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B8), impacts by quartile of predicted income (C1 and C2) and Seguro Popular (D1 and D2). 

 

 

A – MAIN APPENDICES 

Appendix A1: Health risks of environmental exposure to heat and cold 

The good functioning of the human body requires core body temperature to be around 37°C. 

However, variations in ambient air temperatures, whether between seasons or throughout a day, 

induce heat transfers between the organism and the environment. Below or above a comfort 

zone within which ambient air temperatures are around 20-25°C, the body needs to activate 

heating or cooling responses.1 The cooling and heating mechanisms of the human body put 

stress on the organism by themselves. Above all, they may not be sufficient to maintain core 

body temperature at 37°C, especially if the heat or the cold received is either intense or 

prolonged.  

High ambient air temperatures can cause increases in core body temperature that are associated 

with dehydration and the development of pathologies. In a review, Basu and Samet (2005) 

 
1 The human body relies on three sets of mechanisms to cope with changes in ambient air temperature: one 
triggering core body heating through voluntary or involuntary muscle contractions, shivering, tachycardia (the 
heart beats more quickly), vasoconstriction and rapid breathing to avoid hypothermia; another enabling core body 
cooling that principally consists of vasodilatation and sweating to avoid hyperthermia; and a neural function to 
monitor core body temperature (in the hypothalamus), activate either heating or cooling when required, and 
instigate a strong dislike for excessive heat and cold that encourages protective behaviours (Marriott and Carlson, 
1996; Chenuel, 2012). 
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pinpoint that hot temperatures are associated with excess mortality due to cardiovascular, 

respiratory, and cerebrovascular diseases. In fact, these pathologies develop much before the 

body enters severe hyperthermia: mild stress caused by ambient air temperatures above 25°C 

can be sufficient to trigger pathological responses. These pathologies arising because of heat 

are of the non-transmissible kind (e.g. heart attacks). In addition, mildly high temperatures can 

also open a window of opportunity for the development of transmissible pathologies. For 

example, the hosts of some viruses, such as malaria or dengue, develop more easily in hot and 

humid environments, explaining higher incidence during hot and humid seasons (Colón-

González et al., 2011). This constitutes another channel through which high ambient 

temperatures may provoke excess mortality.  

Importantly, not everyone is vulnerable to heat the same way. Some people are at risk very 

promptly as soon as temperatures go above their comfort zone. Thermoregulation works 

inefficiently in some people, making them more vulnerable than others for a given temperature 

level. This is particularly the case for the elderly and younger children.2 

As much as high temperatures can overwhelm thermoregulation, cold days can also prevent 

core body temperature from being maintained at 37°C. Very serious cases of hypothermia 

(<32°C) impair cardiac, cerebrovascular and respiratory functions, which can lead to loss of 

consciousness and death (Colon et al., 2011). However, strong hypothermia is uncommon 

whereas mild cold below the comfort zone is a very common situation which affects several 

functions of the organism, in particular the circulatory and respiratory functions.3 Like in the 

 
2 These groups tend to have low maximal aerobic power, high adiposity and small body stature and body mass 
compared with young adults. These characteristics imply relatively large surface area-to-mass ratio along with 
lower sweat rate and cardiac output. In addition, the elderly tends to have poor control of peripheral blood flow. 
Their hypothalamic system may also be less prompt in detecting hyperthermia and dehydration. All these factors 
reduce the efficiency of thermoregulation (Inbar et al., 2004). People with specific preconditions, such as diabetes, 
are more sensible to heat (Scott et al., 1987). Finally, risks depend on exposure. Occupation may play a major role 
(Thonneau, 1998): people spending much time outdoors and making physical efforts (which naturally produce 
heat in the body) are more exposed and therefore more at risk than people making less effort and staying indoors 
during hot days. 
3 This can be exemplified looking at the case of mild hypothermia (32-35°C) (Schubert, 1995). Circulatory effects 
include higher blood viscosity (by 4-6% for each °C) and higher risk of hypovolemia (decreased volume of 
circulating blood in the body). Mild hypothermia also affects the coagulation system through reversible platelet 
sequestration, decreases in enzymatic activity for clotting and increases in fibrinolitic activity. In addition, several 
organs are affected. The cardiac function suffers from higher stress (e.g. impairment of diastolic relaxation) such 
that mild hypothermia is correlated with higher risk of angina, myocardial and coronary ischemia. Likewise, lungs 
can be compromised: pulmonary oedemas have been found in patients after environmental exposure to cold 
(Morales and Strollo, 1993). More frequently, protective airway reflexes are reduced because of impairment of 
ciliary function. This predisposes to aspiration and pneumonia (Mallet, 2002). In addition, cerebral activity is 
reduced due to decreases in cerebral blood flow and cerebral metabolic rate of oxygen (by around 5% for each 
°C). Furthermore, low body temperature decreases the metabolic rate by 5-7% per °C and moderately affects both 
the hormonal and immunity systems: e.g. hypothermia reduces leukocyte mobility and the speed of phagocytosis 
(Schubert, 1995). 
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case of heat, people with inefficient thermoregulation systems or with preconditions will be 

more vulnerable to cold, and start being at risk for ambient air temperatures between 10°C and 

20°C when others could sustain much lower temperatures. Older individuals respond poorly to 

cold stress (Young, 1991). This is because ageing is typically characterised by a loss in muscle 

mass and body fat.4 Likewise, malnourished people are vulnerable to cold due to lack of body 

mass and because core body heating requires the consumption of calories beyond the scope of 

what they may have in stock (Marriott and Carlson, 1996). In addition, some transmissible 

diseases develop more easily in cold environments. It is well-known that the transmission of 

air-borne viruses can be facilitated by low temperatures. Cold environments may also provide 

increased stability to enveloped viruses, such as influenza. This is why we observe waves of 

influenza throughout fall and winter. Colder temperatures may also encourage people to spend 

more time indoors, in closer proximity to one another and in poorly ventilated environments 

(Pica and Bouvier, 2014). 

Consequently, ambient temperatures below or above a comfort zone of 20-25°C may be a 

contributing factor to the development of pathologies, and even trigger death, in particular 

among people with pre-existing health conditions. However, heat or cold will not be reported 

as the primary cause of hospitalisation or death except in the rare cases of severe hypothermia 

or hyperthermia. In milder cases, which likely constitute the majority of cold- or heat-related 

deaths, doctors are more likely to report the pathologies that might have arisen because of heat 

or cold exposure, such as heart attacks or influenza. For the statistician, this implies that looking 

directly at medical or death records for severe hypothermia and heat strokes underestimates the 

fraction of weather-related diseases or deaths. 

  

 
4 Muscle mass is the essential component of heat production in the body (Horvath, 1981) whereas body fat offers 
additional protection to cold. 
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Appendix A2: Template of death certificate used in Mexico 

Mexican death certificates include information on many socio-demographic variables: date of 

birth, gender, civil status, nationality, profession, education level and affiliation to social 

security. This comes in addition to the information about usual place of residence and specific 

details about the death, in particular the place of death, date of death, cause of death and whether 

the deceased received medical assistance or not before dying. 

A template of death certificate is provided hereafter (in Spanish). 

