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A Additional Tables and Figures

A.1 Additional Tables and Figures: Financial Participation

Appendix Table A.1 documents that physical participants account for only roughly

4% of financial trading (FT) volumes and less than 0.5% of net revenues from financial

trades in 2012.47 It is thus unlikely that physical participants have better information

than financial participants as it relates to profiting from expected day-ahead/real-time

price differences. The fact that physical participants represent such a low percentage

of trading volumes also makes it unlikely that they use purely financial bids to hedge

against day-ahead price and demand uncertainty.

The left panel of Appendix Figure A.1 plots the monthly average hourly volume

of purely financial trades submitted and cleared in the day-ahead market over the

period October 2011 to December 2012. The right panel plots the average for each

hour of the day of trading volumes submitted and cleared for this same time period.

These panels document that the absolute net volume of financial trades submitted and

cleared is larger during the summer months and in the evening, both time periods when

generation unit and system operating constraints are more likely to bind in the real-

time market. That being said, the changes in financial trading volumes across months

and hours documented in Appendix Figure A.1 are relatively small, especially when

compared to the large increase in forward market liquidity due to the introduction of

financial trading.

47This table is reproduced from CAISO’s 2012 Annual Report (CAISO (2012a)).
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Table A.1: Financial Trading Volumes and Revenues by Participant Type in 2012

Average Hourly Megawatts
Trading Entities Virtual Demand Virtual Supply Total

Financial 1,049 757 1,807
Marketer 467 374 841

Physical Generation 61 70 131
Physical Load 8 36 45

Revenues (Million Dollars)
Trading Entities Virtual Demand Virtual Supply Total

Financial 31.2 18.7 49.9
Marketer 6.8 -0.3 6.5

Physical Generation 1.8 0.0 1.8
Physical Load -1.1 -0.5 -1.6

Notes: This is Table E.1 from CAISO’s 2012 Annual Report (CAISO (2012a)). Financial
entities are defined as “participants who control no physical power, do not serve any load, and
participate in only the convergence bidding and congestion revenue rights markets.” In contrast,
generation unit owners are in the “Physical Generation” category while electricity retailers are
in the “Physical Load” category.

Figure A.1: Monthly and Hourly Averages of Trading Volumes

(a) Monthly Averages (b) Hourly Averages

Notes: The left panel of this figure plots the monthly average of the hourly volume of trades
submitted and cleared in the day-ahead market over the period October 2011 to December 2012.
Trades are split by whether the offer corresponded to buying electricity (virtual demand) or
selling electricity (virtual supply) in the day-ahead market. The right panel of this figure plots
the average for each hour of the day of trading volumes submitted and cleared, once again split
out by virtual supply versus virtual demand. These figures are from page 103 of CAISO (2012a).
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A.2 Day-Ahead and Real-time Prices by Service Territory

California is home to three major investor-owned utilities: Pacific Gas and Elec-

tric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric

(SDG&E). Appendix Figure A.2 presents a map of the territories served by each of

California’s investor-owned utilities.

Appendix Figure A.3 presents monthly average day-ahead and real-time prices

paid by each of California’s three major investor-owned utilities.48 Specifically, the

top left panel, the top right panel, and the bottom left panel plot the quantity-weighted

average of prices over locations in the territories served by PG&E, SCE, and SDG&E,

respectively. The bottom right panel of Appendix Figure A.3 plots the monthly aver-

age day-ahead price minus the monthly average real-time price for each of the three

utilities. A vertical dashed black line is placed at February 2011 to indicate that finan-

cial trading was introduced in California’s wholesale electricity market on February 1,

2011. It is immediately apparent from this figure that: (1) before FT, day-ahead prices

are consistently below real-time prices on average and (2) the average day-ahead/real-

time price spread is smaller in absolute value after February 1, 2011.

Appendix Figure A.4 presents daily average day-ahead/real-time price spreads for

each of the 24 hours of the day along with their pointwise 95% confidence intervals.

As before, we focus on PG&E, SCE, and SDG&E. There are separate plots for the

sample periods before versus after FT is introduced.

Appendix Figure A.4 demonstrates that day-ahead/real-time price spreads are

larger in absolute value before the introduction of FT for all three of the utilities. For

example, before FT, day-ahead prices for PG&E are much lower than real-time prices

on average for the hours of 8PM to 12AM. Indeed, prior to FT, the 95% confidence

interval around average price spreads does not include zero for many hours of the day

for all three utilities. In contrast, after FT, the 95% confidence interval covers zero

48As noted in Section I.C, these prices are quantity-weighted averages of the locational prices in each
utility’s service territory. Hourly day-ahead and real-time prices for each utility can be downloaded
from the OASIS API administered by California’s Independent System Operator (CAISO, 2009-2012).
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Figure A.2: Territories Served by California’s Three Major Investor-Owned Utilities

Notes: This is a map of the territories served by each of the three major investor-owned electric
utilities in California. These three utilities are Pacific Gas and Electric (PG&E), Southern
California Edison (SCE), and San Diego Gas and Electric (SDG&E). This map is reproduced
from FERC (2015).

for the vast majority of hours of the day for each of the utilities.

These plots also demonstrate that day-ahead prices are lower than real-time prices

on average for the majority of hours of the day for all three utilities prior to FT. This is

consistent with the results in Borenstein et al. (2008), which argues that large retailers

in California withheld demand from the day-ahead market in order to lower day-ahead

prices prior to FT. This strategy was likely to increase the utility’s profits because it

purchased the bulk of its energy from the day-ahead market. Day-ahead/real-time

price spreads do not seem to be persistently negative or persistently positive after FT.

In Appendix Section C.1, we demonstrate that the post-FT reduction in average

day-ahead/real-time price differences is statistically different from zero. As shown in

Section III.C, the volatility of both day-ahead/real-time price spreads and real-time

prices fell after the introduction of FT. The reduction in both the mean and volatility

of price spreads after February 1st 2011 is consistent with day-ahead prices better

reflecting real-time prices after FT was introduced.
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Figure A.3: Monthly Average Day-Ahead and Real-Time Prices By Service Territory
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Notes: The top left, top right, and bottom left panels of this figure present the monthly average
day-ahead price and the monthly average real-time price paid by PG&E, SCE, and SDG&E
respectively. The bottom right panel presents the monthly average day-ahead price minus the
monthly average real-time price for each of the three aforementioned electric utilities.
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Figure A.4: Hourly Average Day-Ahead/Real-Time Price Spreads: Before and After
Financial Trading
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(a) PG&E, Before Financial Trading
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(b) PG&E, After Financial Trading
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(c) SCE, Before Financial Trading

-3
0

-2
0

-1
0

0
10

D
ay

-A
he

ad
 P

ric
e 

- R
ea

l-T
im

e 
Pr

ic
e 

(U
SD

/M
W

h)

0 6 12 18 24
Hour of the Day

Day-Ahead Price Minus Real-Time Price 95% C.I.

(d) SCE, After Financial Trading

-3
0

-2
0

-1
0

0
10

D
ay

-A
he

ad
 P

ric
e 

- R
ea

l-T
im

e 
Pr

ic
e 

(U
SD

/M
W

h)

0 6 12 18 24
Hour of the Day

Day-Ahead Price Minus Real-Time Price 95% C.I.

(e) SDG&E, Before Financial Trading
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(f) SDG&E, After Financial Trading

Notes: This figure presents the hourly average day-ahead price minus the hourly average real-time price for the
following three electric utilities: Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San
Diego Gas and Electric (SDG&E). We plot hourly average day-ahead/real-time price spreads separately for the
sample periods before versus after financial trading was introduced. This figure also includes the pointwise 95%
confidence interval associated with the average day-ahead/real-time price spread for each hour of the day.
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A.3 Additional Tables and Figures: Implied Trading Costs

A.3.1 Results By Service Territory

Appendix Table A.2 reports estimates of our two measures of implied trading costs

before and after the implementation of FT for the day-ahead/real-time price spreads

corresponding to the territories served by PG&E, SCE, and SDG&E. Recall that,

as discussed in Section IV.B, clower is the smallest value of per-unit trading cost for

which we can reject the null hypothesis that a profitable strategy exists while cupper

is the largest value of trading cost for which we can reject the null hypothesis that

no profitable trading strategy exists. Appendix Table A.2 demonstrates that our

estimates of clower and cupper are substantially lower after the introduction of financial

trading for all three utilities.

The top left panel, the top right panel, and the bottom middle panel of Appendix

Figure A.5 plots the bootstrap distributions of implied trading costs corresponding

to the service-territory-level day-ahead and real-time prices paid by PG&E, SCE and

SDG&E respectively. We plot separate distributions for the pre-FT sample period in

purple and the post-FT sample period in green. The solid vertical lines on each graph

in this figure denote our estimated values for clower (in red) and cupper (in blue) for the

pre-FT sample period while the dashed vertical lines denote our estimated values for

clower and cupper for the post-FT sample.

All three panels of Appendix Figure A.5 indicate that both clower and cupper fell

substantially after the introduction of financial trading. That being said, Appendix

Figure A.6 presents results from a formal test of the null hypothesis that clower and

cupper remained the same after financial trading was introduced.

Specifically, Appendix Figure A.6 plots the bootstrap distribution of the difference

in implied trading costs for each utility before versus after financial trading. The left

vertical line in this figure is the 10th percentile of the distribution of cpre − cpost and

the right vertical line is the 90th percentile of this distribution. If the 10th percentile

9



Figure A.5: Bootstrap Distribution of Implied Trading Costs For Each Service
Territory: Pre-FT in Purple and Post-FT in Green
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Notes: This figure plots the bootstrap distributions of implied trading costs for sample periods
before versus after the introduction of financial trading (“FT”) in purple and green respectively.
The top left panel, the top right panel, and the bottom middle panel of this figure focus on
the implied trading costs associated with the day-ahead/real-time price spreads faced by PG&E,
SCE, and SDG&E respectively. The solid vertical lines on each graph in this figure denote our
estimated values for clower (in red) and cupper (in blue) for the pre-FT sample period while the
dashed vertical lines denote our estimated values for clower and cupper for the post-FT sample.
Implied trading costs clower and cupper are defined in Section IV.B.
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Table A.2: Implied Trading Costs by Territory (in USD/MWh)

Utility Before FT After FT

Lower 5% C.I. PG&E 8.518 6.614
(clower) SCE 11.995 7.050

SDG&E 16.217 7.471

Upper 5% C.I. PG&E 14.297 10.600
(cupper) SCE 19.858 12.166

SDG&E 31.939 12.961

Notes: This table presents the implied trading costs estimated using the modeling framework
discussed in Section IV. We estimate implied trading costs separately for each utility service
territory for the sample periods before versus after the introduction of FT. The three service
territories considered in this table correspond to California’s three major electric utiilties: PG&E,
SCE, and SDG&E.

of this distribution is greater than zero, then we can reject the null hypothesis that

cpre ≤ cpost at a 10% significance level. Similarly, we can reject the null hypothesis

that cpre ≥ cpost at a 10% significance level if the 90th percentile of the bootstrap

distribution of cpre − cpost is less than zero. For all three utilities, we reject the null

hypothesis that implied trading costs are higher post-FT relative to pre-FT, but fail

to reject the null hypothesis that implied trading costs are higher pre-FT relative to

post-FT.
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Figure A.6: Bootstrap Distribution of the Difference in Implied Trading Costs
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Notes: This figure plots the bootstrap distribution of the difference in “implied trading costs”
(i.e.: cpre − cpost), where “pre” indicates the sample period before the introduction of financial
trading (“FT”) and “post” indicates the sample period after FT. We plot this bootstrap distri-
bution separately for the day-ahead/real-time price spreads paid by each of California’s three
major investor-owned distribution utilities: PG&E, SCE, and SDG&E. The left vertical line on
the graph in red is the 10th percentile of the distribution of cpre − cpost and the right vertical
line in blue is the 90th percentile of this distribution.
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A.3.2 Additional Heterogeneity in Implied Trading Costs By Location

Appendix Table A.3 presents estimates for how implied trading costs changed before

versus after FT across three types of locations: (1) “baseload” locations where the

amount of electricity injected into the location was greater than zero in at least 75%

of hours in our sample period, (2) “peaker” locations where the amount of electricity

injected into the location was greater than zero in less than 75% of hours-of-sample,

and (3) “demand” locations not associated with a generation unit. The unit of obser-

vation for the regressions presented in Appendix Table A.3 is a location in one of two

sample periods, before FT and after FT.

