.03% 21.51% 23.23%
181-240 19.52% 20.54% 22.12% 23.53%
241-300 19.04% 20.12% 21.95% 23.61%
301-365 17.76% 17.99% 19.88% 20.28%

Note: This table presents differences in average spending effects of supervising physicians (Panel A) and of
senior trainees (Panel B) who worked with trainees in the past at each tenure period for the trainees. Columns 1
and 2 include prior team pairings in all services, while Columns 3 and 4 only include prior team pairings within
the same service. For example, for an observation in the cardiology service, Columns 3 and 4 only include
prior team pairings for a trainee while working in the cardiology service. Columns 2 and 4 further restrict prior
team pairings to those within the last three months. The spending effect of the relevant supervising physician or
senior trainee is the empirical Bayes posterior mean from a random-effects model of log daily overall spending.
Of the set of eligible prior team pairings, the exposure to spending measure is a weighted average (by patient-
day) of the spending effects of the relevant matched physician (i.e., either the supervising physician or the
senior trainee). Trainees in a given tenure period are categorized as having “high exposure” to spending if this
measure is above the median measure for trainees in the same tenure period. The difference in exposure to
spending between high and low exposure is simply the average measure for high-exposure trainees subtracted
by the average measure for low-exposure trainees in a given tenure period.
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Table A-6: Effect of Trainee Experience on Spending

Log daily total costs

(1) (2) (3) 4) (5)
Number of Number of Number of  Attending  Attending
days patients attendings spending spending
Panel A: Interns
Effect of trainee with 0.001 0.003 -0.001 -0.010 -0.001
measure above median (0.004) (0.004) (0.004) (0.005) (0.005)
Observations 182,500 182,500 182,500 156,545 131,654
Adjusted R? 0.088 0.088 0.088 0.089 0.089
Panel B: Residents
Effect of trainee with 0.005 -0.005 -0.001 0.010 0.013
measure above median (0.007) (0.008) (0.007) (0.005) (0.005)
Observations 200,266 200,266 200,266 182,982 176,086
Adjusted R? 0.089 0.089 0.089 0.086 0.086
Measure and median v Y v N v

within service

Note: This table reports results for some regressions of the effect of indicators of trainee experience. Panel A
shows results for interns; Panel B shows results for residents. Regressions are of the form in Equation (A-9),
where the coefficient of interest is on an indicator for a group of trainees identified whether their measure (e.g.,
number of days) is above the median within a 60-day tenure interval (across all trainees). The relevant tenure
interval is the tenure interval before the one related to the day of the index admission. All columns except
for (4) represent measures and medians that are calculated within service (e.g., number of days is calculated
separately for a trainee within cardiology, oncology, and general medicine and compared to medians similarly
calculated within service). Columns 4 and 5 feature a measure of attending spending, which is the average
cumulative effect of attending physicians who worked with the trainee of interest up to the last prior tenure
interval. Attending “effects” are calculated by a random effects method that adjusts for finite-sample bias;
since patients are not as good as randomly assigned to attending physicians, these effects do not have a strict
causal interpretation at the level of the attending physician. Other specifications (e.g., calculating all measures
across services, or not conditioning on trainee identity) were similarly estimated as insignificant and omitted
from this table for brevity. All models control for patient and admission characteristics, time dummies, and
fixed effects for attending and the other trainees on the team (e.g., the resident is controlled for if the group is
specific to the intern). Standard errors are clustered by admission.
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Table A-8: Model Parameter Estimates by Day of Stay and Patient Severity

Day of Stay Patient Severity
(1) (2) (3) 4)
High Low
Early Late Severity Severity
Knowledge parameters
Prior to training (oo) 0.076 0.006 0.091 0.060
& oo (0.056) (0.000) (0.078) (0.059)
First year (o)) 0.346 0.294 0.371 0.207
yearto (0.223) (0.087) (0.299) (0.253)
Second year (p2) 6.681 6.655 6.242 7.644
y £2 (2.528) (1.414) (2.719) (3.572)
Third year (p3) 0.000 0.845 0.000 0.000
y p3 (0.000) (0.007) (0.000) (2.000)
Influence parameters
. 0.271 0.192 0.294 0.204
Deviation after first year (6;) (0.288) (0.198) (0.315) (0.300)
. -0.912 —1.554 —1.347 -0.367
Deviation after second year (0>) (0.719) (0.082) (0.780) (1.597)
. . . 3.850 3.495 3.725 3.759
Supervisory information (P) (0.545) (0.419) (0.608) (0.622)
Likelihood ratio test p-value 0.151 0.000 0.020 0.182

Note: This table shows parameter estimates of the model of learning and influence described in Section IV.C.
Columns correspond to models estimated on observations by patient-day: Columns 1 and 2 are for days re-
spectively before or after the middle of each patient’s stay; Columns 3 and 4 are for patients with above- or
below-median expected 30-day mortality, respectively. Parameters are as described in the note for Table A-7
and are estimated from reduced-form practice variation moments, as shown in Figure 4 for type of patient-day.
The likelihood ratio test p-value compares the estimated model against a restricted model of no learning (i.e.,
only pg, 01, and P are non-zero). Standard errors are displayed in parentheses.
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