Figure A1: 2004 Template of a death certificate (source: INEGI) 
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Appendix A3: Summary statistics from the 2000 Mexican Census 

Table A1: Socioeconomic characteristics of the Mexican population based on 2000 
Census 

Population Personal 
income* 

No social 
security 

Completed 
secondary 

school† 
Age Male Share of 

population 

Total 2,876 58.6% 37.1% 26.2 48.7% 100.0% 
Rural 1,433 83.7% 17.3% 25.0 49.6% 25.4% 
Urban 3,330 50.1% 43.8% 26.5 48.4% 74.6% 

By quartile of income:       
1st quartile 437 82.9% 18.6% 24.7 48.2% 25.0% 

2nd quartile 1,155 60.8% 31.5% 24.5 48.7% 25.0% 
3rd quartile 2,119 47.4% 42.3% 26.0 49.2% 25.0% 
4th quartile 7,816 36.2% 59.7% 28.6 49.3% 25.0% 

By type of profession       
Workers in agriculture, 

fisheries and hunting activities 1,552 87.1% 18.1% 38.2 92.7% 5.2% 

Do not work (under 16) 2,371 62.5% 14.4% 7.7 50.0% 37.3% 
Assistants in industrial and 

handmade production 2,397 62.1% 44.9% 28.5 85.3% 1.5% 

Do not work (over 65) 2,647 49.4% 10.9% 74.4 36.5% 4.1% 
Do not work (16-65) 2,648 62.4% 47.5% 34.3 21.2% 25.9% 

Street vendors 2,679 81.4% 41.5% 38.6 68.8% 0.7% 
Workers in industry of 

transformation 2,784 64.0% 46.9% 34.9 85.7% 5.5% 

Workers in army and civil 
protection 3,059 21.4% 66.3% 36.5 94.3% 0.8% 

Drivers of mobile machines 
and transports 3,061 54.6% 59.5% 35.8 99.3% 1.6% 

Workers in personal services 
in institutions 3,116 47.0% 53.2% 34.2 60.4% 1.9% 

Fixed machine operators 3,323 15.6% 61.3% 28.7 61.9% 1.9% 
Domestic workers 3,753 78.2% 27.4% 34.0 12.2% 1.4% 

Sellers, employees in trade and 
salesmen 3,817 57.9% 67.5% 35.0 60.6% 3.8% 

Low-skilled workers in 
administrative tasks 4,124 24.1% 91.3% 31.0 38.4% 2.3% 

Technicians 4,641 26.4% 91.4% 33.8 56.0% 1.0% 
Overseers in industrial 

production 5,045 16.4% 84.0% 34.4 79.7% 0.6% 

Workers in education 5,662 15.0% 98.9% 36.8 39.8% 1.4% 
Medium-skilled workers in 

administrative tasks 5,973 18.3% 93.5% 35.8 67.6% 0.8% 

Workers in art, sports and 
events 6,176 58.0% 81.3% 34.7 74.9% 0.3% 

Certified professionals 7,758 32.0% 99.8% 36.5 63.2% 1.3% 
Public servants and directors 10,453 29.0% 95.8% 39.7 74.0% 0.7% 

Notes. The table shows average values of socioeconomic characteristics of the Mexican population based on the 2000 Census. 
Statistics are calculated using the sample weights provided by INEGI. *: Personal income (in 2000 Mexican pesos) is calculated 
as family income divided by the square root of the total number of people in the household. This calculation method allows 
accounting for economies of scale in larger households. The calculations in this table exclude households declaring zero 
income. †: includes people that were completing secondary school. 
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Appendix A4: Estimates using monthly data 

We estimate the temperature-mortality model after aggregating the data at the monthly level. 

We use municipality-by-year fixed effects, municipality-by-month fixed effects, and month-

by-year fixed effects. We find similar results to the ones obtained with our base model with 

daily data. We find an increase in mortality by around 0.2 deaths per 100,000 inhabitants for 

days below 12°C and above 32°C.  

While the daily data only starts in 1998, we have monthly data from 1990. We provide results 

for 1990-2017 and for 1998-2017. 

Table A2: Impact of temperature on mortality using monthly data  

Sample 1990-2017 1998-2017 
Day below 12°C 0.188 0.191 
 (0. 019) (0.023) 
Day at 12-16°C 0. 078 0.081 
 (0. 012) (0.014) 
Day at 16-20°C 0. 025 0.024 
 (0.008) (0.009) 
Day at 20-24°C -0.008 -0.010 
 (0.006) (0.007) 
Day at 28-32°C 0.049 0. 052 
 (0.009) (0. 011) 
Day above 32°C 0.201 0.206 
 (0. 022) (0.027) 
Observations 676,635 468,887 

Notes: The table shows the effect of a day with an average temperature falling within each bin (relative to the 24°C-28°C 
category) on the monthly mortality rate per 100,000 inhabitants, using two different samples (1990-2017 and 1998-2017). 
Standard errors in brackets, clustered at the municipality level. The regressions control for municipality-by-month fixed effects, 
municipality-by-year fixed effects, and month-by-year fixed effects. The model furthermore controls for precipitations. 
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We furthermore provide additional results with different fixed effects and monthly data below. 

Table A3: Impact of temperature on mortality using monthly data and changing the 

fixed effects 

Column (1) (2) (3) (4) 
Day below 12°C 0.188 0.0905 0.387 0.287 
 (0.019) (0.048) (0.038) (0.040) 
Day at 12-16°C 0.078 0.011 0.220 0.155 
 (0.012) (0.028) (0.026) (0.026) 
Day at 16-20°C 0.025 -0.010 0.080 0.046 
 (0.008) (0.020) (0.020) (0.020) 
Day at 20-24°C -0.008 -0.009 -0.0002 -0.009 
 (0.006) (0.013) (0.014) (0.015) 
Day at 28-32°C 0.049 0.069 0.050 0.068 
 (0.009) (0.027) (0.011) (0.020) 
Day above 32°C 0.201 0.190 0.089 0.080 
 (0.022) (0.030) (0.026) (0.021) 
Fixed effects:     

Municipality X X X X 
Month by year X X X X 

Municipality by month X X   
Municipality by year X  X  

Observations 676,635 676,635 676,635 676,635 
Notes: The table shows the effect of a day with an average temperature falling within each bin (relative to the 24°C-28°C 
category) on the monthly mortality rate per 100,000 inhabitants, using the data for 1990-2017. Standard errors in brackets, 
clustered at the municipality level. The model furthermore controls for precipitations. 
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Appendix A5: Estimation with 2°C bins 

The figure below is very similar to our baseline model. However, it uses 2°C temperature bins 

(from <10°C to >32°C) instead of 4°C. Results are very similar to the ones obtained with 4°C 

bins.  

Figure A2: Impact of temperature on mortality using 2°C bins  

  
Notes: The graph shows the cumulative effect of a day with a temperature within each 2°C bin (relative to the 24°C-26°C 
category) obtained from a dynamic model with 30 lags. The diamonds show the sum of the coefficients on these thirty lags in 
each category. The shaded area corresponds to the 95 percent confidence interval (clustered at municipality level). The 
dependent variable is the daily mortality rate at the municipality level. The regression controls for the daily precipitation level 
and includes day-by-month-by-year fixed effects, municipality-by-calendar-day (1st January to 31st December) fixed effects, 
and municipality-by-year fixed effects. 
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Appendix A6: Short-term dynamics 

In Figure 2, we calculated the overall mortality impact of temperature after 30 days. Below, we 

display the separate effect of unusually cold and hot days on the day of the weather event and 

for each of the following 30 days. During a cold day, the observed mortality on the day is in 

general lower, probably because people go out less, and are therefore either less likely to report 

a death or less likely to expose themselves to health risks on an unusually cold day. However, 

this effect is small compared to the additional mortality that follows on the next days, probably 

because people contract weather-sensitive pathogens the health effects of which only become 

visible after a few days. By contrast, we find that a hot day above 32°C has a strong and 

immediate effect on mortality but this effect is statistically significant only for the first two 

days, after which coefficients tend to become systematically negative although not statistically 

significantly so. 

Figure A3: Impact within 31 days of a cold day (<12°C – panel A) or a hot day (>32°C – 
panel B) on daily mortality rate per 100,000 inhabitants 

 

Note: These two graphs are obtained from the same regression, considering all Mexican people and all causes of death (1998-
2017). Unit is deaths per 100,000 inhabitants. Each diamond corresponds to an estimated coefficient from the distributed lag 
model for days below 12°C (Panel A) or above 32°C (Panel B). Shaded areas correspond to the 95 percent confidence interval 
obtained for each estimated coefficient. 14,231,164 observations. The regression controls for the daily precipitation level and 
includes day by month by year fixed effects, municipality by calendar day (1st January to 31st December) fixed effects, and 
municipality by year fixed effects. 
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Appendix A7: Years of life lost estimates 

The estimates by age group are informative about the impact of cold on longevity. We calculate 

the annual total of years of life lost associated with outdoor temperature exposure for the 

Mexican population by using the life expectancy estimates of the Mexican life table of 2010 

available from the Global Health Observatory data repository (WHO, 2010). Results are 

calibrated based on the death estimates of Table 3, which assume a population of 129 million 

(2017 estimate). Results are synthesized in Table A4. Deschenes and Moretti (2009) provide 

similar calculations of years of life lost for the US. In total, they find that people over 75 lose 

106,405 years of life annually. However, the cumulative number of years of life lost in a year 

for children under 5 is only 5,410 (compared to 24,724 in Mexico). The impact of cold weather 

on infant mortality is therefore possibly higher in the case of Mexico. We also find high impacts 

for people above 55. This result implies that priorities for policy makers in both countries may 

have to be different. US policies to reduce weather-related mortality may need to focus on the 

elderly (>75), whereas emerging countries like Mexico may need to tackle mortality effects 

across a wider age range. 