Columns 1-2 (Columns 3-4) focus on clower (cupper): the 5th (95th) percentile of

the bootstrap distribution of the maximum over hours of the day of the absolute value

of the 24×1 vector of hourly average day-ahead/real-time price spreads. For Columns

2 and 4, we trim observations corresponding to the top 1% and bottom 1% of the

distribution of the outcome variable before estimating the regression. White (1980)

standard errors are provided in parentheses.

Appendix Table A.3 tests the intuition that some types of units find it more

costly to adjust their day-ahead schedules relative to their real-time output to profit

from expected differences between day-ahead and real-time prices. Specifically, we

hypothesize that units that operate less frequently find it more costly to inject more

electricity than expected in real-time because these units are typically not needed to

serve demand. This limits the extent to which the owners of these units can adjust

their physical bids to profit from expected day-ahead/real-time price spreads. In

contrast, owners of units that frequently operate can easily adjust how much of their

expected real-time output to sell in the day-ahead versus real-time markets depending

on their expectations about the day-ahead/real-time price spread.

Consistent with this logic, the results presented in Appendix Table A.3 indicate

that implied trading costs prior to the introduction of financial trading were smallest

for baseload locations, followed by peaker locations, with demand locations exhibiting

13



Table A.3: Implied Trading Costs Before vs. After Financial Trading For Baseload
versus Peaker versus Demand Locations

Dep. Var. clower cupper
(1) (2) (3) (4)

Post FT × Gen Node × Baseload 0.640 0.493 1.358 1.579
(0.196) (0.186) (0.446) (0.402)

Post FT × Gen Node 0.237 0.311 1.046 0.844
(0.152) (0.139) (0.342) (0.291)

Gen Node × Baseload -0.817 -0.630 -1.647 -1.468
(0.183) (0.174) (0.372) (0.359)

Gen Node -0.198 -0.218 -0.681 -0.589
(0.142) (0.129) (0.292) (0.272)

Post FT -3.494 -3.329 -6.659 -6.577
(0.051) (0.046) (0.115) (0.102)

Constant 10.519 10.351 18.577 18.306
(0.048) (0.044) (0.102) (0.096)

Residualized Yes Yes Yes Yes
Trim Top and Bottom 1% No No No No

Mean of Dep. Var. 8.686 8.614 15.083 14.893
Std. Dev. of Dep. Var. 2.770 2.770 5.920 5.920

R2 0.383 0.407 0.297 0.351
Number of Obs. 9,486 9,302 9,486 9,298

Notes: This table reports the results from our difference-in-differences specification comparing implied trading
costs before versus after the introduction of financial trading (“FT”) for pricing locations associated with gen-
eration units (“Generation”) versus not associated with generation units. We consider two types of Generation
Locations: locations associated with generation units that produced in over 75% of hours-of-sample (“Baseload”)
versus locations associated with generation units that produced in less than 75% of hours-of-sample (“Peaker”).
The unit of observation for these regressions is a location in the sample period before FT versus after FT. We
report White (1980) standard errors in parentheses. We consider two dependent variables: clower in the first two
columns and cupper in the last two columns. For Columns 2 and 4, we trim observations corresponding to the top
1% and bottom 1% of the distribution of the outcome variable before estimating the regression.

Variable Definitions: Post FT is an indicator variable that is equal to one if the observation corresponds to the
sample period after FT. Generation is an indicator variable that is equal to one if the location is associated with
a generation unit. Baseload is an indicator variable that is equal to one if the amount of electricity injected into
the location was greater than zero in at least 75% of hours-of-sample.
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the largest implied trading costs. The coefficient estimates also suggest that implied

trading costs are the same across baseload, peaker, and demand locations after FT.

Combined, the results presented in Appendix Table A.3 are consistent with the

intuition that, prior to financial trading, the implied trading costs associated with

adjusting real-time output to trade day-ahead/real-time price spreads are smaller for

units that operate more frequently. After FT, all market participants can trade day-

ahead/real-time price spreads at most locations. Therefore, we no longer find system-

atic differences in implied trading costs across baseload, peaker, and demand locations

after FT.

A.4 Additional Tables and Figures: Generation and Capacity

Appendix Figure A.7 plots monthly total electricity production by type: gas-fired,

nuclear, renewables, and all hydro.49 We sum only over sources under the operational

control of California’s Independent System Operator (CAISO). Appendix Figure A.7

also includes monthly total net electricity imports. Finally, Appendix Figure A.8

plots monthly total electricity demand.50 A vertical dashed line corresponding to the

introduction of FT is included in both figures.

Appendix Figures A.7 and A.8 document that that there are not systematic up-

ward or downward time trends in electricity production by source type, electricity

imports, or system-wide total demand over our sample period. In addition, there

are not large changes in production from nuclear sources and renewables in the 6-12

months after the introduction of FT, suggesting that production from these sources

did not respond to the implementation of this policy. However, we see a reduction

in output from gas-fired sources coupled with decreases in electricity demand and in-

creases in production from hydroelectric sources in the roughly 6-7 months around

49The classification “renewables” includes wind, solar, and geothermal sources as well as hydro
sources with capacity less than 30 MW. Monthly plant-level data on output come from Form EIA-
923 (EIA, 2009-2012).

50Hourly data on total net electricity imports and demand can be downloaded from the OASIS
API (CAISO, 2009-2012).
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Figure A.7: Monthly Total Electricity Production By Source
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Notes: This figure plots monthly total electricity production by type: fossil-fuel-fired, nuclear,
renewables (wind + solar + biomass + biogas + hydro sources less than 30MW), and all hydro.
We sum only over sources under the operational control of California’s Independent System
Operator (CAISO). This figure also plots monthly total net electricity imports. Finally, this
figure includes a vertical dashed line denoting the introduction of financial trading.

February 2011. This highlights the importance of flexibly controlling for hydroelectric

production and demand in our specifications in Section VI that consider how fuel costs

per MWh and input fuel use per MWh change on high complexity days versus low

complexity days after FT is introduced.

Appendix Figure A.9 plots the annual total electricity generating capacity in Cali-

fornia by source type: fossil-fuel-fired, nuclear, hydro, and wind + solar.51 The sample

period considered in the figure spans the years 2000-2016, with vertical dashed red

lines denoting the years 2009 and 2012. We see from this figure that there were no ma-

jor investments in generating capacity between 2009-2012. That being said, this figure

51We sum over units of each source type in California using the eGrid database for 2012 provided
by the United States Environmental Protection Agency (USEPA, 1996-2012).
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Figure A.8: Monthly Total Electricity Demand
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Notes: This figure plots monthly total electricity demand. We include a vertical dashed line
denoting the introduction of financial trading.
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Figure A.9: Annual Total Electricity Generating Capacity By Type
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Notes: This figure plots annual total electricity generating capacity by type: fossil-fuel-fired,
nuclear, hydro, and wind + solar. We sum over units of each source type in California using
the eGrid database for 2012 provided by the United States Environmental Protection Agency
(USEPA, 1996-2012). The sample period considered in this figure spans the years 2000-2016,
with vertical dashed red lines denoting the years 2009 and 2012.
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documents a steady increase in the installation of renewable capacity during the latter

half of our sample period. In addition, we see a decrease in nuclear generating capacity

after 2012 due to the retirement of the San Onofre nuclear power plant (Davis and

Hausman, 2016). Based on these trends, all of the specifications considered in Section

VI control flexibly for monthly total production from renewables and monthly total

production from nuclear plants. We also show that the difference-in-differences esti-

mates in Section VI.C remain similar if we drop all days-of-sample after the shutdown

of the San Onofre nuclear power plant.

A.5 Additional Tables and Figures: Fuel Cost and Fuel Use

The left panel of Appendix Figure A.10 plots the monthly averages of the log of daily

total fuel costs incurred by gas-fired plants divided by the daily total output of these

plants. The right panel of this figure plots the monthly averages of the log of daily

total fuel use by gas-fired plants divided by daily total output from these plants.

Appendix Figure A.10 documents that both outcomes exhibit substantial seasonality.

The variability induced by this seasonality obfuscates comparisons of the outcomes

across the sample periods before versus after FT. For this reason, we include separate

sets of month-of-year fixed effects for high complexity days and low complexity days in

all specifications. That being said, Appendix Figure A.10 also suggests that neither of

the outcome variables are systematically trending up or down over our sample period.

This is comforting given that any such trend over time might confound the comparison

of outcomes across the pre-FT versus post-FT sample periods.

Appendix Table A.4 presents the asymptotic p-values from two different tests of

the null hypothesis that the market outcome considered is nonstationary. The two

tests considered are the Augmented Dickey-Fuller unit-root test (Dickey and Fuller

(1979); MacKinnon (1994)) and the Phillips-Perron unit-root test (Phillips and Perron,

1988). We can reject the unit root null hypothesis for both outcomes using either of

the two statistical tests. This provides formal evidence that market outcomes are
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Figure A.10: Monthly Average Outcomes Before vs. After Financial Trading
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Notes: The left panel of this figure plots the monthly averages of the daily total fuel costs
incurred by gas-fired plants divided by the daily total output from these gas-fired plants. The
right panel plots the monthly averages of the daily total fuel use by gas-fired plants divided
by daily total output from these plants. Averages corresponding to months before (after) the
introduction of financial trading are plotted in purple (green).

Table A.4: P-Values for Tests for Nonstationarity

Dickey-Fuller Phillips-Perron
Log Fuel Cost per MWh 0.007 0.063

Log Input Energy per MWh ≈ 0 ≈ 0

Notes: This table presents p-values from two tests of the null hypothesis that the daily time series
of the relevant market outcome is nonstationary. The two tests considered are the Augmented
Dickey-Fuller unit-root test (Dickey and Fuller (1979); MacKinnon (1994)) and the Phillips-
Perron unit-root test (Phillips and Perron, 1988). We consider two outcome variables: the log of
fuel costs per MWh of gas-fired output and the log of input energy per MWh of gas-fired output.

not trending up or down during our sample period, allowing us to compare outcomes

across the pre-FT versus post-FT sample periods without including time trends or

first-differencing the outcome.

20



B Trading Fees for California’s Electricity Market

There are three broad types of transaction costs associated with financial trading

(“FT”) in California’s wholesale electricity market: collateral, trading fees and uplift.

Purely financial participants must post collateral greater than the total value of the

virtual bids they submit each day.52 This collateral does not earn any rate of return

while it is held by California’s Independent System Operator (ISO). Moreover, there

can be a lag of more than two weeks between when a market participant requests that

some or all of its collateral be returned and when this money is actually returned.

Consequently, a purely financial participant is foregoing non-trivial financial returns

on any collateral posted with the California ISO in order to engage in virtual bidding.53

Purely financial participants must pay roughly 0.5 cents for each price and quantity

step associated with the virtual bid curve they submit. They must also pay 9 cents per

MWh of virtual energy cleared in fees associated with “market services”. For example,

consider a virtual bidder that submits a demand curve with 10 price/quantity steps

to the day-ahead market. If 50 MWh of her demand bid clears, she must pay $4.55

= ($0.09 × 50) + ($0.005 × 10) in transaction fees. Finally, all financial participants

are required to pay a monthly transaction fee of 1,000 dollars regardless of the volume

of virtual bids they submit or clear.54

The California ISO clears day-ahead and real-time markets by solving a mixed-

integer programming problem. The California ISO is sometimes forced to manually

dispatch generation units after the close of the day-ahead market or in real-time to

satisfy operational constraints that may not have have been accounted for in the

day-ahead or real-time markets. Any generation units forced by the California ISO

to change production levels outside of the formal market-clearing mechanism receive

52The total value of the virtual bids submitted each day is equal to the sum of the product of the
absolute value of megawatt-hours offered times the applicable reference price for a virtual bid at that
location. See the California ISO document, “Convergence bidding, participating in markets, credit
policy implications,” for a description of the process used to compute nodal reference prices.