Note that some values are negative because the reference bin of 24-28°C is not the one that 

records the lowest mortality for an age group. However, none of the negative values are 

statistically different from zero. 

Table A4: Years of life lost estimates by age group and temperature level 
Age group All years of life lost <24°C >28°C 

0-4 24,724 23,662 1,061 
5-9 -16,925 -16,933 8 

10-19 -18,367 -24,650 6,282* 
20-34 -20,727 -26,672 5,945 
35-44 2,299 -3,056 5,355 
45-54 62,882* 52,203* 10,678* 
55-64 131,522* 126,320* 5,202 
65-74 86,779* 83,328* 3,451 
75+ 115,371* 103,377* 11,993* 

Note: These are estimates of the total number of years of life lost for each age category. They are obtained by multiplying the 
estimated number of deaths in table 3 with the remaining life expectancy of each age group. Life expectancy is obtained from 
the life table of 2010 for Mexico, which is accessible from the Global Health Observatory data repository. Note that the 
calculation of the years of life lost assumes the same life expectancy for those who died from cold as for those who did not. 
This is an approximation with no consequence on the international comparison: the US figures were obtained based on the 
same assumption (Deschenes and Moretti, 2009). However, we may overestimate the total years of life lost. An asterisk 
(*) denotes statistically significant results at 10%. 
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Appendix A8: Impacts of Climate Change 

We calculate the number of weather-related deaths under climate change based on the output 

of the climate model GFDL CM3 for 2075-2099 (Universidad Nacional Autónoma de México. 

Centro de Ciencias de la Atmósfera. Unidad de Informática para las Ciencias Atmosféricas y 

Ambientales, 2014a, 2014b, 2014c). Annual death estimates under climate change are provided 

in Table A5. Because the frequency of cold and mildly cold days is expected to decrease, the 

number of deaths imputable to temperatures reduces with the forecasted temperatures of GFDL 

CM3 as compared with the historical ones. With the RCP 4.5 scenario (low GHG emissions), 

temperature-related mortality would be about 27% smaller. The RCP8.5 scenario (high GHG 

emissions) corresponds to a 20% reduction in the estimated relationship between mortality and 

temperature. The reduction in weather-related deaths is smaller due to a surge in heat-induced 

deaths. While cold represents more than 90 percent of deaths today, it could represent less than 

30 percent of deaths under RCP 8.5. We show in section IV that weather-related mortality 

affects mostly people in the first two quartiles of the income distribution, suggesting that the 

reduction in the exposure to cold weather associated by climate change could lead to a reduction 

in mortality inequality. Therefore, in Mexico, we predict that climate change will reduce the 

impact of short-term weather variability on mortality, with significant health benefits. However, 

this analysis comes with serious warnings: climate change could also affect mortality through 

increased frequency of natural catastrophes and not only through temperatures; our analysis at 

the daily level does not allow for acclimatization; and we could be underestimating the impact 

of increased heat waves if the effect of heat grows non-linearly beyond 32°C days. In addition, 

our model includes municipality-by-year fixed effects and time fixed effects which control for 

income and for the general health of the population. Climate change may impact income, or the 

general health of the population, and these factors may in turn impact mortality.  

Table A5: Impact of temperatures on annual deaths in several climate scenarios 
Number of deaths Total <24°C >28°C 

Historical data 26,324 24,016 2,308 
  (19,250-33,398) (17,037-30,995) (1,465-3,150) 

Climate scenarios:     
RCP 4.5 19,232 11,696 7,536 

(GFDL CM3) (14,168-24,297) (6,972-16,420) (5,434-9,639) 
RCP 8.5 20,928 5,933 14,995 

(GFDL CM3) (16,080-25,776) (2,651-9,214) (11,112-18,879) 
Note: The 95% confidence intervals only take into account the uncertainty of the impact of temperature bins on mortality. They 
do not take into account the uncertainty of climate models in the distribution of daily temperatures. Estimates are for a 
population of 129 million inhabitants and, therefore, do not take into account population growth in Mexico.  
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B – ROBUSTNESS CHECKS FOR THE TEMPERATURE-

MORTALITY RELATIONSHIP 

Appendix B1: Minimum and maximum temperatures 

Minimum and maximum temperatures. In the baseline model, we correlate mortality with the 

average temperature in a day. No consideration is made for within-day variation. Yet, intra-day 

variation is large (see Table B1). To investigate this issue, we run a specification of the 

distributed lag model where we calculate separate effects for minimum and maximum 

temperatures (Figure B1). In both cases, we find the same typical U-shape relationship as when 

using the daily average temperature. 

Table B1: Intra-day variation by temperature bin, as characterized by the difference in 
average daily minimum and maximum temperature bins in our data 

 Daily minimum temperature Daily maximum temperature 
Temperature bin Average Standard deviation Average Standard deviation 

<12°C 2.5 3.3 18.0 3.6 
12-16°C 6.6 2.7 22.2 2.6 
16-20°C 10.4 2.6 25.7 2.5 
20-24°C 14.5 2.6 29.4 2.5 
24-28°C 19.2 2.5 32.9 2.3 
28-32°C 22.4 1.8 36.4 2.2 
>32°C 24.9 1.9 41.3 2.0 
Total 12.8 6.0 27.7 5.4 

Figure B1: Impact of minimum (left panel) and maximum (right panel) daily 
temperatures on 31-day cumulative mortality, in deaths per 100,000 inhabitants. 

 

Notes. The dependent variable is the daily mortality rate at the municipality level. The graph shows the cumulative, 31-day 
effect of a day with a temperature falling within each bin. The diamonds show the 31-day multiplier, and is reported in deaths 
per 100,000 inhabitants on the y-axis. The estimates displayed on the left panel (minimum temperature) and right panel 
(maximum temperature) have been estimated jointly and come from the same fixed effect regression. Therefore, the impact of 
a given day on mortality is given by the effect of the minimum temperature on this day, plus the effect of the maximum 
temperature on this day. Shaded areas correspond to the 95 percent confidence intervals (standard errors clustered at 
municipality level). The regression controls for daily precipitation level and includes municipality-by-calendar-day fixed 
effects, municipality-by-year fixed effects, and a fixed effect for each specific date (day, month and year). It is weighted by 
municipal population. 
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Appendix B2: Heterogeneous effects over time 

Effects in different years. We run our model on six periods: 1998-2000, 2001-2003, 2004-

2006, 2007-2009, 2010-2012 and 2013-2017. The coefficients vary slightly across periods but 

no clear pattern emerges. 

Figure B2: Impact of temperature bins on 31-day cumulative mortality for 6 periods 

 

 

 
Notes: The graphs are calculated separately for six periods. They show the cumulative effect of a day with a temperature within 
each bin (relative to the 24°C-28°C category) obtained from a dynamic model with 30 lags. The diamonds show the sum of the 
coefficients on these thirty lags in each category. Shaded areas correspond to the 95% confidence interval. The dependent 
variable is the daily mortality rate at the municipality level. The regressions controls for daily precipitation level and includes 
day-month-year fixed effects, municipality-by-calendar-day and municipality-by-year fixed effects. They are weighted by 
municipal population. 



14 
 

Effects for weekdays and weekends. The upper panels of Figure B3 provide the 31-day 

cumulative mortality estimates for hot and cold days, depending on whether they fall on a 

weekday (upper left panel) or the weekend (upper right panel). 

Rural versus urban areas. We assess if short-run vulnerability to temperatures differs between 

people living in large vs. small municipalities. Results are displayed on the lower panels of 

Figure B3. Impacts suggest similar vulnerability to unusual cold and hot weather for small and 

large municipalities. 

Figure B3: Impact of temperature bins on 31-day cumulative mortality in small vs. large 
municipalities, and on weekdays vs. weekends. 