53See the California ISO document, “California ISO Credit Management,” for more background.
54These transaction fees are listed in Session 7 of the Convergence Bidding tutorial published by

California’s ISO (CAISO (2015b)).
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Figure B.1: Annual Uplift Charges for the Five Major ISOs: 2009-2013
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approximately $0.30/MWh and $1.40/MWh, a fraction of the energy market prices during 
these periods.    

 
 

 

 

Figure 1: Total Annual Uplift Credit by RTO and ISO ($/MWh) 

Notes: This figure is taken from FERC (2014). Annual average uplift charges (in dollars per
MWh) are calculated for each Independent System Operator (ISO) by dividing total annual uplift
charges (in dollars) by total annual electricity demand (in MWh). Total uplift charges and total
electricity demand for CAISO for 2009 are based on the nine months of data after April 1st 2009.
FERC estimated the total uplift charges and electricity demand for ISO-NE for 2012. Uplift
charges for PJM for the years 2012 and 2013 exclude the credits associated with reactive services
(these credits amount to approximately 45 million dollars per year).

“uplift” payments. Generation units that are turned on in the day-ahead market and

fail to recover their start-up, minimum load and as-offered costs from selling energy and

operating reserves also receive a “make-whole payment” to cover this deficit. These

make-whole payments are also included in uplift and ensure that any generation unit

committed to operate in the day-ahead market will at least recover their as-offered

costs.55

Uplift charges are paid by the market participants whose bids contributed to the

out-of-market dispatch of units. Each participant’s contribution is based on a formula

subject to fierce policy debate (Kurlinski, 2013). Purely financial participants are

required to pay uplift charges to the extent that their trades result in generation

unit output levels that deviate from those dictated by the market clearing algorithm.

Appendix Figure B.1 shows the annual average uplift charge per MWh of electricity

demand for the five major Independent System Operators (ISOs) in the United States

55The following link provides more details on uplift charges: http://www.caiso.com/Documents/
BriefingISO MarketPricing-MSCPresentation-May19 2014.pdf.
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Figure B.2: Correlation Between Uplift and Day-Ahead Prices
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3. Impact of Day-Ahead and Real-Time Price Spreads 
 

To further understand the relationship between uplift credits and prices, day-ahead 
and real-time price differences and uplift costs were assessed.  Price spreads driven by high 
real-time prices relative to day-ahead prices may indicate that insufficient resources were 
committed day-ahead to reliably operate the system in real-time.  Conversely, relatively 
low real-time prices could indicate that more resources were committed than were needed.  
The difference between the resources that clear in the day-ahead market or were 
committed prior to the real-time and the resources that are ultimately needed for real-time 
operations could influence uplift costs.    

 
To ascertain the degree of any relationship between uplift credits and price spreads, 

the differences between day-ahead and real-time prices (hourly DA/RT spreads) at major 
price points in each RTO and ISO were identified.  The absolute value of each DA/RT spread 
was used to calculate a monthly average of hourly DA/RT spread values.  The values 
showed a clear correlation between price deviations and uplift payments.  The correlation 
coefficient values for ISO-NE, MISO and NYISO were relatively strong at 0.85, 0.65 and 0.68, 
respectively.  Analysis of PJM data also suggested a strong correlation, although less so at 
0.47.  Interestingly, these correlations weakened with the addition of 2012 and 2013 data.  
Similar to the above analysis on locational marginal prices, CAISO stood out in comparison 
to the other RTOs and ISOs and exhibited weak correlation between price deviations and 

Figure 7: Uplift and Locational Marginal Price Correlation in CAISO 
 

Notes: The day-ahead locational marginal prices are TH_SP15_GEN-APND from Ventyx.  The Pearson correlation coefficient (r) was used to 
assess correlation between monthly locational marginal price and monthly uplift credits.   

 
Notes: This figure, taken from FERC (2014), documents the correlation between the monthly
total uplift credits paid out by CAISO and the monthly average locational marginal price for the
location TH SP15 GEN-APND from Ventyx. The Pearson correlation coefficient between uplift
and day-ahead prices is r = -0.07.

for 2009-2013. This figure indicates that average uplift charges range from roughly 40

to 60 cents per MWh. However, these annual averages conceal significant volatility in

daily uplift charges (FERC (2014)).

Appendix Figure B.2 plots monthly total uplift payments in California from April

2009 to December 2013. This figure shows an increase in uplift payments after the

introduction of financial trading in February 2011.56 Kurlinski (2013) argues that

much of this increase in uplift payments is due to financial trading at “interties,”

which are locations where electricity is imported or exported between the California

ISO and other balancing authorities. During our sample period, this led to fierce policy

debate surrounding both whether trading at interies should be allowed and how uplift

payments from trades should be allocated. Consequently, virtual bidding on interties

was suspended on November 28, 2011. We leave it as future work to determine how

this suspension impacted the market efficiency benefits from introducing FT.

56The spike in uplift payments in August 2012 was likely due to an extreme heat wave from August
7th through August 17th (CAISO (2012b)).
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Finally, Appendix Figure B.2 also documents that there is little correlation be-

tween monthly average day-ahead prices and monthly total uplift charges. Average

day-ahead prices are between 30 and 50 dollars per MWh while average uplift charges

are between 0.40 to 0.60 dollars per MWh. It is thus unlikely that the increases in

uplift charges after financial trading was introduced resulted in substantial increases in

the retail electricity prices paid by consumers. Instead, the policy debate has centered

on the allocation of uplift charges across financial versus physical market participants.

C Additional Empirical Results: Price Spreads

This Appendix section discusses three additional results pertaining to day-ahead/real-

time price differences. The first subsection provides empirical evidence that average

day-ahead/real-time price differences are smaller in absolute value after the intro-

duction of FT. These results suggest that day-ahead prices better reflect real-time

conditions after purely financial participation was implemented.

The second subsection presents the methodology and results corresponding to the

hypothesis test that the distribution of the number of hours of day with positive

average price spreads for demand locations first-order stochastically dominates the

corresponding distribution for generation locations. We perform this test separately

for the sample periods before versus after FT is introduced. Our findings suggest that

electricity suppliers are better able to drive real-time prices up at the locations where

they own generation units relative to demand locations.

In the final subsection, we test whether the daily 24 × 1 vector of hourly price

spreads is autocorrelated over days-of-sample. The results of this analysis indicate

that traders are unlikely to earn significantly more profits by conditioning on day-

ahead/real-time price differences from two or more days prior to the current day.

24



C.1 Absolute Average Price Spreads Before Versus After FT

This subsection describes our statistical test of whether expected day-ahead/real-time

price spreads decrease in absolute value after the introduction of financial trading

on February 1st 2011. In particular, we formulate a test of the null hypothesis that

|µjpre| > |µ
j
post| for j = 1, 2, ..., 24, where µjpre (µjpost) is the jth element of the 24 × 1

vector composed of the expected day-ahead/real-time price differences for each hour

of the day for the pre-FT sample period (post-FT sample period). We implement this

statistical test separately for each pricing location. In a slight abuse of notation, we

represent the above null hypothesis as H0 : |µpre| > |µpost|.

Using the methodology derived in Wolak (1989), we compute the following test

statistic in order to test the null hypothesis that |µpre| > |µpost|:

TS =
min

θ ≥ 0
(|Xpre| − |Xpost| − θ)′V̂ −1(|Xpre| − |Xpost| − θ)

where X
pre

(X
pre

) is the 24× 1 vector of the average day-ahead/real-time price differ-

ences for each hour of the day for the pre-FT (post-FT) sample period. We calculate

the covariance matrix V̂ as follows:

V̂ =
diag[SIGN(X

pre
)]′Σ̂prediag[SIGN(X

pre
)]

Npre
+
diag[SIGN(X

post
)]′Σ̂postdiag[SIGN(X

post
)]

Npost

where the diag[Z] operator takes a vector Z and returns a diagonal matrix with the

elements of Z on the diagonal. Npre (Npost) is the number of days in the sample

period before (after) the introduction of financial trading. Σ̂pre (Σ̂post) is an estimate

of the asymptotic covariance matrix associated with X
pre

(X
post

). We reject the null

hypothesis that |µpre| > |µpost| if and only if:

24∑
h=1

w(24, 24− h, V̂ )Pr[χ2
(h) > TS] < α

where χ2
(h) is a chi-squared random variable with h degrees of freedom, w(24, 24 −
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Table C.1: Service Territory Level P-values for the Absolute Difference Tests

H0 : |µpre| > |µpost| H0 : |µpost| > |µpre|

PG&E 0.752 0.003
SCE 0.972 0.000

SDG&E 0.832 0.000

Notes: This table reports the p-values associated with the statistical test of the null hypothesis
that |µpre| > |µpost| (Column 1) as well as the statistical test of the null hypothesis that |µpost| >
|µpre| (Column 2). µpre (µpost) is a 24× 1 vector composed of the expected day-ahead/real-time
price spreads for each hour of the day for the sample period before (after) the introduction of
financial trading. We perform these statistical tests on the service territory level price spreads
faced by each of California’s three major electric utilities: PG&E, SCE, and SDG&E.

Table C.2: Proportion of Locations for which we fail to reject the Absolute
Difference Test

H0 : |µpre| > |µpost| H0 : |µpost| > |µpre|

Generation Locations 0.999 0.013
Demand Locations 0.987 0.011

Notes: This table reports the proportion of pricing locations for which we fail to reject a size
0.05 test of the null hypothesis that |µpre| > |µpost| (Column 1) and the null hypothesis that
|µpost| > |µpre| (Column 2). µpre (µpost) is a 24 × 1 vector composed of the expected day-
ahead/real-time price spreads for each hour of the day for a given location for the sample period
before (after) the introduction of financial trading. There are 653 locations associated with
generation units (“Generation Locations”) and 3,961 locations not associated with generation
units (“Demand Locations”) that are present in the sample periods both before and after financial
trading.

h, V̂ ) are the weights defined in Wolak (1989), and α is the asymptotic size of the

hypothesis test. We consider tests of size α = 0.05 in the results presented below. The

test statistic and p-value associated with the null hypothesis that |µpost| > |µpre| are

computed in a similar manner.

We first perform these statistical tests on the service territory level price spreads

faced by each of California’s three major electricity distribution utilities: Pacific Gas

and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and

Electric (SDG&E). Appendix Table C.1 presents the p-values associated with these

tests. For all three utilities, we fail to reject the null hypothesis that |µpre| > |µpost|

but reject the null hypothesis that |µpost| > |µpre|.

We also perform our statistical tests separately for each pricing location in Cali-
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fornia. Specifically, Column 1 of Appendix Table C.2 lists the proportion of locations

for which we fail to reject the null hypothesis that |µpre| > |µpost|, separately for loca-

tions associated with generation units (“Generation Location”) versus locations not

associated with generation units (“Demand Locations”). We fail to reject this null

hypothesis for over 98% of locations for both generation and demand locations. Col-

umn 2 of Appendix Table C.2 lists the proportion of locations for which we fail to

reject the null hypothesis that |µpost| > |µpre|. We fail to reject this null hypothesis for

only roughly 1% of locations for both generation and demand locations. Combined,

Appendix Table C.2 constitutes strong evidence that absolute average day-ahead/real-

time price spreads fell after purely financial participation was allowed.