 

 
Notes. The graphs have been obtained separately. They show the cumulative effect of a day with a temperature within each bin 
based (relative to the 24-28°C category) obtained from a dynamic model with 30 lags. Regressions in the upper panels estimate 
the temperature-mortality relationship separately for weekdays (upper left panel) and weekends (upper right panel). 
Regressions in the lower panels estimate the temperature-mortality relationship separately for populations living in 
municipalities with less than 10,000 inhabitants (lower left panel) or more than 10,000 inhabitants (lower right panel). The 
diamonds show the sum of the coefficients on these thirty lags in each category. Shaded areas correspond to the 95% confidence 
interval. The dependent variable is daily mortality rate at the municipality level. The regressions control for daily precipitation 
level and include a range of day-month-year fixed effects, municipality-by-calendar-day fixed effects, and municipality-by-
year fixed effects. All regressions are weighted by municipal population. 
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Appendix B3: Acclimation 

Effects by climate region. The INEGI provides a detailed map of Mexico with a typology of 

21 climates (INEGI, 2008b). We have simplified this typology and broken down Mexico into 

3 climate categories (see Figure B4): very warm and warm (covering very dry, dry, semi-dry, 

humid and semi-humid regions that are also very warm and warm); semi-warm; cold and 

temperate (covering cold, semi-cold and temperate regions).  

Figure B4: Map of Mexico distinguishing between climates 

 
We have matched the boundaries of the Mexican municipalities (INEGI, 2010) with the 

boundaries of these three climatic categories by assigning a climate to each point of the polygon 

that corresponds to the boundaries of a municipality and calculating the share of delimiting data 

points that fall in a given climate for each municipality. We then run three regressions by 

weighting observations based on this share.  

The output of the separate regressions is provided in Figure B5. There seems to be some form 

of acclimation: colder regions seem more sensitive to heat and warmer regions more sensitive 

to cold. 
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Figure B5: Mortality impacts by climate region in Mexico 

 

 

 
 

Notes: The graphs show the cumulative effect of a day with a temperature within each bin (relative to the 24°C-28°C category) 
obtained from a dynamic model with 30 lags, for three different types of regions, sorted according to their climate: cold and 
temperate regions (upper panel), semi-warm regions (central panel), and warm regions (lower panel). The diamonds show the 
sum of the coefficients on these thirty lags in each temperature bin. Shaded areas correspond to the 95 percent confidence 
interval. The dependent variable is the daily mortality rate at the municipality level. The regressions control for daily 
precipitation level and include a range of day-month-year fixed effects, municipality-by-calendar-day fixed effects and 
municipality-by-year fixed effects.  
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Relative temperatures. Instead of using absolute temperature bins, we calculate deviations from 

the average temperature in each location to construct relative temperature bins with a 4°C 

window. The average temperature in each municipality is obtained by averaging all daily 

temperatures over 1961-2018. We then rerun our distributed lag model with the newly 

constructed temperature bins. These include deviations between -8°C and below and +8°C and 

above with respect to the average of each municipality. The 31-day cumulative results for all 

the population and causes of deaths are displayed in Figure B6. Results show a strong impact 

of cold and mildly cold days – relative to average temperature – on mortality. 

Figure B6: Impact of temperature bins on 31-day cumulative mortality, in deaths per 
100,000 inhabitants, using relative temperature bins 

 
Notes. The graph shows the cumulative effect of a day with a relative temperature within each bin (relative to the 0°C to 4°C 
category) obtained from a dynamic model with 30 lags. The diamonds show the sum of the coefficients on these thirty lags in 
each category. The shaded area corresponds to the 95 percent confidence interval. The dependent variable is the daily mortality 
rate at the municipality level. The regression controls for daily precipitation level and includes a range of day-month-year fixed 
effects, municipality-by-calendar-day and municipality-by-year fixed effects. It is weighted by municipal population.  
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Appendix B4: Relaxing the fixed effects used in the baseline model 

In Figure B7, we use fewer fixed effects than in the baseline model. We only use day-month-

year fixed effects and municipality fixed effects in specification 1. We complement them with 

municipality-by-calendar-day fixed effects in specification 2. Specification 3 includes day-

month-year fixed effects and municipality-by-year fixed effects. Controlling for seasonality (as 

in specification 2) seems necessary to properly identify the relative contribution of cold and hot 

days on mortality.  

Figure B7: Impact of temperature (in °C) on mortality using different sets of fixed 
effects 

 

 

 

 

Notes. The graphs show the cumulative effect of temperature bins on mortality (relative to the 24°C-28°C category) obtained 
from a dynamic model with 30 lags, based on three different specifications. In all specifications, the diamonds show the sum 
of the coefficients on these thirty lags in each category. The shaded area corresponds to the 95 percent confidence interval. The 
dependent variable is the daily mortality rate at the municipality level and the regressions are weighted by municipal population. 
The regressions control for daily precipitation level and include different fixed effects: specification 1 includes day-month-year 
fixed effects and municipality fixed effects; specification 2 includes day-month-year fixed effects and municipality-by-
calendar-day fixed effects; and specification 3 includes day-month-year fixed effects and municipality-by-year fixed effects. 

  

Specification 1 Specification 2 

Specification 3 
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Appendix B5: Temperature leads 

We ran a placebo test with the leads of the temperature bins used as explanatory variable. To 

do so, we added 15 leads for all the temperature bins of our distributed lag model. In Figure B8 

below, we report the estimates for each coefficient of the 15 leads, the contemporaneous effect 

and the 30 lags for the “below 12°C” temperature bin. We observe a clear extra mortality effect 

for the contemporaneous effect and nearer lags: if a cold day occurred less than 1 week ago, 

then mortality is impacted. The 31-day cumulative impact is 0.247 deaths per 100,000 

inhabitants (standard error of 0.027). We also observe a statistically significant effect of the 

first temperature lead on mortality (-0.033, standard error of 0.015). This is probably because 

either people anticipate low temperatures and reduce their exposure to cold, or because the first 

lead strongly correlates with the on-the-day minimum temperature. We observe no clear pattern 

for leads after the 1st lead. The cumulative effect for leads 2-15 is close to zero and not 

statistically significant (0.004, standard error of 0.019). 

Figure B8: Impact of the lags and leads of the “below 12°C” bin on mortality, in deaths 
per 100,000 inhabitants 

 
Notes: The graphs show the coefficient value and 95% confidence interval (shaded area) for the below 12°C category 
(relative to the 24°C-28°C category) obtained from a dynamic model with 15 leads (on the left, from -1 to -15) and 30 lags 
(on the right, from +1 to +30). The dependent variable is the daily mortality rate at the municipality level. The regression 
controls for daily precipitation level and includes day-month-year fixed effects, municipality-by-calendar-day fixed effects and 
municipality-by-year fixed effects. It is weighted by municipal population.  
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Appendix B6: Contemporaneous model 

Due to an omitted variable bias, correlating today’s temperatures with today’s mortality will 

lead to biased estimates of the impact of temperature on mortality if no account of the 

temperatures of the previous days is made. Figure B9 displays the impact of the day’s 

temperature on mortality for the whole Mexican population and all causes of death when no 

lagged temperature bins are included in the model. This can help the reader assess the 

magnitude and the direction of the bias produced in this case. The model with only 

contemporaneous temperatures underestimates the effect of cold. 

Figure B9: Impact of the day’s average temperature on daily mortality, in deaths per 
100,000 inhabitants 

 
Notes. The dependent variable is the daily mortality rate at the municipality level. The graph shows the contemporaneous effect 
of a day with a temperature within each bin (relative to the 16°C-20°C category). The diamonds show the average point 
estimate, reported in deaths per 100,000 inhabitants on the y-axis. The shaded area corresponds to the 95 percent confidence 
interval. The regression controls for daily precipitation level and includes day-month-year fixed effects, municipality-by-
calendar-day fixed effects and municipality-by-year fixed effects. It is weighted by municipal population. 
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Appendix B7: Considerations regarding omitted variable bias 

Controlling for lagged precipitations and evaporation levels. We run an additional model in 

which we add lagged precipitations and lagged evaporation levels in the model. The results for 

temperature, displayed below, are very similar.  

Figure B10: Cumulative 31-day impact of temperatures when controlling for lagged 
precipitations and evaporation levels

 
Notes: The graph shows the cumulative effect of a day with a temperature within each bin (relative to the 24°C-28°C category) 
obtained from a dynamic model with 30 lags. The diamonds show the sum of the coefficients on these thirty lags in each 
category. The shaded area corresponds to the 95 percent confidence interval. The dependent variable is the daily mortality rate 
at the municipality level. The regression controls for the daily and lagged precipitation and evaporation levels. It also includes 
day by month by year fixed effects, municipality by calendar day (1st January to 31st December) fixed effects, and municipality 
by year fixed effects. 

Controlling for pollution (Mexico City only). Another issue could be that our results are driven 

by air pollution or by the interaction between air pollution and temperature. We collected data 

for outdoor air pollution for Mexico City, where pollution is monitored for several pollutants 

and daily information on air quality is directly accessible from the Dirección de Monitoreo 

Atmosférico (1998-2017). The Mexican air quality index data (IMECA) has been downloaded 

from their website for the period 1998-2017 and we use the data for Central Mexico City as a 

control variable in our distributed lag model. For this purpose, we produced 4 air quality bins 

and 30 daily lags for each. We then run the model on all the municipalities located in the 
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Mexican Federal District. The left panel of Figure B11 displays the impact of temperature on 

mortality for the Federal District. The maximum temperature bin in Figure B11 is “above 24°C” 

because Mexico is in the mountains and temperatures rarely go beyond that point. The solid 

line is the effect obtained after controlling for pollution. The shaded area corresponds to the 95 

percent confidence interval. For comparison, we also report the average effect of temperature 

for the Federal District when we do not control for pollution (dashed line). Results are very 

similar, suggesting that temperature and pollution convey two separate effects on mortality.  

The right-hand side of Figure B11 reports the results obtained for the effect of pollution in 

Mexico City, using the Mexican air quality index data (IMECA). We have added 4 air quality 

bins and 30 daily lags for each to our baseline distributed lag model. We find significant 

mortality effects after 31 days caused by poor air quality (IMECA between 200-250). However, 

days with extremely poor air quality (IMECA over 250) are correlated with less mortality. 

These days are extremely rare (around 1 every 400 days), suggesting that people may adapt to 

these terribly polluted days (e.g. by not going out), explaining the lower mortality levels 

recorded in the data.  

Figure B11: Impact of temperature and air quality on 31-day cumulative mortality, in 
deaths per 100,000 inhabitants in the Federal District of Mexico 

  
Notes. The dependent variable is daily mortality rate per 100,000 inhabitants at the municipality level. The regression controls 
for the daily precipitation level and includes day-by-month-by-year fixed effects, municipality-by-calendar-day (1-365) fixed 
effects, and municipality-by-year fixed effects, as well as a wide range of controls for pollution on the same day and over the 
past 30 days. In the left panel, the graph shows the cumulative effect of a day with a temperature within each bin based (relative 
to the >24°C category) obtained from a dynamic model with 30 lags run for populations living in any municipality part of the 
Federal District of Mexico. The diamonds on the dashed blue line show the sum of the coefficients on these thirty lags in each 
category. The shaded area corresponds to the 95 percent confidence interval, with municipality-level clusters. For comparison, 
the average effects obtained for the Federal District without the air pollution controls are represented by the short-dashed line 
in grey. In the right panel, we provide the impact of the different pollution bins. It shows the cumulative effect of a day with 
an air quality index falling within each bin (relative to the “<100” category (cleaner air)). 

Indoor air pollution could also be a confounding factor explaining our results. As already 

mentioned, there is no clear difference in estimates between rural areas (where wood might be 

sourced and used for heating) and urban areas (see Figure B3). Since 75 percent of the Mexican 
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population lives in urban areas,5 our results cannot be primarily driven by the interaction 

between temperature and indoor pollution through the use of solid fuels for heating (or 

cooking). However, the use of solid fuels could still be a contributing factor explaining high 

vulnerability in Mexico. In the national Income and Household Expenditure Surveys, 15.5 

percent of Mexicans used wood (15.24 percent) or coal (0.21 percent) as the main cooking fuel 

in 1998. This proportion is stable over time: in the 2010 survey, 14.4 percent of households 

were using either wood or coal, and 14.5 percent in 2016. 

  

 
5 Own calculation based on 2000 Census data. 
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Appendix B8: Comparison of our main results with related studies 

The methodology and data used in this paper are very close to Deschenes and Moretti 

(2009). These authors use a similar 30-day distributed lag model. Their estimates are close to 

ours (0.20 deaths per 100,000 inhabitants for days between 40°F and 50°F (4.4-10°C)), but this 

is for a much older population in the US compared to Mexico. For the 64-75 age group, 

Deschenes and Moretti (2009) report an increase in mortality by 0.2915 and 0.1839 deaths per 

100,000 inhabitants from an exposure to a day at 30°F (-1.1°C) respectively for males and 

females. For this same age group, we observe an increase in mortality by 0.872 deaths per 

100,000 inhabitants for days below 12°C. Therefore, our estimates of weather vulnerability 

seem larger in Mexico compared to the US. 

The estimates by Deschenes and Moretti (2009) are in line with those obtained in other studies 

for the US. Barreca (2012) finds that a day between 40°F and 50°F (4.4-10°C) increases the 

monthly mortality rate by 4.5 people per 100,000 inhabitants. This corresponds to a daily 

mortality rate of 0.15 people per 100,000 inhabitants (95% confidence interval = 0.09-0.22). 

Using annual data, Deschenes and Greenstone (2011) find that a day between 40°F and 50°F 

(4-10°C) increase mortality by 0.27 deaths per 100,000 inhabitants as compared to a day 

between 50°F and 60°F (10-15.5°C).  

One reason why Mexicans could be more vulnerable to cold than Americans could be 

acclimation: since they live in a hot country, Mexicans may be less prepared to face low 

temperatures. However, our results suggest that Mexicans could also be more vulnerable to 

high temperatures. For a day above 90°F (32.2°C), Deschenes and Moretti (2009) find no 

evidence of an impact of heat on mortality after 30 days. They find a highly positive impact of 

temperatures on mortality on the first days of heat waves but compensated for in the short run 

due to a harvesting effect. For the same level of temperatures, we find a statistically significant 

and positive impact of hot days on 31-day cumulative mortality: with temperatures above 32°C, 

the mortality rate is, on average, higher by 0.20 deaths by 100,000 inhabitants in Mexico. 

However, Barreca (2012) and Deschenes and Greenstone (2011) do find a mortality impact of 

hot days: respectively 0.17 and 0.92 deaths per 100,000 inhabitants for temperatures above 90°F 

(32°C). The impact found by Barreca (2012) using mortality data is therefore comparable to 

ours in magnitude. As for Deschenes and Greenstone (2011), they use annual data over a long 

time period (1968-2002) so as to capture indirect effects of temperatures on mortality through 

other channels (e.g. agricultural and industrial output, and therefore income, employment, 
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access to healthcare, etc.). Their estimates would indicate stronger vulnerability in the US but 

are not as easily comparable to our results, not only because we use with daily data but also 

because we look at a different time period.  

Outside of the US, evidence has been reported in a large number of studies. We briefly compare 

ours with the study on Mexico by Guerrero Compeán (2013), the one on India by Burgess et al. 

(2014), and the multi-country analysis of Gasparrini et al. (2015). 

Guerrero Compeán (2013) conducted a similar study on temperature and mortality in Mexico. 

Our results differ from Guerrero Compeán (2013) since this study finds that heat could have a 

stronger impact than cold on mortality. Nonetheless, the point estimates of Guerrero Compeán 

(2013) are imprecisely estimated (e.g. the 10-12°C bin is not statistically different from any 

other bin, except for the 26-28°C bin). Furthermore, Guerrero Compeán (2013) uses a 

specification at annual level. Specifications with annual variations recover the impact that 

temperatures may have on health through indirect channels, e.g. reductions in agricultural yields 

or income. Results are therefore not directly comparable. 

Let us now turn our eyes to the results obtained by Burgess et al. (2014) for India. These authors 

use a log-linear model to estimate the impact of temperatures on annual mortality. They find 

impacts of a much higher magnitude for India as compared to the US estimates of Deschenes 

and Moretti (2009). For cold, the coefficient of their model is not statistically significant at the 

lower limit of 10°C or below possibly due to the small frequency of such cold days in their data. 