C.2 Test for First-Order Stochastic Dominance: Generation

versus Demand Locations Before versus After Financial

Trading

This subsection describes our hypothesis test for whether the distribution across lo-

cations of the number of hours of the day with positive average day-ahead/real-time

price spreads for locations associated with generation units (“Generation Locations”)

first-order stochastically dominates the distribution for locations not associated with

generation units (“Demand Locations”). These hypothesis tests are implemented us-

ing the methodology discussed in Schmid and Trede (1996). First, we calculate the

average day-ahead/real-time price spread Xn,h,s for each location n in each hour of

the day h before versus after the introduction of FT. The subscript s = 0 denotes

the pre-FT sample period while s = 1 denotes the post-FT sample period. We next

calculate the number of hours of the day with positive price spreads for each location

in each sample period:

NUMPOSn,s =
24∑
h=1

1[Xn,h,s > 0]
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Finally, we construct the empirical distribution function (EDF) and empirical prob-

ability mass function (PMF) of NUMPOSn,s separately for generation locations (in-

dexed “G”) versus demand locations (indexed “D”) before versus after FT. Specifically,

note that:

F̂i,s(t) =
1

Ni,s

Ni,s∑
n=1

1[NUMPOSn,s ≤ t]

f̂i,s(t) =
1

Ni,s

Ni,s∑
n=1

1[NUMPOSn,s = t]

where Ni,s is the number of locations of type i ∈ {G,D} in sample period s. The

argument t for each of these functions can potentially take on the integer values

between 0 and 24. For example, f̂i,s(t) measures the probability that the number

of hours of the day with positive price spreads at location type i in sample period s is

equal to t.

We test the null hypothesis that the EDF for demand locations first-order stochas-

tically dominates the EDF for generation locations. We do so separately for the pre-FT

sample (s = 0) and the post-FT sample (s = 1). Formally, the null hypothesis for a

given sample period s is:

H0 : FG,s(t) ≥ FL,s(t) for all t ∈ {0, 1, 2, ..., 24} (C.1)

We also test the reverse hypothesis that the EDF for generation locations first-order

stochastic dominates the EDF for demand locations. This null hypothesis is:

H0 : FL,s(t) ≥ FG,s(t) for all t ∈ {0, 1, 2, ..., 24} (C.2)

Schmid and Trede (1996) demonstrate that the test statistic associated with the

null hypothesis presented in Appendix Equation (C.1) is:

√
NG,sNL,s

NG,s +NL,s

K∑
k=1

(F̂G,s(tk)− F̂L,s(t))
+f̂L,s(tk)
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Table C.3: First-Order Stochastic Dominance Tests: Test Statistics

Before FT After FT

H0 : FG(t) ≥ F L(t) 0.139 0.297
H0 : F L(t) ≥ FG(t) 0.810 1.429

Notes: We reject the null hypothesis at the 5% level (1% level) if the test statistic is greater
than 0.48 (0.68). Schmid and Trede (1996) discusses the derivation of this test statistic.

Additional Notes: This table presents the test statistics associated with null hypotheses per-
taining to the first-order stochastic dominance of the distribution function of the number of hours
of the day that average day-ahead/real-time price spreads are positive. Specifically, the top row
focuses on the null hypothesis that the distribution for locations associated with generation units
(“Generation Locations”) is first-order stochastically dominated by the distribution for locations
not associated with generation units (“Demand Locations”) for all points where the probability
mass function for demand locations is positive. The bottom row focuses on the null hypothesis
that the distribution for demand locations is first-order stochastically dominated by the distri-
bution for generation locations for all points where the probability mass function for generation
locations is positive. The first row presents test statistics calculated for the sample period be-
fore the introduction of financial trading (“FT”) while the second row presents test statistics
calculated for the sample period after FT.

where (y)+ = max(0, y) and we evaluate the EDFs and PMF at all points tk ∈

{t1, t2, ..., tK} such that f̂L,s(tk) > 0. We reject the null hypothesis at the 5% level

(1% level) if the test statistic is greater than 0.48 (0.68). The test statistic for the null

hypothesis presented in Appendix Equation (C.2) is similar in form. Simply reverse

the “G” and “L” subscripts in the computation of the test statistic.

Appendix Table C.3 presents the test statistics associated with testing the null

hypotheses listed in Appendix Equations (C.1) and (C.2). These results indicate that

we fail to reject the null hypothesis that the distribution for demand locations first-

order stochastically dominates the distribution for generation locations for both the

pre-FT and post-FT sample periods. They also support rejection of the null hypothesis

that the distribution for generation locations first-order stochastically dominates the

distribution for demand locations for both sample periods.

Combined, the results from Appendix Table C.3 suggest that more elements of

the vector of average day-ahead/real-time price differences are positive for demand

locations relative to generation locations. This result is consistent with two features

of California’s wholesale electricity market. First, retailers must submit territory-

level bid curves to the day-ahead market, which greatly limits their ability to exercise
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market power at specific nodes. Second, except for a very small quantity of flexible

loads, only electricity suppliers are able to influence real-time prices by submitting

price-elastic, location-specific offer curves into the real-time market. Our results thus

suggest that suppliers have a greater ability to raise real-time prices relative to day-

ahead prices throughout the day at the locations where they own generation units

relative to demand locations during both the pre-FT and post-FT sample periods.

C.3 Testing for Autocorrelation in Price Spreads

The methodology for measuring implied trading costs discussed in Section IV considers

trading strategies that vary only by hour of the day. Specifically, we do not allow our

hypothetical trader to update her strategy based on information from past days. We

justify this restriction on trading strategies in this subsection.

Traders submit virtual bids to buy (sell) one MWh of electricity in the day-ahead

market at a given location for a given hour with the obligation to sell (buy) this

electricity back in the real-time market at the same location for the same hour. Traders

simultaneously submit virtual bids for all 24 hours of the following day. Therefore,

trading strategies can potentially be a function of lagged values of the 24 × 1 vector

of realized day-ahead/real-time price spreads for each hour of the day.

However, trading strategies for day d cannot be a function of information from

the values of the 24× 1 vector of day-ahead/real-time price differences for day d− 1.

This is because the vector of real-time prices for day d− 1 is not known before virtual

bids are submitted to the day-ahead market for day d. Therefore, traders cannot

use correlation between Xd and Xd−1 in their strategies. However, if Xd and Xd−h

are correlated for h > 1, then conditioning on Xd−h can improve a trader’s forecast

of the mean of Xd. Therefore, restricting consideration to trading strategies that

do not condition on past values of price differences is only reasonable if all of the

autocorrelation matrices associated with the time series process governing the daily

vector of price spreads are zero except for the autocorrelation matrix associated with
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the first lag.

We denote the τ th autocovariance matrix associated with the 24 × 1 vector of price

spreads Γ(τ) = E[(Xt − µ)(Xt−τ − µ)′]. Consistent with our above discussion, we

expect Γ(1) to be non-zero but test whether Γ(τ) = 0 for all τ > 1. We thus formulate

a statistical test of the following null hypothesis:

H0 : Γ(2) = 0,Γ(3) = 0, ...,Γ(R) = 0

for a fixed value of R. Empirically, we set R = 10.

To implement this hypothesis test, we first define:

ξ ≡ [vec(Γ(2))′, vec(Γ(3))′, ..., vec(Γ(R))′]′

where the vec(.) operator takes each 24 × 24 autocovariance matrix and stacks it

columnwise to create a 576× 1 vector. Therefore, ξ has 5,184 ( = 576× 9) elements,

all of which must equal zero under the null hypothesis. We use the moving block

bootstrap discussed in Section III.C to estimate the 5,184 × 5,184 covariance matrix

associated with ξ̂. Our Wald statistic TS = ξ̂′Σ̂−1
ξ,bootξ̂ is asymptotically chi-squared

distributed with 576× (R−1) degrees of freedom under the null hypothesis, where we

use a moving block bootstrap procedure in order to estimate the covariance matrix

Σ̂ξ,boot.

We first conduct this statistical test separately for the sample periods before and

after the introduction of financial trading (“FT”) using the day-ahead/real-time price

spreads faced by each of California’s three major investor-owned utilities. Appendix

Table C.4 reports the resulting test statistics; the upper α = 0.05 critical value for

these test statistics is χ2
(5,184) = 5,352.6. We fail to reject the null hypothesis that

the second through tenth autocovariance matrices are zero for all three utilities both

before and after the introduction of FT.

We also conduct these autocorrelation tests at each pricing location, reporting the
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Table C.4: Test Statistics for Autocorrelation (1 < L ≤ 10) in Daily Price Spreads

Before FT After FT

PG&E 4,863.4 3,531.3
SCE 7,541.0 3,635.9

SDG&E 12,003.1 3,334.0

Notes: This table presents chi-squared test statistics corresponding to the null hypothesis that
the second through tenth autocovariance matrices associated with the 24 × 1 vector of day-
ahead/real-time price spreads for each hour of the day are zero. Formally, we are testing the
null hypothesis that Γ(2) = Γ(3) = ... = Γ(10) = 0. We perform this test separately for the
sample periods before versus after the introduction of financial trading using the day-ahead/real-
time price spreads faced by each of California’s three major investor-owned utilities. The upper
α = 0.05 critical value for these test statistics is χ2

(5,184) = 5,352.6.

Table C.5: Proportion of Locations for which we fail to reject the Autocorrelation
Test

Before FT After FT

Demand Locations 0.562 0.981
Generation Locations 0.586 0.943

Notes: This table presents the proportion of locations for which we fail to reject a size α = 0.05
test of the null hypothesis that the second through tenth autocovariance matrices of the 24 × 1
vector of day-ahead/real-time price spreads for each hour of the day are zero. Formally, we are
testing the null hypothesis that Γ(2) = Γ(3) = ... = Γ(10) = 0.

results in Appendix Table C.5. Prior to FT, we fail to reject the null hypothesis of

no second through tenth degree autocorrelation at 58.6 percent and 56.2 percent of

generation and demand locations respectively. After FT, we fail to reject the null

hypothesis of no second through tenth degree autocorrelation at 94.3 percent and 98.1

percent of generation and demand locations respectively. This is consistent with the

logic that financial traders quickly take advantage of any systematic autocorrelation

in price spreads after financial trading is introduced. The results from this subsection

provide evidence that traders cannot earn significantly greater profits by conditioning

on previous realizations of price spreads. This helps to justify our focus in Section IV

on trading strategies that do not condition on past lags of daily price spreads.
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D Data Appendix: Event Study and Difference-in-

Differences

This Appendix section discusses how we construct the daily total fuel cost, fuel use,

output and number of start-ups across all gas-fired units located in the territory served

by California’s ISO. The first subsection focuses on the Continuous Emissions Moni-

toring Systems (CEMS) database used in the analyses in Section VI while the second

subsection discusses how we construct the monthly average natural gas price paid by

each power plant.

D.1 Data Construction

We estimate the event study and difference-in-differences specifications discussed in

Section VI using the Continuous Emissions Monitoring Systems (CEMS) database

administered by the United States Environmental Protection Agency (USEPA, 2009-

2012). These data are publicly available from the USEPA’s website. CEMS provides

us with the hourly output in MWh produced by each fossil-fired unit with capacity

greater than 25MW in each hour-of-sample. CEMS also lists the input heat energy

used by each unit in each hour, including the input energy used to start up or operate

the unit at its minimum safe operating level. For this analysis, we only consider

electricity generation units located in California.

We impose additional sample restrictions using plant-level characteristics from

2009, 2010, and 2012 from the eGRID database provided by the USEPA (USEPA,

1996-2012). We construct two variables from these data: (1) an indicator that is

equal to one if and only if the plant lists natural gas as its primary fuel in 2009, 2010,

or 2012, and (2) an indicator that’s equal to one if and only if the plant lists the

California ISO as its balancing authority in 2009, 2010, or 2012. We merge primary

fuel type and balancing authority from eGrid into the CEMS database using the plant

code (i.e., “orispl code”). Only plants listing natural gas as their primary fuel in at
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least one of the three years are kept for the analysis. We also drop plants that do not

list California ISO as their balancing authority in 2009, 2010 or 2012.

Finally, we construct monthly average prices for natural gas supplied by PG&E

and Southern California Gas (SCG) as discussed below in Appendix Section D.2. A

plant in the CEMS data is assigned the natural gas price time series for PG&E if the

eGrid data lists PG&E as either the utility service territory associated with the plant

or the plant’s operator in 2009, 2010, or 2012. Similarly, the plant is assigned the

natural gas price series for SCG if either the utility service territory associated with

the plant or the plant’s operator is listed as either SCE or SDG&E in 2009, 2010, or

2012. All remaining plants are assigned the overall monthly gas price averaged over

all transactions listing either PG&E or SCG as the supplier.