However, they find that the log annual mortality rate increases by 0.004 for each day between 

10-12°C and by 0.007 for each day between 14°C. In other words, an additional day between 

10-14°C increases the annual mortality rate by about 0.4-0.7% in India. For heat, they find that 

an additional day above 32°C increases the annual mortality rate by about 0.5-1%. 

We may compare these figures with ours, taking into considerations that our study uses daily 

data and therefore is not fully comparable. The average daily mortality rate is around 1.36 

deaths per 100,000 inhabitants in Mexico. Converted to an annual rate, this corresponds to about 

496 deaths per 100,000 inhabitants. In this context, our estimate of an extra 0.26 deaths per 

100,000 inhabitants caused by a day below 12°C roughly represents a marginal increase of 

about 0.05% in the annual death rate. Likewise, the estimate of 0.20 deaths per 100,000 due to 

a day above 32°C corresponds to a marginal increase in the annual death rate by 0.04%. The 

relative impact of cold and heat on mortality in Mexico seem much lower than in India. 
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Finally, the multi-country analysis by Gasparrini et al. (2015) comes up with similar 

conclusions to ours. These authors find that both unusual heat and unusual cold have an impact 

on mortality. However, due to the higher frequency of cold days, these represent a much larger 

share of weather-induced mortality. 
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C – IMPACTS BY QUARTILES OF PREDICTED INCOME 

Appendix C1: Method to predict income quartiles, produce age-corrected 

quartiles and use an alternative indicator of poverty 

Income is not reported on death certificates. We use data from the 2000 Mexican census to 

estimate income levels at the moment of death in our mortality dataset.6 To do so, we run a 

simple regression with data from the Mexican census where we predict income 𝑦!	of each 

individual h with a series of independent variables also present on death certificates. The 

regression used to predict income is: 

log(	𝑦!) = 𝜓𝑊! + 𝜔",$ + 𝜔! 

Where 𝑦! is personal income for individual h in 2000 Mexican pesos, calculated as total 

household income divided by the square root of the number of people in the household 

(to account for economies of scale within households). Because personal income has a skewed 

distribution, we take the natural log to improve the fit of the model and the accuracy of 

predictions. 𝑊! is a vector of independent variables that include gender, age, civil status, 

occupation, education level and healthcare registration. It also includes a quadratic term for age 

and interaction terms between age (and age squared) and occupation to account for experience 

at work. 𝜔",$ is a fixed effect that takes into account that income may vary by municipality. 

Because professions are recorded with a different, non-comparable nomenclature from 2013 

onwards, we performed the analysis with data from 1998 to 2012 only. Within a given 

municipality, we also distinguish between people living in urban areas (e.g. the city centre) and 

those living in rural areas. Thus, 𝜔",$ is a municipality i by-urban/rural area r fixed effect 

(𝑟𝜖{𝑟𝑢𝑟𝑎𝑙, 𝑢𝑟𝑏𝑎𝑛}). Finally, 𝜔! is an idiosyncratic error term and 𝜓 is a vector of coefficients 

estimated from the regression. The regression coefficients are weighted using the weights 

provided in the publicly available sample of the 2000 Census, which includes about 10 percent 

of the Mexican Population. The output of this estimation is presented below.  

 
6 We therefore only exploit cross-sectional information to predict income quartiles. A complementary possibility 
would have been to use the data from the 2010 census as well. However, the 2010 census does not report total 
income, but only income from work. This is a limitation and we therefore preferred to use the 2000 data only. 
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Table C1: Regression used to predict income levels 

Dependent variable Log(Personal income) 

Age -0.0089 
(0.0008) 

Age squared 0.0001 
(0.00005) 

Female -0.0037 
(0.0014) 

Fixed effects:  

Civil status Yes 
Occupation Yes 

Social security affiliation Yes 
Educational level Yes 
Municipality and 

rural/urban area Yes 

Interactions:  
Civil status x gender Yes 

Occupation x age Yes 
Occupation x age squared Yes 

R2 0.44 
Number of observations 8,756,128 

Notes. Cluster-robust standard errors at the level of municipalities in brackets. 

The regression results are consistent with economic theory (higher experience or education is 

correlated with higher income) and the model captures a large share of the variation in revenues 

(R2=0.44).  

We use these regression results to predict the income level of deceased people, for whom we 

have the socio-demographic information reported on the death certificates (see Appendix A3 

for the list of demographic variables available and Appendix A2 for an example of a death 

certificate). To make income predictions, we restricted the independent variables used in the 

income regression to those that are also present on the death certificates. 

We then use predicted income values and predicted standard errors to assign a probability of 

each observation to belong to an income quartile. We use these probabilities to estimate the 

proportion of people in each municipality i whose predicted income would have fallen within 

income quartile κ, and the proportion of deaths in each municipality with a predicted income 

likely to belong to quartile κ. We then compute daily mortality rates by income quartile for each 

municipality i at time t. With this method, we are able to assign an income quartile to 81.6% of 

deaths. For that reason, we augment all estimated impacts by a factor of 1/0.816. 
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The daily mortality rates by income quartile can be used to run separate distributed lag models 

for each income quartile.7 The advantage of this approach is its high flexibility since the 

mortality impact of each temperature bin is estimated separately for each income quartile. The 

results however rely on predicted income values due to the absence of such information on 

death certificates. The main drawback is a loss of precision in the estimates due to measurement 

errors in the dependent variable. 

We have run separate regressions of Equation 1 for each income quartile. The main results are 

displayed in Figure 3 in the core of the text. 

Age-corrected income quartiles. For a given age, we can determine the relative position of an 

individual compared to all the people of the same age. Therefore, we can create age-specific 

quartiles, and reclassify people in the 1st, 2nd, 3rd or 4th quartile of income depending on whether 

they are rich or poor conditional on their age. For example, someone relatively old may earn 

less than the median income of the Mexican population, but still be relatively richer than the 

median old person. In this case, s/he may belong to the 3rd or 4th age-corrected income quartile, 

even if his/her income level is lower than the median income level for all Mexicans, including 

those in working-age. Table 4, panel B, presents the results of the age-corrected regressions by 

income quartiles for all causes of death. To ease comparability, results are normalised according 

to the average daily death rate registered in each quartile.  

Defining quartiles with a poverty indicator. Instead of using income levels to create quartiles 

of population, we can use alternative metrics of wellbeing and living conditions. In Table 4, 

panels C and D, we use a composite indicator inspired from the marginality index of the 

Mexican Council of Population (CONAPO). 

The index of the CONAPO classifies localities according to their degree of marginality 

(from very low to very high) and has been used by government to design social policies. The 

indicator of the CONAPO relies on eight variables available from the Mexican censuses. The 

Council calculates (1) the share of the population of aged 15 or more who is analphabetic; (2) 

the share of the population of aged 15 or more who did not complete primary education; (3) the 

average number of occupants per room; (4) the share of households without exclusive toilet; 

(5) the share of households without electricity; (6) the share of households without current water 

 
7 Even though we are using predicted mortality rates, standard errors using clustering are valid and there is no need 
for bootstrapping: this is because these predicted rates are used as the dependent variable. Using predicted instead 
of actual values therefore increases measurement errors in the dependent variable and this directly affects the 
statistical power of our regressions.  
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within their property; (7) the share of houses or flats with earthen floor; and (8) the share of 

houses or flats with no refrigerator. 

We construct an individual-specific poverty indicator based on the features used by CONAPO 

to classify localities by level of marginality. Since we want an indicator which is equally 

reflective of poverty for children and adults, we only consider the last five characteristics listed 

above (4-8): children under a certain age are necessarily analphabetic and cannot have 

completed primary education. Likewise, a relatively high amount of occupants per room has 

not exactly the same relevance in terms of living conditions if these include small kids. 

We compute an exclusion indicator that ranges from 0 (no exclusion) to 5 (strong exclusion) 

for each individual in the Census. If an individual belongs to a household that has exclusive 

toilets, electricity, current water, a proper floor (not an earthen one) and a refrigerator, then the 

poverty indicator equals 0. If one of these elements is missing, the indicator is equal to one; if 

two of these elements are missing, the indicator is equal to two; and so on. The maximum value 

of 5 is given to households that have no exclusive toilets, no electricity, no current water, an 

earthen floor in the house and no refrigerator. These are obviously consistent with very 

precarious living conditions. 

Once the indicator has been computed for each person in the sample of the 2000 Census, the 

exact same methodology is applied as for income to create quartiles and age-corrected quartiles. 

In short, we run a linear regression to predict the value taken by the poverty indicator based on 

a series of observables that are both present in the Census and in the mortality data. We then 

make out-of-sample predictions of the indicator on the deceased to proxy living conditions at 

the moment of death. Then, we separate the population of the deceased and the living in 

quartiles (from low to high living conditions) and run the econometric model separately by 

quartile (see Table 4, panels C and D).  
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Appendix C2: Effects by quartile of predicted income and selected type of 

diseases 

We provide estimates for the number of deaths by income quartile and death causes (without 

age correction). We find that differences in vulnerability may mostly come circulatory system 

diseases and respiratory system diseases. Some other less common disease types also seem to 

play a role and predominantly affect the first quartile of predicted income. 

Table C2: Weather-induced deaths by predicted income quartile and cause of death  

Cause of death 1st quartile 2nd quartile 3rd quartile 4th quartile 
Infectious diseases -468* 430 439 -26 

Neoplasms 898* -616 -689 772 
Endocrine, nutritional and metabolic diseases 2,273*** 3,118*** 2,272** 1,594** 

Circulatory system diseases 3,691*** 3,209*** 1,667** 1,970** 
Respiratory system diseases 2,435*** 2,064*** 820 438 

Violent and accidental deaths 544 -838 48 -692 
All other diseases 2,199*** 1,195 562 625 

Notes: predictions on the number of deaths caused by all temperature bins, using the distribution of temperatures of Figure 1. 
Each estimate in the Table come from a different regression. Estimates are multiplied by 1/0.816 since we were only able to 
assign a quartile to 81.6 percent of deaths. *, ** and *** respectively denote statistical significance at 10, 5 and 1 percent. 
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D – SEGURO POPULAR 

Appendix D1: Evidence on the overall mortality impact of the Seguro Popular 

Preliminary evidence on the overall mortality impact of the Seguro Popular is provided in 

Cohen (2020). Cohen (2020) uses a staggered difference-in-difference model on the monthly 

mortality data from the INEGI. It estimates 48 coefficients comparing the death rate in control 

and treatment groups for each month before the implementation of the policy in the treatment 

group, and 48 coefficients for each month after implementation. Figure D1 provides results for 

the impact of the Seguro Popular on mortality, as extracted from Cohen (2020).  

Figure D1: Reproduction of the results from Cohen (2020) for the impact of the Seguro 
Popular on all-cause mortality 

 

Notes: See Cohen (2020) for details on the method. The green line indicates the month when the treatment group 
enrols into the Seguro Popular. 

 

There is no effect of the policy before its implementation. Impacts are slightly negative but not 

statistically different from zero during the first two years of implementation and become 

negative and statistically significant at 10 percent during the 3rd year and 5 percent during the 
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4th year. On average, the reduction in mortality during the 3rd and 4th year is equal to around 3.1 

deaths per 100,000 inhabitants per month. It is equivalent to about 7.4 percent of the average 

mortality rate in the sample used in Cohen (2020) (41.77 deaths per 100,000 inhabitants). 

 

Appendix D2: Additional results for the impact of the Seguro Popular on 

weather-related mortality 

Results by age and death cause. In Table D1, the effect of the Seguro Popular seems spread 

out across diseases. We find statistically significant effects for infectious and parasitic diseases, 

and respiratory system diseases. We also find that older people are more likely to benefit from 

the reduction in weather-induced mortality associated with the Seguro Popular (Table D2). 

Table D1: Specifications to assess the impact of the Seguro Popular on weather mortality 
by disease type 

Disease type Infectious 
and 

parasitic 

Neopl. End., 
nutr. and 
metab. 

Circul. Respir. Violent 
and 

accidental 

All other 
diseases 

Seguro Popular:        
x days below 12°C -0.002 0.007 0.003 0.009 -0.003 -0.006 0.004 
 (0.004) (0.008) (0.003) (0.012) (0.005) (0.010) (0. 015) 
x days at 12-16°C -0.004* -0.008 0.002 -0.009 -0.009** -0.0008 -0.015* 
 (0.002) (0.005) (0.002) (0.008) (0.003) (0.007) (0.008) 
x days at 16-20°C -0.004* 0.001 0.002 -0.006 -0.004 0.0002 -0.008 
 (0.002) (0.005) (0.002) (0.007) (0.003) (0.006) (0.007) 
x days at 20-24°C -0.004** -0.001 0.001 0.009 -0.001 0.002 -0.009 
 (0.002) (0.005) (0.002) (0.007) (0.003) (0.006) (0.007) 
x days at 28-32°C -0.005* -0.001 0.001 -0.008 -0.001 -0.011 -0.0001 
 (0.003) (0.007) (0.002) (0.009) (0.003) (0.008) (0.009) 
x days above 32°C -0.010 -0.020 -0.006 -0.010 0.001 0.003 0.005 
 (0.012) (0.031) (0.010) (0.065) (0.017) (0.052) (0.038) 

Notes: ** means statistically significant at 5%. The dependent variable is the monthly mortality rate per 100,000 inhabitants 
for the people without any other health insurance, dying from the diseases covered by the Seguro Popular. Furthermore, each 
column corresponds to people dying from selected disease types. All specifications include municipality by month, 
municipality by year and month by year fixed effects, as well as a dummy variable for the presence/absence of the Seguro 
Popular. The specifications also control for the interaction between the Seguro Popular and precipitations. We also interact 
the municipality-by-month and year-by-month fixed effects with the temperature bins and the level of precipitations. Standard 
errors in brackets are clustered at the level of municipalities and the model is weighted by the population in each municipality 
with no access to any other health insurance. Reference day is 24-28 degrees Celsius.  
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Table D2: Specifications to assess the impact of the Seguro Popular on weather mortality 
by age group 

Age group 0-4 5-9 10-19 20-34 35-44 
Seguro Popular:      
x days below 12°C 0.025 0.002 -0.012 -0.014 0.027 

 (0.064) (0.012) (0.010) (0.015) (0.046) 
x days at 12-16°C -0.023 -0.007 0.002 -0.011 0.011 

 (0.034) (0.006) (0.006) (0.010) (0.025) 
x days at 16-20°C 0.016 -0.001 -0.004 -0.011 -0.006 

 (0.024) (0.005) (0.005) (0.008) (0.021) 
x days at 20-24°C 0.016 -0.004 -0.003 -0.010 0.039* 

 (0.027) (0.005) (0.005) (0.009) (0.022) 
x days at 28-32°C 0.028 0.006 -0.002 -0.004 -0.008 

 (0.029) (0.008) (0.006) (0.011) (0.027) 
x days above 32°C -0.006 -0.040* 0.003 0.038 0.054 

 (0.133) (0.024) (0.025) (0.048) (0.105) 
Age group 45-54 55-64 65-74 >75  
Seguro Popular:      
x days below 12°C -0.024 0.026 -0.001 0.191  

 (0.084) (0.160) (0.262) (0.751)  
x days at 12-16°C 0.018 -0.168** -0.303** -1.330***  

 (0.045) (0.083) (0.138) (0.485)  
x days at 16-20°C -0.038 -0.136* -0.243** -0.232  

 (0.038) (0.072) (0.120) (0.395)  
x days at 20-24°C 0.050 -0.103 -0.184 -0.020  

 (0.035) (0.082) (0.134) (0.403)  
x days at 28-32°C 0.010 -0.183* -0.327* 0.041  

 (0.050) (0.103) (0.176) (0.530)  
x days above 32°C -0.116 0.190 0.279 -1.705  

 (0.260) (0.487) (0.780) (2.641)  

Notes: ** means statistically significant at 5%. The dependent variable is the monthly mortality rate per 100,000 inhabitants 
for the people without any other health insurance, dying from the diseases covered by the Seguro Popular, for all deaths except 
from infectious and parasitic diseases, neoplasms and violent and accidental deaths. Furthermore, each column corresponds to 
people belonging to a different age group. All specifications include municipality by month, municipality by year and month 
by year fixed effects, as well as a dummy variable for the presence/absence of the Seguro Popular. The specifications also 
control for the interaction between the Seguro Popular and precipitations. We also interact the municipality-by-month and 
year-by-month fixed effects with the temperature bins and the level of precipitations. Standard errors in brackets are clustered 
at the level of municipalities and the model is weighted by the population in each municipality with no access to any other 
health insurance. Reference day is 24-28 degrees Celsius.  