D.2 Data Construction: Natural Gas Prices

We calculate the monthly average natural gas price paid by power plants in California

using transaction-level data from the Energy Information Administration (EIA, 2009-

2012). Among other variables, the data contain the month-of-transaction, supplier,

fuel price, and quantity sold. The natural gas prices paid by power plants owned

by independent power producers not subject to output price regulation are not made

publicly available. Fortunately, Cicala (2015) demonstrates that the average natural

gas prices paid by price-regulated plants are similar to those paid by market-based

plants.

From these transaction-level data, we construct monthly average natural gas prices

for each of two suppliers: Pacific Gas and Electric (PG&E) and Southern California

Gas (SCG). The resulting monthly average gas prices are plotted in the left panel of

Appendix Figure D.1. We see from this figure that the two time series track each

other fairly well.

Moreover, natural gas prices do not seem to respond to the introduction of finan-
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Figure D.1: Monthly Average Natural Gas Prices By Supplier
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Notes: The left panel of this figure plots the monthly average natural gas prices paid by plants
supplied by Pacific Gas and Electric (PG&E) versus Southern Calfornia Gas (SCG). Monthly
average natural gas prices for each supplier are constructed using transaction-level data for U.S.
power plants from Form EIA-923 administered by the Energy Information Administration (EIA,
2009-2012). The right panel plots the monthly average gas prices paid at the PG&E and SCG
citygates; we collect daily data on the spot gas prices paid at the PG&E and SCG citygates from
S&P Global Platts (S&P Global Platts, 2009-2012). The vertical black dashed line denotes the
introduction of financial trading in February 2011.

cial trading on February 1st 2011. This is not surprising because natural gas is a

homogeneous product used for many purposes other than electricity generation; it is

thus unlikely that shocks to local electricity demand transmit to natural gas prices.

Finally, the gas price series constructed from the EIA data exhibit very similar trends

over time to the monthly average gas prices paid at the PG&E versus SCG citygates.57

57We obtain daily data on the spot gas prices paid at the PG&E and SCG citygates from S&P
Global Platts (S&P Global Platts, 2009-2012).
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E Robustness Checks: Event Study and

Difference-in-Differences

This Appendix section describes robustness checks pertaining to the event study and

difference-in-differences results presented in Section VI.

E.1 Results For Ancillary Services Costs

This subsection explores how ancillary service costs change after the introduction of

FT. The California ISO incurs ancillary service costs in order to ensure that electricity

supply equals electricity demand at every instant even in the face of unanticipated

changes in physical conditions such as generation unit outages or transmission outages

as discussed in Wolak (2019) and Buchsbaum et al. (2020). For example, the market

operator may pay a supplier to keep capacity available from a generation unit that is

currently operating or can turn on quickly in order to balance supply and demand if a

currently operating generation unit fails. We collect data on the costs associated with

ancillary services from the Open Access Same-time Information System (OASIS) API

administered by the California ISO (CAISO, 2009-2012).58

We first assess how ancillary service costs per MWh of gas-fired output change

after FT was introduced for high complexity days versus low complexity days. To do

so, we estimate the following regression specification:

Yt = αm,HIGH+θw+γy,m+
S∑
s=1

K∑
k=1

[
(Xk,t−Xk)

sφs,k+
10∑
b=1

θk,b1[Xk,t ∈ BINk,b]
]
+ut (E.1)

where Yt is the logarithm of ancillary services cost per MWh of natural gas-fired

generation for hour t. We define HIGHt to be an indicator that is equal to one if

and only if the relevant measure of complexity on day-of-sample t is above the 75th

58During our sample period, the California ISO operated short-term ancillary services markets for
Frequency Regulation Up (RegUp), Frequency Regulation Down (RegDn), Spinning Reserve, and
Non-Spinning Reserve.
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percentile of the distribution of this measure across our sample period. As discussed

in Section VI.B, we estimate separate specifications based on three different measures

of complexity: daily total demand, the daily standard deviation across locations and

hours of real-time prices, and daily total starts.

Appendix Equation (E.1) controls for separate sets of calendar month fixed effects

for high complexity days and low complexity days (αm,HIGH), an indicator for weekend-

versus-weekday (θw), month-of-sample fixed effects (γy,m) and the variables in Xt:

the log of total electricity demand, the log of net electricity imports, the log of the

monthly average natural gas price, as well as separate controls for the logs of monthly

total production from: (1) renewables, (2) nuclear sources, and (3) hydro sources.

Specifically, we center each control variable in Xt; for each centered variable x in Xt,

we include x, x2, x3, x4 and ten separate indicators defined using the deciles of the

distribution of x.

Appendix Figure E.1 plots the monthly average residuals from estimating Ap-

pendix Equation (E.1). In the top left and top right panels, we define “high complex-

ity” using daily total demand and the daily standard deviation across locations and

hours in real-time prices respectively. The bottom panel is based on defining complex-

ity using the daily total number of starts by gas-fired units. The vertical black dashed

line denotes the introduction of financial trading on February 1st 2011. The solid red

horizontal lines plot the overall averages of residuals for low complexity days taken

separately over the pre-FT and post-FT sample periods. Similarly, the dashed blue

horizontal lines plot overall averages for high complexity days in the pre-FT versus

post-FT sample periods.

The top left and bottom panels of Appendix Figure E.1 suggest that there is not

much difference in residualized ancillary service costs per MWh before versus after the

introduction in FT on either high or low complexity days when complexity is measured

using either daily total demand or daily total starts. In contrast, the top right panel

of Appendix Figure E.1 indicates that ancillary service costs per MWh fell on average

37



Figure E.1: Monthly Average Residualized Ancillary Service Costs per MWh
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(c) Measure of Complexity: Daily Total
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Notes: This figure plots the monthly averages of the residualized logarithm of ancillary service
costs per MWh of gas-fired output for high complexity days versus low complexity days. We
plot only months with both high and low complexity days. The top left, top right, and bottom
panels of this figure define complexity using daily total demand, the daily standard deviation
across locations and hours of real-time prices, and daily total number of starts by gas-fired units
respectively. For each measure, day t is classified as “high complexity” if the value of the measure
on day t is larger than the 75th percentile of the distribution of this measure across the sample
period. Log ancillary service costs per MWh are residualized using the daily-level regression
shown in Appendix Equation (E.1). The vertical black dashed line denotes the introduction of
financial trading (“FT”). The solid red horizontal lines plot the overall averages of residuals for
low complexity days taken separately over the pre-FT and post-FT sample periods. Similarly,
the dashed blue horizontal lines plot overall averages for high complexity days in the pre-FT and
post-FT sample periods.
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after FT on days with a high standard deviation in real-time prices but not on days

with a low standard deviation in real-time prices. Combined, the evidence suggests

that, at the very least, ancillary service costs per MWh did not increase substantially

after purely financial participation was allowed.59

E.2 Event Study: Additional Tables and Figures

Appendix Figure E.2 presents the monthly average residualized outcome for high com-

plexity days minus the monthly average residualized outcome for low complexity days.

We consider two measures of complexity: daily total demand and the daily standard

deviation across locations and hours in real-time prices. For a given measure, a day

is considered to have “high complexity” if the value of the measure on the day ex-

ceeds the 75th percentile of the distribution of this measure. We only plot average

differences for months-of-sample with both high and low complexity days.

We residualize each outcome Yt in day-of-sample t by estimating the following

equation:

Yt = αm,HIGH+θw+γy,m+
S∑
s=1

K∑
k=1

[(Xk,t−Xk)
sφs,k+

10∑
b=1

θk,b1[Xk,t ∈ BINk,b]]+ut (E.2)

where we include separate sets of calendar month fixed effects for high versus low

complexity days (αm,HIGH), an indicator for whether the day-of-sample is weekday

versus weekend (θw), and month-of-sample fixed effects (γy,m). We also control for the

variables in Xt as discussed in Section VI.B.

The two left panels of Appendix Figure E.2 focus on differences in the log of fuel

costs per MWh of gas-fired output while the two right panels focus on differences in

the log of input heat use per MWh of gas-fired output. This figure includes a vertical

59This is borne out by estimating the difference-in-differences regression specified in Equation (6)
considering the log of ancillary service costs per MWh as the dependent variable. Specifically, we
do not find a statistically significant increase in ancillary service costs per MWh for high complexity
days relative to low complexity days after FT is introduced regardless of the measure of complexity
considered, sets of controls included, or whether the outcome is trimmed or not. These results are
available upon request.
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Figure E.2: Monthly Average Differences in Residualized Outcomes
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(c) Log Fuel Cost Per MWh
Measure of Complexity: SD[RT Price]
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Notes: This figure plots the monthly average residualized outcome for high complexity days
minus the monthly average residualized outcome for low complexity days. We plot only months
with both high and low complexity days. For the top two panels, day t is classified as “highly
complex” if daily total demand on the day is larger than the 75th percentile of the distribution
of daily total demand. For the bottom two panels, day t is classified as “highly complex” if
the daily standard deviation across locations and hours in the day is above the 75th percentile
of the distribution of this measure. The relevant outcome is residualized using the daily-level
regression shown in Appendix Equation (E.2). We consider the log of fuel costs per MWh of
gas-fired output in the two left panels and the log of input heat per MWh of gas-fired output
in the two right panels. The horizontal solid purple line (dashed green line) presents the overall
average of the difference in residualized outcome across high versus low complexity days for the
sample period before (after) the introduction of financial trading. Finally, the vertical dashed
line denotes the introduction of financial trading.
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dashed line denoting the introduction of financial trading (“FT”). The horizontal solid

purple line (dashed green line) in the figure presents the overall average of the difference

in residualized outcomes across high versus low complexity days for the sample period

before (after) the introduction of FT. Appendix Figure E.2 documents that there are

not substantial differences in the trends of monthly average residualized outcomes

for high versus low complexity days prior to FT being introduced. Moreover, we see

that residualized outcomes fell on average for high complexity days relative to low

complexity days after the introduction of FT.

One might be concerned that the reduction in average residualized outcomes on

high complexity days is driven by the six months before and after the introduction of

FT. To assuage this concern, we plot the monthly averages of residualized outcomes

for high complexity days and low complexity days excluding the six months before

and after February 1, 2011. The overall averages for high complexity days and low

complexity days, denoted using red and blue horizontal lines respectively, are also

calculated excluding the six months before and after February 1st 2011. We see

that average residualized outcomes fall after FT on high complexity days but not low

complexity days even after excluding the six month window around February 1st 2011.

One might also be concerned that the base specification in Equation (5) “over-

controls” for the economic factors in Xt. To assuage this concern, we consider speci-

fications that control only linearly for the variables in Xt. Specifically, for Appendix

Figure E.4, we residualize each outcome Yt in day-of-sample t by estimating the fol-

lowing equation:

Yt = αm,HIGH + θw + γy,m +Xtφ+ ut (E.3)

As before, the set of control variables included in Xt is the log of total electricity

demand, the log of net electricity imports, the log of the monthly average natural gas

price, as well as the logs of monthly total production from: (1) renewables, (2) nuclear

sources, and (3) hydro sources.