Using annual information on the availability of the Seguro Popular (instead of the monthly 

information). We have assumed that, after using municipality by year fixed effects, the month 

of introduction of the Seguro Popular in municipality i (e.g. February versus March) is 

exogenous. This allows us to control for the introduction of the policy in the model with 

interactions. We check that this led to no substantial bias in the estimation of the interaction 

parameters. Below, to construct the interaction parameters between the Seguro Popular and 

temperature, we use an alternative variable that takes the value of 1 in municipality i and year 

t if, during this year or the previous years, someone has died in this municipality while being 
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covered by the Seguro Popular. The variable is therefore invariant at monthly level and 

absorbed by the municipality by year fixed effects. However, we can still assess the impact of 

the interaction terms between this variable and the temperature bins. In Table D3, we reproduce 

some of the results of Table 5 with this variable. Results lose precision but point estimates are 

similar to our baseline results: i.e. colder bins, especially days between 12 and 16°C, would 

lead to a reduction in mortality. 

Table D3: The impact of the Seguro Popular on eligible people, using information on the 
year of introduction of the policy 

Column (1) (2) (3) 
Sample Weather-sensitivea All 55+ (Weather-

sensitivea) 
Seguro Popular:    

x days below 12°C 0.006 -0.012 -0.160 
 (0.023) (0.029) (0.237) 

x days at 12-16°C -0.012 -0.033* -0.379** 
 (0.016) (0.020) (0.160) 

x days at 16-20°C 0.003 -0.017 -0.061 
 (0.013) (0.017) (0.137) 

x days at 20-24°C 0.009 0.002 0.015 
 (0.013) (0.016) (0.129) 

x days at 28-32°C -0.020 -0.036* -0.304* 
 (0.015) (0.019) (0.167) 

x days above 32°C 0.009 0.064 0.818 
 (0.074) (0.095) (0.624) 

Notes: (a) Weather-sensitive death causes are all death causes excluding infectious and parasitic diseases, neoplasms and 
violent and accidental deaths. They therefore include endocrine, nutritional, metabolic, circulatory and respiratory diseases as 
well as all other death causes. *, ** and *** means statistically significant at 10, 5 and 1 percent. The dependent variable is the 
monthly mortality rate per 100,000 inhabitants for the people without any other health insurance, dying from the diseases 
covered by the Seguro Popular, for the group of diseases or people mentioned in each column. All specifications include 
municipality by month, municipality by year and month by year fixed effects, as well as a dummy variable for the 
presence/absence of the Seguro Popular. The specifications also control for the interaction between the Seguro Popular and 
precipitations. We also interact the municipality-by-month and year-by-month fixed effects with the temperature bins and the 
level of precipitations. Standard errors in brackets are clustered at the level of municipalities and the model is weighted by the 
population in each municipality with no access to any other health insurance. Reference day is 24-28 degrees Celsius.  

Results with municipalities with more than 10,000 inhabitants. We provide below the results 

of our main model when we restrict the sample of municipalities to those with more than 10,000 

inhabitants. 
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Table D4: Impact of the Seguro Popular on the eligible population for municipalities 

with more than 10,000 inhabitants 

Seguro Popular:  
x days below 12°C 0.018 

 (0.023) 
x days at 12-16°C -0.029** 

 (0.013) 
x days at 16-20°C -0.016 

 (0.011) 
x days at 20-24°C 0.005 

 (0.012) 
x days at 28-32°C -0.002 

 (0.015) 
x days above 32°C 0.022 

 (0.084) 
Notes: *, ** and *** means statistically significant at 10, 5 and 1 percent. The dependent variable is the monthly mortality rate 
per 100,000 inhabitants for the people without any other health insurance, dying from the diseases covered by the Seguro 
Popular, and for all deaths excluding infectious and parasitic diseases, neoplasms and violent and accidental deaths. The 
specification includes municipality by month, municipality by year and month by year fixed effects, as well as a dummy 
variable for the presence/absence of the Seguro Popular. The specifications also control for the interaction between the Seguro 
Popular and precipitations. We also interact the municipality-by-month and year-by-month fixed effects with the temperature 
bins and the level of precipitations. Standard errors in brackets are clustered at the level of municipalities and the model is 
weighted by the population in each municipality with no access to any other health insurance. Reference day is 24-28 degrees 
Celsius. We only use municipalities with a population above 10,000 inhabitants.  

Impacts of Seguro Popular according to income. We look at the impact of the Seguro Popular 

by quartiles of predicted income below (see Table D5). Results are imprecisely estimated, even 

though the point estimates are negative and strong on mildly cold bins for the 2nd quartile.  

To increase precision, we interact the average income per capita8 in each municipality with our 

policy variable (see Table D6). Results seem to confirm that the effect of the Seguro Popular 

on weather vulnerability has been stronger in poorer municipalities. 

  

 
8 The average is based on the 2000 census. It is obtained by dividing household income by the square 
root of the number of people that compose the household. The 99th percentile of income is excluded 
from the calculation of the average. The population-weighted average for this variable is 2,046, with a 
standard deviation of 903. 
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Table D5: The impact of the Seguro Popular on weather vulnerability by quartile of 

predicted income 

Sample 1st quartile of 
predicted income 

2nd quartile 3rd quartile 4th quartile 

Seguro Popular:     
x days below 12°C 0.039 0.004 -0.028 0.013 
 (0.057) (0.044) (0.049) (0.046) 
x days at 12-16°C 0.01 -0.053 0.014 0.02 
 (0.032) (0.032) (0.033) (0.037) 
x days at 16-20°C -0.014 -0.048 -0.016 0.007 
 (0.026) (0.03) (0.031) (0.031) 
x days at 20-24°C 0.008 -0.008 -0.001 0.027 
 (0.023) (0.029) (0.033) (0.034) 
x days at 28-32°C 0.0003 -0.013 0.023 0.055 
 (0.029) (0.034) (0.038) (0.045) 
x days above 32°C 0.152 0.145 0.214 0.059 
 (0.146) (0.147) (0.205) (0.197) 

Notes: *, ** and *** means statistically significant at 10, 5 and 1 percent. The dependent variable is the monthly 
mortality rate per 100,000 inhabitants from the population belonging to each quartile, for all deaths excluding 
infectious and parasitic diseases, neoplasms and violent and accidental deaths. The specification includes 
municipality by month, municipality by year and month by year fixed effects. The specifications also control for 
the interaction between the Seguro Popular and precipitations. We also interact the municipality-by-month and 
year-by-month fixed effects with the temperature bins and the level of precipitations. Standard errors in brackets 
are clustered at the level of municipalities. Reference day is 24-28 degrees Celsius.  
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Table D6: The impact of the Seguro Popular on weather vulnerability according to the 

average income per capita in each municipality 

Seguro Popular:  
x days below 12°C -0.187*** 

 (0.056) 
x days at 12-16°C -0.041 

 (0.028) 
x days at 16-20°C -0.031 

 (0.028) 
x days at 20-24°C -0.018 

 (0.021) 
x days at 28-32°C -0.005 

 (0.031) 
x days above 32°C -0.0002 

 (0.105) 
  

Seguro Popular x 
Average income per 
capita (‘000 pesos): 

 

x days below 12°C 0.089*** 
 (0.029) 

x days at 12-16°C 0.008 
 (0.012) 

x days at 16-20°C 0.006 
 (0.011) 

x days at 20-24°C 0.011 
 (0.009) 

x days at 28-32°C -0.010 
 (0.012) 

x days above 32°C 0.050* 
 (0.029) 

Notes: *, ** and *** means statistically significant at 10, 5 and 1 percent. The dependent variable is the monthly 
mortality rate per 100,000 inhabitants from all diseases excluding infectious and parasitic diseases, neoplasms and 
violent and accidental deaths. The specification includes municipality by month, municipality by year and month 
by year fixed effects. The specifications also control for the interaction between the Seguro Popular and 
precipitations. We also interact the municipality-by-month and year-by-month fixed effects with the temperature 
bins and the level of precipitations. Standard errors in brackets are clustered at the level of municipalities. 
Reference day is 24-28 degrees Celsius.  
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