Appendix Figure E.4 documents that the trends in monthly residualized outcomes
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Figure E.3: Monthly Average Residualized Outcomes Before versus After Financial
Trading Dropping the 6 Months Before and After FT
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(c) Log Fuel Cost Per MWh
Measure of Complexity: SD[RT Price]
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Notes: This figure plots the monthly averages of the residualized outcome for high complexity
days versus low complexity days. We plot only months with both high complexity days and low
complexity days. Moreover, we do not plot the six months before and after the introduction
of financial trading (“FT”) on February 1st 2011. Complexity is measured using daily total
demand for the top two panels and the daily standard deviation over locations and hours of
real-time prices for the bottom two figures. For a given measure of complexity, day t is defined
as being “highly complex” if the value of the measure on the day is above the 75th percentile
of the distribution of this measure across the sample period. Outcomes are residualized using
the daily-level regression shown in Equation (5). We consider the log of fuel costs per MWh of
gas-fired output in the two left panels and the log of input heat use per MWh of gas-fired output
in two right panels. The vertical black dashed line denotes the introduction of FT. The solid red
horizontal lines plot the overall averages of residuals for low complexity days taken separately over
the pre-FT and post-FT sample periods. The dashed blue horizontal lines plot overall averages
for high complexity days in the pre-FT versus post-FT sample periods. The six months before
and after February 1, 2011 are not included when calculating the four overall averages denoted
by the blue and red horizontal lines.
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Figure E.4: Monthly Average Residualized Outcomes Before versus After Financial
Trading: No Nonlinear Controls
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Notes: This figure plots the monthly averages of the residualized outcome for high complexity
days versus low complexity days. We plot only months with both high complexity days and
low complexity days. Complexity is measured using daily total demand for the top two panels
and the daily standard deviation over locations and hours of real-time prices for the bottom two
figures. For a given measure of complexity, a day is defined as being “high complexity” if the
value of the measure on the day is above the 75th percentile of the distribution of this measure.
In contrast to Equation (5), residuals are calculated using the daily-level regression specified in
Appendix Equation (E.3) which does not include nonlinear functions of the control variables in
Xt. The vertical black dashed line denotes the introduction of financial trading (“FT”). The
solid red horizontal lines plot the overall averages of residuals for low complexity days taken
separately over the pre-FT and post-FT sample periods; the dashed blue horizontal lines plot
overall averages for high complexity days in the pre-FT and post-FT sample periods.
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for both high complexity days and low complexity days remain similar even if we only

control linearly for the variables in Xt. Indeed, the trends are quite similar to those

from our primary specification presented in Figure 5. Specifically, we see that the

overall average of each residualized outcome falls after the introduction of FT on high

complexity days but not low complexity days, which is consistent with the mechanism

described in Section II.

E.3 Statistical Test of Common Trends Using First-

Differences

The definition of “common pre-existing trends” is that the slope over time in outcomes

is the same for high versus low complexity days. The “slope over time” is simply the

first difference in outcomes: ∆Yt = Yt − Yt−1. Thus, to formally test the “common

pre-existing trends” assumption, we estimate the following regression model using only

data from before the introduction of FT:

∆Yt = (∆
−→
Mt)φ+ βHIGHt + εt (E.4)

For Columns 1 and 3 of Appendix Table E.1, HIGHt is an indicator variable that is

equal to one if and only if daily total demand on day-of-sample t is larger than the

75th percentile of the distribution of daily total demand across our sample period.

For Columns 2 and 4 of this table, HIGHt is equal to one if the standard deviation in

real-time prices across locations and hours on day t is larger than the 75th percentile of

the distribution of daily standard deviations. For ease of exposition, we refer to days

with HIGHt = 1 as high complexity days, recognizing that this indicator is defined

based on demand in some specifications and the standard deviation in real-time prices

in other specifications.

All specifications control for the first differences of the variables in
−→
Mt. The vari-

ables included in
−→
Mt are indicators corresponding to separate sets of fixed effects for
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Table E.1: Checking For Common Pre-Existing Trends Using First-Differences

Dep. Var. First Diff. of First Diff. of
Log Fuel Cost per MWh Log Input Energy per MWh

(1) (2) (3) (4)

POSTFTt 0.006 0.005 0.005 0.005
(0.007) (0.005) (0.007) (0.005)

R2 0.972 0.972 0.653 0.660
Mean of Dep. Var. 0.095 0.095 -0.003 -0.003

Measure: Total Demand Y N Y N
Measure: SD RT Price N Y N Y

Number of Obs. 670 670 670 670

Notes: This table presents evidence that pre-existing differential trends in outcomes across high
versus low complexity days are not driving the difference-in-differences results presented in Table
4. The unit of observation for these regressions is day-of-sample; the regressions are estimated
using only days before the introduction of financial trading. For Columns 1 and 3 of this table,
the indicator variable HIGHt is equal to one if and only if daily total demand on day t is greater
than the 75th percentile of the distribution of daily total demand across the sample period. For
Columns 2 and 4, HIGHt is equal to one if the daily standard deviation across locations and hours
of real-time prices on day t is greater than the 75th percentile of the distribution of daily standard
deviations. The dependent variable considered in the first two columns of this table is the first
difference of the log of fuel costs per MWh; the dependent variable considered in Columns 3 and 4
of this table is the first difference of the log of input energy use per MWh. The row titled “Mean
of Dep. Var.” reports the mean of the relevant dependent variable. All of the regressions listed
in this table control for the first differences of the fixed effects and control variables described
for Equation (6) in Section VI.C; see Appendix Equation (E.4) for more details. Standard errors
are clustered by week-of-sample and are reported in parentheses.

high versus low complexity days, month-of-sample fixed effects, and weekend versus

weekday fixed effects as well as the linear and nonlinear functions of Xt specified in

Equation (6). Standard errors are clustered by week-of-sample.

Appendix Table E.1 presents the results from estimating Appendix Equation (E.4).

These results indicate that, for both outcome variables and both indicators of com-

plexity, we cannot reject the null hypothesis that the first difference of the outcome is

the same in high versus low complexity days prior to February 1st 2011. This provides

statistical evidence that the findings from our difference-in-differences framework are

not driven by pre-existing differences in the time trend of our outcomes in high versus

low complexity days.
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E.4 Robustness to Percentage Cut-Off for Complexity

In this subsection, we estimate the difference-in-differences regression specified in

Equation (6) defining days with a “high” complexity based on different cut-offs. Specif-

ically, in Appendix Table E.2, we define day t as having “high complexity” if daily

total demand on day t is higher than the Xth percentile of the distribution of daily

total demand; X is equal to 50, 60, 70, 80, and 90 for Columns 1, 2, 3, 4, and 5 of Ap-

pendix Table E.2 respectively. In Appendix Table E.3, we define complexity using the

standard deviation across locations and hours of real-time prices. As with Appendix

Table E.2, Columns 1, 2, 3, 4, and 5 consider the 50th, 60th, 70th, 80th, and 90th

percentiles of the distribution of daily standard deviations respectively.

The top panel of Appendix Table E.2 shows that the estimated reduction in average

fuel costs per MWh after financial trading on relatively high demand days remains

statistically significant whether “high demand” is defined as days-of-sample above the

50th, 60th, 70th, 80th, or 90th percentiles of daily total demand. The corresponding

reductions in input energy use per MWh also remain statistically significant regardless

of the cut-off used to define high demand days. This demonstrates that our results

are not an artifact of choosing the 75th percentile of the distribution of daily total

demand as the cut-off in our primary specifications. Moreover, the results remain

similar when defining high complexity days using different percentiles of the daily

standard deviation across locations and hours in real-time price rather than daily

total demand (see Appendix Table E.3).

Focusing on the top panel of Appendix Table E.2, the estimated effects using

the 50th, 60th, or 70th percentiles imply similar fuel cost savings. Specifically, these

estimates suggest that fuel costs fell by roughly 24-38 million dollars on high demand

days after financial trading was introduced. The first three columns of the bottom

panel indicate that the corresponding reductions in input energy resulted in a decrease

in CO2 emissions of roughly 258-428 thousand tons on high demand days. However,

the estimates of the aggregate fuel cost savings and carbon emissions reductions are
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Table E.2: Diff-in-Diff Robustness Check: By Percentage of Demand

Dependent Variable: Log of Average Fuel Cost Per MWh

(1) (2) (3) (4) (5)

HIGHt × POSTFTt -0.019 -0.032 -0.026 -0.022 -0.028
(0.005) (0.006) (0.005) (0.005) (0.006)

Cut-Off Percentage 50 60 70 80 90
Fuel Cost Savings (Million USD) 27.525 37.757 24.650 15.353 11.049

R2 0.964 0.965 0.964 0.960 0.960
Mean of Dep. Var. 3.680 3.680 3.680 3.680 3.680

Number of Obs. 1,340 1,340 1,340 1,340 1,340

Dependent Variable: Log of Average Input Heat Use Per MWh

(1) (2) (3) (4) (5)

HIGHt × POSTFTt -0.017 -0.030 -0.022 -0.020 -0.025
(0.005) (0.006) (0.005) (0.005) (0.006)

Cut-Off Percentage 50 60 70 80 90
CO2 Reductions (Tons) 295,929 427,562 258,475 168,086 120,846

R2 0.735 0.741 0.735 0.714 0.712
Mean of Dep. Var. 2.051 2.051 2.051 2.051 2.051

Number of Obs. 1,340 1,340 1,340 1,340 1,340

Notes: This table presents the difference-in-differences estimates of the change in fuel costs
per MWh and input heat energy per MWh after financial trading (“FT”) is introduced on high
demand days relative to low demand days. The unit of observation for these regressions is day-
of-sample. The “Post FT” indicator is equal to one if and only if the day-of-sample is on or after
February 1st 2011. The indicator variable HIGHt is equal to one if and only if daily total demand
in day t is greater than the Xth percentile of the distribution of daily total demand across our
sample period; X is equal to the 50th, 60th, 70th, 80th, or 90th percentile depending on whether
we’re considering the specification estimated in Columns 1, 2, 3, 4, or 5 respectively. All of the
regressions listed in this table include the sets of fixed effects and control variables specified in
Equation (6) in Section VI.C. Standard errors are clustered by week-of-sample and are reported
in parentheses.
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Table E.3: Diff-in-Diff Robustness Check: By Percentage of SD[Real-Time Prices]

Dependent Variable: Log of Average Fuel Cost Per MWh

(1) (2) (3) (4) (5)

HIGHt × POSTFTt -0.006 -0.006 -0.011 -0.014 -0.013
(0.003) (0.004) (0.004) (0.005) (0.006)

Cut-Off Percentage 50 60 70 80 90
Fuel Cost Savings (Million USD) 8.008 6.203 8.810 7.289 3.395

R2 0.960 0.960 0.960 0.960 0.960
Mean of Dep. Var. 3.680 3.680 3.680 3.680 3.680

Number of Obs. 1,340 1,340 1,340 1,340 1,340

Dependent Variable: Log of Average Input Heat Use Per MWh

(1) (2) (3) (4) (5)

HIGHt × POSTFTt -0.006 -0.005 -0.010 -0.014 -0.014
(0.003) (0.004) (0.004) (0.005) (0.006)

Cut-Off Percentage 50 60 70 80 90
CO2 Reductions (Tons) 89,056 64,765 95,512 84,647 45,576

R2 0.715 0.714 0.715 0.715 0.712
Mean of Dep. Var. 2.051 2.051 2.051 2.051 2.051

Number of Obs. 1,340 1,340 1,340 1,340 1,340

Notes: This table presents the difference-in-differences estimates of the change in fuel costs per
MWh and input heat energy per MWh after financial trading (“FT”) is introduced on days with
a relatively high daily standard deviation in real-time prices. The unit of observation for these
regressions is day-of-sample. The “Post FT” indicator is equal to one if and only if the day-of-
sample is on or after February 1st 2011. The indicator variable HIGHt is equal to one if and only
if the standard deviation across locations and hours in real-time prices for day t is greater than
the Xth percentile of the distribution of daily standard deviations across our sample period; X is
equal to the 50th, 60th, 70th, 80th, or 90th percentile depending on whether we’re considering
the specification estimated in Columns 1, 2, 3, 4, or 5 respectively. All of the regressions listed
in this table include the sets of fixed effects and control variables specified in Equation (6) in
Section VI.C. Standard errors are clustered by week-of-sample and are reported in parentheses.
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far smaller if we instead consider the 80th or 90th percentiles of the distribution of

daily total demand. This is because we are applying a similarly sized effect to far

fewer days when considering the 80th or 90th percentiles of daily total demand as the

cut-off. For this reason, we consider the 75th percentile of daily total demand as the

cut-off for our primary specifications.

E.5 Excluding Months After the San Onofre Nuclear Plant

Shutdown

Davis and Hausman (2016) studies the shut down of the San Onofre nuclear power

plant in February 2012. One may be concerned that this shut down impacts our

estimates of the reductions in fuel cost per MWh after financial trading on high com-

plexity days relative to low complexity days. To assuage this concern, we note that

our primary specifications control for a host of economic factors, including monthly

total output from nuclear plants in California, as follows. First, we center each control

variable; for each centered control variable x, our specification includes x, x2, x3, x4

and ten separate indicators defined using the deciles of the distribution of x.

To further assuage this concern, we estimate the difference-in-differences regres-

sion specified in Equation (6) excluding the months after the San Onofre plant shut

down. Namely, we estimate Equation (6) considering only the sample period 4/1/2009-

1/31/2012

Appendix Table E.4 presents the results from this estimation. Columns 1, 2, and

3 define high complexity days based on the 75th percentile of the distribution of daily

total demand, daily standard deviation in real-time prices, and daily total starts by

gas-fired units respectively. The top panel considers the log of fuel costs per MWh

while the bottom panel focuses on the log of input fuel use per MWh. Regardless of the

measure of complexity considered, the reductions in fuel cost per MWh and input fuel

use per MWh on high complexity days after FT remain precisely estimated and similar
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Table E.4: Diff-in-Diff Specification Excluding Days After January 31, 2012

Dep. Var.: Log Fuel Cost per MWh

(1) (2) (3)

HIGHt × POSTFTt -0.028 -0.018 -0.018
(0.007) (0.006) (0.005)

R2 0.958 0.955 0.957
Mean of Dep. Var. 3.717 3.717 3.717

Number of Obs. 1,036 1,036 1,036
Measure: Total Demand Y N N
Measure: SD RT Price N Y N
Measure: Total Starts N N Y

Dep. Var.: Log Input Energy Use per MWh

(1) (2) (3)

HIGHt × POSTFTt -0.025 -0.018 -0.018
(0.007) (0.006) (0.005)

R2 0.746 0.735 0.746
Mean of Dep. Var. 2.051 2.051 2.051

Number of Obs. 1,036 1,036 1,036
Measure: Total Demand Y N N
Measure: SD RT Price N Y N
Measure: Total Starts N N Y

Notes: This table presents the difference-in-differences estimates of the change in outcome after
the introduction of financial trading (“FT”) on high complexity days relative to low complexity
days. The unit of observation for these regressions is day-of-sample. The dependent variable
considered in the top (bottom) panel of this table is the log of fuel costs per MWh (the log of
input energy per MWh). Columns 1, 2, and 3 of each panel of the table measure complexity
using daily total demand, daily standard deviation in real-time prices, and daily total starts
respectively. For a given measure of complexity, the indicator variable HIGHt is equal to one if
and only if the value of the measure on day t is higher than the 75th percentile of the distribution
of this measure across the 4/1/2009-1/31/2012 sample period used for this table. The “Post FT”
indicator is equal to one if and only if the day-of-sample is on or after February 1st 2011. All of
the regressions listed in this table include the sets of fixed effects and control variables specified in
Equation (6) in Section VI.C. Standard errors are clustered by week-of-sample and are reported
in parentheses.
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in magnitude when estimated on the 4/1/2009-1/31/2012 sample period rather than

the full 4/1/2009-11/30/2012 sample period. This suggests that our primary estimates

do not stem from the shut down of the San Onofre nuclear plant.
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F Potential Mechanism Underlying Efficiency

Gains from Financial Trading

This section is split into four parts. In the first subsection, we present descriptive evi-

dence that increases in our three measures of complexity are associated with increases

in systemwide fuel costs per MWh. Our three measures of complexity are daily total

demand, the daily standard deviation across pricing locations and hours of real-time

prices, and daily total number of unit start-ups. The second subsection presents sug-

gestive evidence that the aggregate marginal cost curve becomes steeper as the residual

demand to be served by the gas-fired fleet increases. The third subsection discusses

results from difference-in-differences specifications defining “high complexity” days

using daily total number of starts. The final subsection explores differences in the

start-up behavior of units with larger versus smaller fuel costs per MWh before versus

after financial trading on high versus low complexity days (i.e., a “triple-differences

approach”).

F.1 Measures of Complexity and Fuel Costs

Appendix Figure F.1 plots the relationship between our three measures of system

complexity and residualized log fuel costs per MWh. We residualize the log of fuel

costs per MWh of gas-fired output using the following equation:

Yt = θw + γy,m +
S∑
s=1

K∑
k=1

[(Zk,t − Zk)
sφs,k +

10∑
b=1

θk,b1[Zk,t ∈ BINk,b]] + ut (F.1)

for day-of-sample t in calendar month m and year-of-sample y. This specification

includes month-of-sample fixed effects (αm,y) and an indicator for whether the day-of-

sample is a weekday versus weekend (θw). We also control for the variables in Zt: the

log of daily net electricity imports, the log of the monthly average natural gas price

paid by power plants in CAISO, as well as logs of monthly total production from: (1)

52



Figure F.1: Residualized Fuel Cost Per MWh and Measures of Complexity
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(a) Log Std. Dev. of Real-Time Prices
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(b) Log Daily Total Load
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(c) Log Daily Total Starts

Notes: This figure documents the relationship between residualized daily total fuel costs per
MWh and each of our three measures of complexity. We residualize log fuel costs per MWh using
the regression specified in Appendix Equation (F.1). The x-axis plots the relevant measure of
complexity: (1) the log of the daily standard deviation in real-time prices across locations and
hours of the day in the top left panel, (2) the log of daily total demand in the top right panel
and (3) the log of daily total number of starts by gas-fired units in the bottom middle panel.

renewables, (2) nuclear sources, and (3) hydro sources. Specifically, we center each

variable in Zt; for each centered control variable z, our specification includes z, z2,

z3, z4 and ten separate indicators defined using the deciles of the distribution of z. In

contrast to Equations (5) and (6), we do not control for the log of daily total demand

because daily total demand is one of our three measures of complexity.

All three panels of Appendix Figure F.1 document substantial variation in resid-

ualized log fuel costs per MWh that is not explained by the relevant measure of

complexity. Nevertheless, the best linear fit between residualized log fuel costs per
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MWh and each measure of complexity has a positive slope. The estimated slopes are

0.005, 0.033, and 0.009 for the log of the daily standard deviation in real-time prices,

the log of daily total demand, and the log of daily total number of starts respectively.

The correlation between residualized log fuel cost per MWh and the relevant mea-

sure of complexity is 0.150, 0.120, and 0.162 for the log of daily standard deviation

in real-time prices, log demand, and log number of starts respectively. Combined,

this evidence indicates that increases in each of our three measures of complexity are

associated with increases in fuel costs per MWh.

F.2 Marginal Fuel Cost Curves

In this subsection, we present crude estimates of the aggregate marginal fuel cost

curve in California’s wholesale electricity market. The goal of this subsection is only

to provide suggestive evidence that the marginal fuel cost of the marginal unit in-

creases at an increasing rate as the residual demand to be served by the gas-fired fleet

increases. We fully acknowledge that we ignore several important factors that enter

marginal costs, such as variable operating and maintenance costs and the allowance

costs associated with nitrogen oxide emissions.

We calculate each unit’s marginal fuel cost quite simply: each unit’s marginal

fuel cost is its aggregate fuel costs over the sample period divided by its output over

the sample period. Appendix Figure F.2 plots the resulting marginal cost curve as a

function of the cumulative output of the gas-fired fleet. The x-axis for the two left

panels is hourly cumulative output while the x-axis for the two right panels is daily

cumulative output. For the top two panels of Appendix Figure F.2, we assume each

unit is producing at capacity, as measured by its maximum hourly output over the

sample period. For the bottom left (right) panel, we choose an example hour (day)

where the total output produced by the gas-fired fleet is especially high; we then

simply use the unit’s observed output in the hour (day).60 Finally, we plot the 50th,

60The example day chosen is August 13, 2012. We use the 1pm-2pm interval on this day for the
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75th, 90th, and 95th percentiles of the distribution of hourly (daily) total gas-fired

output as vertical dashed lines in the two left (right) panels of Appendix Figure F.2.

It is clear from Appendix Figure F.2 that the marginal cost curve becomes sig-

nificantly steeper as the residual demand to be served by the gas-fired fleet increases.

The marginal cost curve is especially steep at the very highest levels of residual de-

mand. That being said, even the 95th percentile of residual demand falls well short

of the steepest portion of the marginal cost curve. Combined, these figures provide

suggestive evidence that there are larger potential gains from reallocation of output

across units at higher levels of residual demand to be served by the gas-fired fleet.

F.3 Specifications Based on Number of Starts

This subsection compares market outcomes before versus after the introduction of

financial trading on days with more versus less starts by gas-fired units. We estimate

the following specification in order to quantify how our two outcome variables change

after financial trading on days with a relatively high number of starts:

Yt = αm,HIGH + θw + γy,m + δDD(HIGHt × POSTFTt)+

4∑
s=1

K∑
k=1

[
(Xk,t −Xk)

sφs,k +
10∑
b=1

θk,b1[Xk,t ∈ BINk,b]
]

+ ut

(F.2)

where we define HIGHt to be an indicator that is equal to one if and only if daily total

number of starts on day-of-sample t is above the kth percentile of the distribution of

daily total starts across our 4/1/2009-11/30/2012 sample period; we consider specifi-

cations based on the 50th, 60th, 70th, 80th and 90th percentiles of the distribution of

starts. All regressions include separate sets of calendar month fixed effects for days

with a high versus low number of starts (αm,HIGH), weekend versus weekday fixed ef-

fects (θw), and month-of-sample fixed effects (γm,y). In addition, we control for the

variables in
−→
Xt in the same way as discussed in Section VI.C. Finally, standard errors

hourly figure.
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Figure F.2: Hourly and Daily Marginal Cost Curves
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(a) Hourly, Capacity-Based
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(b) Daily, Capacity-Based
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(c) Hourly, Observed Output

20
40

60
80

10
0

Ag
gr

eg
at

e 
Fu

el
 C

os
t p

er
 M

W
h

0 .1 .2 .3 .4
Cumulative Output (TWh)

(d) Daily, Observed Output

Notes: This figure presents aggregate marginal cost curves constructed by stacking units based
on their aggregate fuel costs per MWh. We calculate each unit’s marginal cost as the unit’s
fuel cost over the sample period divided by the unit’s total output over the sample period. The
x-axis of each figure is the cumulative output of gas-fired units with marginal cost less than
the value listed: the left panels plot hourly cumulative output while the right panels plot daily
cumulative outputs. We assume that each unit produces at its capacity for the top two panels;
each unit’s capacity is defined to be its maximum hourly output across the sample period. The
bottom right panel uses each unit’s observed output from August 13 2012; the bottom left panel
uses each unit’s output from the 1pm-2pm interval on August 13 2012. Finally, the left (right)
panels also include four vertical dashed lines with the 50th, 75th, 90th, and 95th percentiles of
the distribution of hourly (daily) total observed output from gas-fired units.
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Table F.1: Diff-in-Diff Robustness Check: By Percentage of Daily Starts

Log of Fuel Cost Per MWh
(1) (2) (3) (4) (5)

HIGHt × POSTFTt -0.012 -0.012 -0.010 -0.007 -0.009
(0.004) (0.004) (0.004) (0.004) (0.005)

Cut-Off Percentage 50 60 70 80 90
Fuel Cost Savings (Million USD) 16.185 13.701 8.836 4.871 3.164

R2 0.962 0.962 0.961 0.961 0.961
Mean of Dep. Var. 3.680 3.680 3.680 3.680 3.680

Number of Obs. 1,340 1,340 1,340 1,340 1,340

Log of Input Heat Per MWh
(1) (2) (3) (4) (5)

HIGHt × POSTFTt -0.010 -0.011 -0.009 -0.007 -0.009
(0.004) (0.004) (0.004) (0.004) (0.005)

Cut-Off Percentage 50 60 70 80 90
CO2 Reductions (Tons) 168,160 153,552 97,466 51,248 38,281

R2 0.726 0.727 0.723 0.721 0.718
Mean of Dep. Var. 2.051 2.051 2.051 2.051 2.051

Number of Obs. 1,340 1,340 1,340 1,340 1,340

Notes: This table presents the difference-in-differences estimates of the change in fuel costs per
MWh and input heat energy per MWh after the introduction of financial trading (“FT”) on days
with a high versus low number of times that gas-fired units started up. The unit of observation
for these regressions is day-of-sample. The “Post FT” indicator is equal to one if and only if the
day-of-sample is on or after February 1st 2011. The indicator variable HIGHt is equal to one if
the daily total number of starts in day t is greater than the Xth percentile of the distribution of
daily total starts across our sample period, where X is equal to the 50th, 60th, 70th, 80th, or 90th
percentile depending on whether we’re considering the specification estimated in Columns 1, 2,
3, 4, or 5 respectively. All of the regressions listed in this table include the sets of fixed effects
and control variables specified in Equation (6) in Section VI.C. Standard errors are clustered by
week-of-sample and are reported in parentheses.

are clustered by week-of-sample.

Appendix Table F.1 demonstrates that our estimates are negative and precisely

estimated regardless of whether we consider days-of-sample with total number of starts

above the 50th, 60th, 70th, 80th, or 90th percentiles of the distribution of daily total

starts. The estimated reductions in fuel costs per MWh after financial trading on

days with a relatively large number of starts are roughly 1% across specifications.

These estimates are similar in magnitude to the corresponding estimates for high

demand days and high standard deviation days from Appendix Tables E.2 and E.3
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respectively. This suggests that one mechanism by which purely financial participation

lowers production costs is changes in the type of units that start up on days requiring

a larger number of unit start-ups. We explore this hypothesis in the next subsection.

F.4 Starts on High Complexity Days Before versus after Fi-

nancial Trading

This subsection presents estimates of the differences in the number of starts by gas-

fired units before versus after the introduction of financial trading on high complexity

days versus low complexity days. We first employ the same difference-in-differences

specification as in Section VI.C:

Yt = αm,HIGH + θw + γy,m + δDD(HIGHt × POSTFTt)

+
S∑
s=1

K∑
k=1

[(Xk,t −Xk)
sφs,k +

10∑
b=1

θk,b1[Xk,t ∈ BINk,b]] + ut

(F.3)

where t indexes day-of-sample in calendar month m in year y. The outcome variable

Yt is the log of the total number of starts by gas-fired units on day t divided by the

total output from gas-fired units on day t. The indicator variable POSTFTt is equal

to one if day-of-sample t is on or after the introduction of FT.

As before, we consider two different indicators of the complexity of the optimiza-

tion problems to be solved to clear real-time markets: total daily demand and the daily

standard deviation of real-time prices. For the first three columns of Appendix Table

F.2, the indicator variable HIGHt is equal to one if and only if daily total demand

on day t is higher than the 75th percentile of the distribution of daily total demand

across our sample period. For the last three columns of this table, HIGHt is equal to

one if the standard deviation across locations and hours of real-time prices on day t is

larger than the 75th percentile of the distribution of these daily standard deviations.

The independent variable of interest is HIGHt × POSTFTt, which captures the

difference in starts per MWh on high complexity days relative to low complexity days
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Table F.2: Change in Starts After FT on Relatively High Complexity Days

Log Total Number of Starts per MWh
(1) (2) (3) (4) (5) (6)

HIGHt × POSTFTt -0.117 -0.115 -0.132 -0.078 -0.088 -0.079
(0.068) (0.067) (0.067) (0.046) (0.044) (0.045)

R2 0.610 0.598 0.598 0.656 0.647 0.643
Mean of Dep. Var. -8.456 -8.456 -8.456 -8.456 -8.456 -8.456

Trimmed Dep. Var.? N Y N N Y N
No Nonlinear Controls N N Y N N Y

Measure: Total Demand Y Y Y N N N
Measure: SD RT Price N N N Y Y Y

Number of Obs. 1,340 1,314 1,340 1,340 1,314 1,340

Notes: This table presents the difference-in-differences estimates of the change in outcome after
the introduction of financial trading (“FT”) on relatively high complexity days. The unit of
observation for these regressions is day-of-sample. For the first three columns of each panel, the
indicator variable HIGHt is equal to one if and only if daily total demand on day t is higher
than the 75th percentile of the distribution of daily total demand across the sample period. For
the last three columns, HIGHt is equal to one if the daily standard deviation over locations and
hours of real-time prices in day t is greater than the 75th percentile of the distribution of daily
standard deviations. The dependent variable considered is the log of the total number of starts
by gas-fired units divided by daily total output by gas-fired units. The “Post FT” indicator is
equal to one if and only if the day-of-sample is on or after February 1st 2011. The regressions
underlying the estimates presented in Columns 1, 2, 4 and 5 include the sets of fixed effects and
control variables described in Appendix Equation (F.3). The set of controls Xt is included only
linearly for the regressions underlying Columns 3 and 6. In Columns 2 and 5, we trim the top
and bottom 1% of the outcome before estimating the regression. Standard errors are clustered
by week-of-sample and are reported in parentheses.

after relative to before FT. As before, our primary specifications control for Xt: the log

of total electricity demand, the log of net electricity imports, the log of monthly average

natural gas prices, as well as separate controls for the log of monthly total production

from: (1) renewables, (2) nuclear sources, and (3) hydro sources. Specifically, we center

each variable in Xt; for each centered variable x in Xt, the specification includes x,

x2, x3, x4 and ten separate indicators defined using the deciles of the distribution of

x. Finally, standard errors are clustered by week-of-sample.

The results are presented in Appendix Table F.2. The estimated reductions in

starts per MWh are precisely estimated regardless of which of the two indicators of

complexity are used. Moreover, Columns 2 and 5 demonstrate that the results remain

similar if we trim the top 1% and bottom 1% of the distribution of the dependent

variable prior to estimating the regressions. Finally, in Columns 3 and 6, we show that

59



the estimates remain similar if we control for the set of variables in Xt only linearly

rather than include the nonlinear terms specified in Appendix Equation (F.3). All

told, the estimates in Appendix Table F.2 indicate that the number of gas-fired units

that start up to produce a given level of gas-fired output falls after the introduction

of financial trading on relatively high complexity days.

To explore which types of units are less likely to start up after FT, we categorize

a unit as “baseload” if the unit’s aggregate fuel costs per MWh are in the bottom

half of the distribution across units of this magnitude; units in the top half of the

distribution of aggregate fuel costs per MWh are categorized as “peakers”. With this

categorization in hand, we estimate the following regression:

Yi,t = αi,m,HIGH + γi,m,y + θw + δDDD(PEAKERi × HIGHt × POSTFTt)

+
S∑
s=1

K∑
k=1

[(Xk,t −Xk)
sφs,k +

10∑
b=1

θk,b1[Xk,t ∈ BINk,b]] + ui,t

(F.4)

where i indexes type of unit (either baseload or peaker) and t indexes day-of-sample

in calendar month m in year y. For the first two columns of Appendix Table F.3,

the outcome variable Yi,t is the log of total starts. We drop observations with zero

total starts from this regression. As a robustness check, we also consider the inverse

hyperbolic sine of total starts as the dependent variable (see Columns 3 and 4). Finally,

we estimate the model using a Poisson regression in Columns 5 and 6 of Appendix

Table F.3. Both these models allow us to include observations with zero total starts.

As before, the indicator variable POSTFTt is equal to one if and only if day-of-

sample t is on or after the introduction of FT. For Columns 1, 3, and 5 of Appendix

Table F.3, the indicator variable HIGHt is equal to one if and only if daily total

demand on day t is larger than the 75th percentile of the distribution of daily total

demand across our sample period. For Columns 2, 4, and 6, HIGHt is equal to one

if the standard deviation across locations and hours of real-time prices on day t is

greater than the 75th percentile of the distribution of daily standard deviations.
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All specifications include separate sets of type of unit by calendar month fixed

effects for days with HIGHt = 1 versus HIGHt = 1 (i.e.: αi,m,HIGH), type by month-

of-sample fixed effects (i.e.: γi,m,y), and an indicator for weekday versus weekend (i.e.:

θw). We control for the same variables Xt in the same way as discussed above for

Appendix Equation (F.2). Finally, standard errors are clustered by week-of-sample.

The independent variable of interest is PEAKERi × HIGHt × POSTFTt, which

captures the difference in starts for peakers relative to baseload units on high com-

plexity days relative to low complexity days after relative to before the introduction

of financial trading. Of course, we also include each of the three “main effects” as well

as the three two-way interactions defined by these three variables. Note that some of

the main effects and interactions are absorbed by the fixed effects considered in the

specification.

The estimated reductions in starts for peaker units relative to baseload units after

financial trading on relatively complex days remains precisely estimated regardless of:

(1) whether complexity is measured using daily total demand or the daily standard

deviation in real-time prices (Columns 1, 3, and 5 versus Columns 2, 4, and 6), (2)

whether we take the log or the inverse hyperbolic sine before estimating the linear

regression (Columns 1 and 2 versus Columns 3 and 4), and (3) whether we estimate

the model using linear regression or Poisson regression (Columns 1-4 versus Columns

5 and 6).

In the previous subsection, we documented that fuel costs per MWh fell after

financial trading was introduced on days with a relatively high number of starts. We

hypothesized that this reduction in fuel costs came from a switch in the type of units

that were started up to meet demand during times when solving the optimization

problems required to clear the real-time market were complex. Appendix Table F.3

provides evidence consistent with this hypothesis. Namely, focusing on Column 1, our

estimates indicate that peakers start up roughly 35% less times than baseload units

on relatively high demand days after financial trading was introduced. This concords
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Table F.3: Changes in Starts By Plant Type After Financial Trading on Relatively
High Complexity Days

(1) (2) (3) (4) (5) (6)

PEAKERi × HIGHt × POSTFTt -0.359 -0.269 -0.463 -0.262 -0.294 -0.180
(0.136) (0.075) (0.149) (0.081) (0.113) (0.056)

Measure of Complexity: Total Demand Y N Y N Y N
Measure of Complexity: SD RT Price N Y N Y N Y

Dep. Var. in Logs Y Y N N N N
Dep. Var. in Asinh N N Y Y N N

Poisson Spec. N N N N Y Y
Peaker/Month/High Day FE Y Y Y Y Y Y
Peaker/Month-of-Sample FE Y Y Y Y Y Y
Weekday versus Weekend FE Y Y Y Y Y Y

R2 0.531 0.579 0.532 0.576
Mean of Dep. Var. 2.767 2.767 3.450 3.450 19.313 19.313

Number of Obs. 2,669 2,669 2,680 2,680 2,680 2,680

Notes: This table presents the estimated difference in start-ups by baseload versus peaker gas-
fired units before versus after the introduction of financial trading (“FT”) on high versus low
complexity days. We categorize a unit as “baseload” if the unit’s aggregate fuel costs per MWh
are in the bottom half of the distribution across units of this magnitude; units in the top half
of the distribution of aggregate fuel costs per MWh are categorized as “peakers”. The unit of
observation considered for these regressions is type-of-unit/day-of-sample. For Columns 1, 3,
and 5, the indicator variable HIGHt is equal to one for days-of-sample with daily total demand
greater than the 75th percentile of the distribution of daily total demand across the sample
period. For Columns 2, 4, and 6, HIGHt is equal to one if the standard deviation across locations
and hours in real-time prices on day t is higher than the 75th percentile of the distribution of
daily standard deviations in real-time prices. The “Post FT” indicator is equal to one if and
only if the day-of-sample is after FT is introduced on February 1st 2011. The row titled “Mean
of Dep. Var.” reports the mean of the relevant dependent variable: the log of total number of
starts by gas-fired units of the type in the day for Columns 1 and 2, the inverse hyperbolic sine
of starts for Columns 3 and 4, and number of starts in levels for Columns 5 and 6. We estimate
the model using linear regression for Columns 1-4 but Poisson regression for Columns 5 and 6.
All of the regressions listed in this table include the sets of fixed effects and control variables
specified in Appendix Equation (F.4). Standard errors are clustered by week-of-sample and are
reported in parentheses.
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with the intuition that the locational bids and offers submitted by purely financial

participants in the day-ahead market resulted in the use of lower cost baseload units

rather than higher cost peaker units to satisfy demand during high complexity days.
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